Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Honey Samples and Adulterant
2.1.2. Chemicals
2.2. Methods
2.2.1. Preparation of Honey Adulterations
2.2.2. Moisture Content
2.2.3. Conductivity
2.2.4. Color Measurements
2.2.5. Total Polyphenolic Content Measurement
2.2.6. Antioxidant Activity Measurement by the Ferric Reducing Antioxidant Power Method
2.2.7. NIR Spectra Measurement
2.2.8. Statistical Analysis
2.2.9. NIR Spectra Pre-Processing and Data Modeling
2.2.10. Artificial Neural Networks Modeling
3. Results and Discussion
3.1. Effect of the Adulterant Addition on Physical and Chemical Properties of the Honey Samples
3.2. NIR Spectra of Honey Aduterations
3.3. PLS Modeling of Honey Adulteration Properties
3.4. ANN Modeling of Honey Adulteration Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skaff, W.; El Hajj, R.; Hanna-Wakim, L.; Estephan, N. Detection of adulteration in honey by infrared spectroscopy and chemometrics: Effect on human health. J. Food Process. Preserv. 2021, 2021, e15438. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food Chem. 2007, 105, 1119–1125. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Fernandez-Lopez, J.; Zaldivar-Cruz, J.M.; Kuri, V.; Perez-Alvarez, J.A. Antioxidant activity of artisanal honey from Tabasco, Mexico. Int. J. Food Prop. 2011, 14, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Orian, M.; Ropciuc, S.; Paduert, S. Honey adulteration detection using Raman spectroscopy. Food Anal. Methods 2018, 11, 959–968. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Musharraf, S.G.; Iqbal Choudhary, M.; Rahman, A.-U. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2016, 217, 687–698. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Başar, B.; Özdemir, D. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration. J. Sci. Food Agric. 2018, 98, 5616–5624. [Google Scholar] [CrossRef] [PubMed]
- Elhamdaoui, O.; El Orche, A.; Cheikh, A.; Mojemmi, B.; Nejjari, R.; Bouatia, M. Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools. J. Anal. Methods Chem. 2020, 2020, 8816249. [Google Scholar] [CrossRef] [PubMