Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Analytical Conditions
2.3. CCM Calibration Curve
2.4. Sample Preparation for the Determination of CCM in Curcuma Longa Extract
2.5. Analytical Method Development
2.6. Validation Parameters
2.7. Forced Degradation/Selectivity Studies
2.8. Greenness Measurement
2.9. Application of Greener HPLC Methodology in Determination of CCM in In-House Developed Nanoemulsion
2.10. Application of Greener HPLC Methodology in Determination of CCM in Curcuma Longa Extract
2.11. Application of Greener HPLC Methodology in Determination of CCM in Commercial Tablets
3. Results and Discussion
3.1. Analytical Method Development
3.2. Validation Parameters
3.3. Forced Degradation and Selectivity Studies
3.4. Greenness Measurement
3.5. Determination of CCM in In-House Developed Nanoemulsion, Curcuma Longa Extract, and Commercial Tablets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Hack, M.E.A.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Ghanima, M.M.A.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef] [PubMed]
- Reeta, V.; Kalia, S. Turmeric: A review of its effects on human health. J. Med. Plant Stud. 2022, 10, 61–63. [Google Scholar]
- Fabianowska-Majewska, K.; Kaufman-Szymczyk, A.; Szymanska-Kolba, A.; Jakubik, J.; Majeski, G. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients 2021, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem. 2002, 50, 3668–3672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Cai, N.; Xu, T.; He, F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int. Immunopharmacol. 2021, 96, E107600. [Google Scholar] [CrossRef]
- Trigo-Gutierrez, J.K.; Vega-Chacon, Y.; Soares, A.B.; de Oliveira Mima, E.G. Antimicrobial activity inflammatory of curcumin in nanoformulations: A comprehensive review. Int. J. Mol. Sci. 2021, 22, 7130. [Google Scholar] [CrossRef]
- Negahdari, R.; Ghavimi, M.A.; Barzegar, A.; Memar, M.Y.; Balazadeh, L.; Bohlouli, S.; Sharifi, S.; Dizaj, S.M. Antibacterial effects of nanocurcumin inside the implant fixture: An in vitro study. Clin. Exp. Dental Res. 2021, 7, 163–169. [Google Scholar] [CrossRef]
- Ardebili, A.; Pouriayevali, M.H.; Aleshikh, S.; Zahani, M.; Ajorloo, M.; Izanloo, A.; Siyadatpanah, A.; Nikoo, H.R.; Wilairatana, P.; Coutinho, H.D.M. Antiviral therapeutic potential of curcumin: An update. Molecules 2021, 26, 6994. [Google Scholar] [CrossRef]
- Urosevic, M.; Nikolic, L.; Gajic, I.; Nikolic, V.; Dinic, A.; Miljkovic, V. Curcumin: Biological activities and modern pharmaceuticals. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef]
- Eremina, N.V.; Zhanataev, A.K.; Durnev, A.D. Induced cell death as a possible pathway of antimutagenic action. Bull. Exp. Biol. Med. 2021, 171, 1–14. [Google Scholar] [CrossRef]
- Morshidi, K.; Borran, S.; Ebrahimi, M.S.; Khooy, M.J.M.; Seyedi, Z.S.; Amiri, A.; Abbasi-Kolli, M.; Fallah, M.; Khan, H.; Sahebkar, A.; et al. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother. Res. 2021, 35, 3834–3897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, X.; Lin, J.; Song, F.; Shao, Y. Low curcumin concentration enhances the anticancer effects of 5-fluorouracil against colorectal cancer. Phytomedicine 2021, 85, E153547. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Romeo, M.A.; Benedetti, R.; Masuelli, L.; Bei, R.; Montani, M.S.G.; Cirone, M. New insights into curcumin- resveratrol-mediated anticancer effects. Pharmaceuticals 2021, 14, 1068. [Google Scholar] [CrossRef]
- Unsal, Y.E.; Tuzen, M.; Soylak, M. Ultrasound-assisted ionic liquid-dispersive liquid–liquid of curcumin in food samples microextraction and its spectrophotometric determination. J. AOAC Int. 2019, 102, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Altunay, N.; Unal, Y.; Elik, A. Towards green analysis of curcumin from tea, honey and spices: Extraction by deep eutectic solvent assisted emulsification liquid-liquid microextraction method based on response surface design. Food Addit. Cont. Part A. 2020, 37, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Gurmen, K.; Sahin, U.; Yilmaz, E.; Soylak, M.; Sahan, S. Determination of curcumin in food with homogenous liquid-phase microextraction preconcentration and spectrophotometric determination. Anal. Lett. 2023, 56, 807–815. [Google Scholar] [CrossRef]
- Karimi, M.; Mashreghi, M.; Saremi, S.S.; Jaafari, M.R. Spectrofluorometric method development and validation for the determination of curcumin in nanoliposomes and plasma. J. Fluoresc. 2020, 30, 1113–1119. [Google Scholar] [CrossRef]
- Yang, R.; Mu, W.-Y.; Chen, Q.-Y. Urazole-Au nanocluster as a novel fluorescence probe for curcumin determination and mitochondria imaging. Food Anal. Methods 2019, 12, 1805–1812. [Google Scholar] [CrossRef]
- Yu, C.; Zhuang, Q.; Cui, H.; Li, Y.; Ding, Y.; Lin, J.; Duan, Y. A fluorescent “turn-off” probe for the determination of curcumin using upconvert luminescent carbon dots. J. Fluoresc. 2020, 30, 1469–1476. [Google Scholar] [CrossRef]
- Naidu, M.M.; Shyamala, B.N.; Manjunatha, J.R.; Sulochanamma, G.; Srinivas, P. Simple HPLC method for resolution of curcuminoids with antioxidant potential. J. Food Sci. 2009, 74, C312–C318. [Google Scholar] [CrossRef]
- Jangle, R.D.; Thorat, B.N. Reversed-phase high-performance liquid chromatography method for analysis of curcuminoids and curcuminoid-loaded liposome formulation. Indian J. Pharm. Sci. 2013, 75, 60–66. [Google Scholar] [PubMed] [Green Version]
- Ali, I.; Haque, A.; Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods 2014, 6, 2526–2536. [Google Scholar] [CrossRef]
- Syed, H.K.; Bin Liew, K.; Loh, G.O.K.; Peh, K.K. Stability indicating HPLC–UV method for detection of curcumin in Curcuma longa extract and emulsion formulation. Food Chem. 2015, 170, 321–326. [Google Scholar] [CrossRef]
- Hwang, K.-W.; Son, D.; Jo, H.-W.; Kim, C.H.; Seong, K.C.; Moon, J.-K. Levels of curcuminoid and essential oil compositions in turmerics (Curcuma longa L.) grown in Korea. Appl. Biol. Chem. 2016, 59, 209–215. [Google Scholar] [CrossRef]
- Osorio-Tobon, J.F.; Carvalho, P.I.N.; Barbero, G.F.; Nogueira, G.C.; Rostango, M.A.; Meireles, M.A.D.A. Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem. 2016, 200, 167–174. [Google Scholar] [CrossRef]
- Peram, M.R.; Jalalpure, S.S.; Joshi, S.A.; Palkar, M.B.; Diwan, P.V. Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 487–498. [Google Scholar] [CrossRef]
- Erpina, E.; Rafi, M.; Darusman, L.K.; Vitasari, A.; Putra, B.R.; Rohaeti, E. Simultaneous quantification of curcuminoids and xanthorrhizol in Curcuma xanthorrhiza by high-performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 635–639. [Google Scholar] [CrossRef]
- Jiang, H.; Somogyi, A.; Jacobsen, N.E.; Timmermann, B.N.; Gang, D.R. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1001–1012. [Google Scholar] [CrossRef]
- Jiang, H.; Timmermann, B.N.; Gang, D.R. Use of liquid chromatography–electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J. Chromatogr. A. 2006, 1111, 21–31. [Google Scholar] [CrossRef]
- Avula, B.; Wang, Y.-H.; Khan, I.A. Quantitative determination of curcuminoids from the roots of Curcuma longa, Curcuma species and dietary supplements using an UPLC-UV-MS method. J. Chromatogr. Sep. Tech. 2012, 3, E1000120. [Google Scholar] [CrossRef]
- Cheng, J.; Weijun, K.; Yun, L.; Jiabo, W.; Haitao, W.; Qingmiao, L.; Xiaohe, X. Development and validation of UPLC method for quality control of Curcuma longa Linn.: Fast simultaneous quantitation of three curcuminoids. J. Pharm. Biomed. Anal. 2010, 53, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Ahmad, S.; Kohli, K.; Ali, J.; Khar, R.K. Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2005, 39, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Pathania, V.; Gupta, A.P.; Singh, B. Improved HPTLC method for determination of curcuminoids from Curcuma longa. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 877–887. [Google Scholar] [CrossRef]
- Green, C.E.; Hibbert, S.L.; Bailey-Shaw, Y.A.; Williams, L.A.D.; Mitchell, S.; Garraway, E. Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica. J. Agric. Food Chem. 2008, 56, 3664–3670. [Google Scholar] [CrossRef]
- Paramasivam, M.; Poi, R.; Banerjee, H.; Bandyopadhyay, A. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem. 2009, 113, 640–644. [Google Scholar] [CrossRef]
- Taha, M.N.; Krawinkel, M.B.; Morlock, G.E. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry—A suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts. J. Chromatogr. A. 2015, 1394, 137–147. [Google Scholar] [CrossRef]
- Baghel, U.S.; Nagar, A.S.; Pannu, M.S.; Singh, D.; Yadav, R. HPLC and HPTLC methods for simultaneous estimation of quercetin and curcumin in polyherbal formulation. Indian J. Pharm. Sci. 2017, 79, 197–203. [Google Scholar] [CrossRef]
- Chen, W.; Fan-Havard, P.; Yee, L.D.; Cao, Y.; Stoner, G.D.; Chan, K.K.; Liu, Z. A liquid chromatography–tandem mass spectrometric method for quantification of curcumin-O-glucuronide and curcumin in human plasma. J. Chromatogr. B. 2012, 900, 89–93. [Google Scholar] [CrossRef]
- Kunati, S.R.; Yang, S.; William, B.M.; Xu, Y. An LC–MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J. Pharm. Biomed. Anal. 2018, 156, 189–198. [Google Scholar] [CrossRef]
- Liu, Y.; Siard, M.; Adams, A.; Keowen, M.L.; Miller, T.K.; Garza, F., Jr.; Andrews, F.M.; Seeram, N.P. Simultaneous quantification of free curcuminoids and their metabolites in equine plasma by LC-ESI–MS/MS. J. Pharm. Biomed. Anal. 2018, 154, 31–39. [Google Scholar] [CrossRef]
- Yu, W.; Wen, D.; Cai, D.; Zheng, J.; Gan, H.; Jiang, F.; Liu, X.; Lao, B.; Yu, W.; Guan, Y.; et al. Simultaneous determination of curcumin, tetrahydrocurcumin, quercetin, and paeoniflorin by UHPLC-MS/MS in rat plasma and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2019, 172, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Gao, L.; Raoa, S.-Q.; Yanga, Z.-Q.; Li, T.; Gong, X. Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem. 2019, 280, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Wei, Y.; Li, W.; Shi, S.; Zhou, C.; Li, J.; Yao, L.; Ding, J.; He, Q. A novel platform based on MnO2 nanoparticles and carboxylated multi-walled carbon nanotubes composite for accurate and rapid determination of curcumin in commercial food products. J. Food Compos. Anal. 2023, 115, E104940. [Google Scholar] [CrossRef]
- Raril, C.; Manjunatha, J.G.; Tigari, G. Low-cost voltammetric sensor based on ananionic surfactant modified carbon nanocomposite material for the rapid determination of curcumin in natural food supplement. Inst. Sci. Technol. 2020, 48, 561–582. [Google Scholar] [CrossRef]
- Burc, M.; Gungor, O.; Duran, S.T. Voltammetric determination of curcumin in spices using platinum electrode electrochemically modified with poly(vanillin-co-caffeic acid). Anal. Bioanal. Electrochem. 2020, 12, 625–643. [Google Scholar]
- Pushpanjali, P.A.; Manjunatha, J.G.; Amrutha, B.M.; Hareesha, N. Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin. Mater. Res. Innov. 2021, 25, 412–420. [Google Scholar] [CrossRef]
- Tigari, G.; Manjunatha, J.G. Poly(glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: An electroanalytical approach. Mon. Chem. 2020, 151, 1681–1688. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Zokhtareh, R.; Moghadamnia, A.A.; Asghary, M. An electrochemical sensor based on reduced grapheme oxide modified carbon paste electrode for curcumin determination in human blood serum. Purtug. Electrochem. Acta 2020, 38, 29–42. [Google Scholar] [CrossRef]
- Thangavel, K.; Dhivya, K. Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR). Eng. Agric. Environ. Food 2019, 12, 264–269. [Google Scholar] [CrossRef]
- Gong, X.; Wang, H.; Liu, Y.; Hu, Q.; Gao, Y.; Yang, Z.; Shuang, S.; Dong, C. A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of curcumin. Anal. Chim. Acta 2019, 1057, 132–144. [Google Scholar] [CrossRef]
- Lizonova, D.; Brejchova, A.; Kralova, E.; Hanus, J.; Stepanek, F. Solvatochromic shift enables intracellular fate determination of curcumin nanocrystals. Partic. Partic. Sys. Character. 2022, 39, E2200115. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously administered madness drops (tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, E105582. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sus. Chem. Pharm. 2021, 21, E100413. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, E105960. [Google Scholar] [CrossRef]
- ICH. International Conference on Harmonization (ICH), Q2 (R1): Validation of Analytical Procedures—Text and Methodology. ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Haq, N.; Alshehri, S.; Alam, P.; Ghoneim, M.M.; Hasan, Z.; Shakeel, F. Green analytical chemistry approach for the determination of emtricitabine in human plasma, formulations, and solubility study samples. Sus. Chem. Pharm. 2022, 26, E100648. [Google Scholar] [CrossRef]
- Haq, N.; Alanazi, F.K.; Samem-Bekhit, M.M.; Rabea, S.; Alam, P.; Alsarra, I.A.; Shakeel, F. Greenness estimation of chromatographic assay for the determination of anthracycline-based antitumor drug in bacterial ghost matrix of Salmonella typhimurium. Sus. Chem. Pharm. 2022, 26, E100642. [Google Scholar] [CrossRef]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. Arabian J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef]
- Hackl, K.; Kunz, W. Some aspects of green solvents. Comp. Rend. Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Welton, T. Solvents and sustainable chemistry. Proc. Math Phys. Eng. Sci. 2015, 471, E2015052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Greener Eluent System | As | N | Rt |
---|---|---|---|
Methanol:water (50:50 v/v) | 2.45 ± 0.36 | 1354 ± 2.31 | 5.26 ± 0.25 |
Methanol:water (83:17 v/v) | 2.37 ± 0.31 | 1478 ± 2.38 | 5.04 ± 0.22 |
Ethanol:water (50:50 v/v) | 2.14 ± 0.23 | 1741 ± 2.58 | 4.71 ± 0.18 |
Ethanol:water (83:17 v/v) | 2.06 ± 0.19 | 1892 ± 2.62 | 4.42 ± 0.16 |
Acetone:water (50:50 v/v) | 2.56 ± 0.41 | 1141 ± 2.01 | 6.16 ± 0.41 |
Acetone:water (83:17 v/v) | 2.49 ± 0.38 | 1262 ± 2.13 | 6.08 ± 0.36 |
Methanol:ethanol (50:50 v/v) | 1.78 ± 0.10 | 1924 ± 2.68 | 4.38 ± 0.20 |
Methanol:ethanol (83:17 v/v) | 1.82 ± 0.12 | 1812 ± 2.59 | 4.41 ± 0.25 |
Methanol:acetone (50:50 v/v) | 2.38 ± 0.28 | 1312 ± 2.21 | 6.74 ± 0.45 |
Methanol:acetone (83:17 v/v) | 2.28 ± 0.24 | 1451 ± 2.30 | 6.69 ± 0.40 |
Methanol:ethyl acetate (50:50 v/v) | 1.24 ± 0.08 | 2914 ± 3.27 | 4.16 ± 0.08 |
Methanol:ethyl acetate (83:17 v/v) | 1.23 ± 0.07 | 2989 ± 3.38 | 4.10 ± 0.06 |
Ethanol:ethyl acetate (50:50 v/v) | 1.13 ± 0.04 | 4125 ± 3.87 | 3.84 ± 0.03 |
Ethanol:ethyl acetate (83:17 v/v) | 1.09 ± 0.02 | 5081 ± 5.48 | 3.57 ± 0.03 |
Ethanol:acetone (50:50 v/v) | 2.07 ± 0.05 | 2122 ± 2.12 | 5.22 ± 0.08 |
Ethanol:acetone (83:17 v/v) | 1.84 ± 0.06 | 2245 ± 2.31 | 5.11 ± 0.07 |
Ethyl acetate: acetone (50:50 v/v) | 2.15 ± 0.09 | 1689 ± 2.27 | 6.41 ± 0.10 |
Ethyl acetate: acetone (83:17 v/v) | 1.98 ± 0.08 | 1774 ± 2.18 | 6.02 ± 0.09 |
Parameters | Values |
---|---|
Linearity range (µg/mL) | 1–100 |
Regression equation | y = 70,341x − 59,690 |
R2 | 0.9983 |
R | 0.9991 |
SE of slope | 58.96 |
SE of intercept | 49.89 |
95% CI of slope | 70,087–70,594 |
95% CI of intercept | 59,475–59,904 |
LOD (µg/mL) | 0.39 ± 0.03 |
LOQ (µg/mL) | 1.17 ± 0.09 |
Drug | Rs | α | As | k | N |
---|---|---|---|---|---|
PTT | 2.41 ± 0.17 | 1.561 ± 0.09 | 1.09 ± 0.02 | 2.76 ± 0.15 | 5081 ± 5.48 |
Conc. (µg/mL) | Intra-Day Accuracy | Inter-Day Accuracy | ||||
---|---|---|---|---|---|---|
Conc. Found (µg/mL) ± SD | Recovery (%) | CV (%) | Conc. Found (µg/mL) ± SD | Recovery (%) | CV (%) | |
15 | 15.24 ± 0.17 | 101.60 | 1.15 | 14.91 ± 0.18 | 99.40 | 1.20 |
20 | 20.37 ± 0.20 | 101.85 | 0.98 | 19.78 ± 0.21 | 98.90 | 1.06 |
25 | 24.96 ± 0.23 | 99.84 | 0.92 | 25.36 ± 0.25 | 101.44 | 0.98 |
Conc. (µg/mL) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. Found (µg/mL) ± SD | SE | CV (%) | Conc. Found (µg/mL) ± SD | SE | CV (%) | |
15 | 14.88 ± 0.14 | 0.08 | 0.94 | 15.21 ± 0.17 | 0.09 | 1.17 |
20 | 19.82 ± 0.18 | 0.10 | 0.90 | 20.28 ± 0.21 | 0.12 | 1.03 |
25 | 25.41 ± 0.22 | 0.12 | 0.86 | 24.86 ± 0.24 | 0.13 | 0.96 |
Parameters | Conc. Found (µg/mL) ± SD | CV (%) | Rt ± SD | CV (%) |
---|---|---|---|---|
Greener eluent system (% v/v) | ||||
(85:15) | 18.61 ± 0.19 | 1.02 | 3.55 ± 0.03 | 0.84 |
(81:19) | 21.08 ± 0.27 | 1.28 | 3.59 ± 0.02 | 0.55 |
Flow speed (mL/min) | ||||
(1.15) | 21.06 ± 0.25 | 1.18 | 3.23 ± 0.02 | 0.61 |
(0.85) | 18.96 ± 0.22 | 1.16 | 3.81 ± 0.04 | 1.04 |
Measurement wavelength (nm) | ||||
420 | 19.61 ± 0.24 | 1.22 | 3.54 ± 0.03 | 0.84 |
430 | 21.04 ± 0.24 | 1.14 | 3.60 ± 0.02 | 0.55 |
Sample Matrices | Nominal Conc. (µg/mL) | Conc. Found (µg/mL) ± SD | Precision (% CV) | Recovery (%) |
---|---|---|---|---|
Stock solution | ||||
Refrigeration (4 °C) | 20 | 19.97 ± 0.16 | 0.80 | 99.85 |
Bench top (25 °C) | 20 | 19.69 ± 0.14 | 0.71 | 98.45 |
Nanoemulsion | ||||
Refrigeration (4 °C) | 20 | 20.14 ± 0.15 | 0.74 | 100.70 |
Bench top (25 °C) | 20 | 20.17 ± 0.16 | 0.79 | 100.85 |
Stress Condition | CCM Rt (min) | CCM Remaining (µg/mL) | CCM Recovered (%) |
---|---|---|---|
1 M HCl | 3.53 | 35.14 | 87.85 ± 1.91 |
1 M NaOH | 3.56 | 33.61 | 84.02 ± 1.87 |
30% H2O2 | 3.57 | 38.74 | 96.85 ± 2.24 |
Thermal | 3.57 | 39.97 | 99.92 ± 2.31 |
Photolytic | 3.57 | 18.24 | 45.60 ± 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, N.; Shakeel, F.; Ghoneim, M.M.; Asdaq, S.M.B.; Alam, P.; Alanazi, S.A.; Alshehri, S. Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract. Separations 2023, 10, 98. https://doi.org/10.3390/separations10020098
Haq N, Shakeel F, Ghoneim MM, Asdaq SMB, Alam P, Alanazi SA, Alshehri S. Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract. Separations. 2023; 10(2):98. https://doi.org/10.3390/separations10020098
Chicago/Turabian StyleHaq, Nazrul, Faiyaz Shakeel, Mohammed M. Ghoneim, Syed Mohammed Basheeruddin Asdaq, Prawez Alam, Saleh A. Alanazi, and Sultan Alshehri. 2023. "Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract" Separations 10, no. 2: 98. https://doi.org/10.3390/separations10020098
APA StyleHaq, N., Shakeel, F., Ghoneim, M. M., Asdaq, S. M. B., Alam, P., Alanazi, S. A., & Alshehri, S. (2023). Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract. Separations, 10(2), 98. https://doi.org/10.3390/separations10020098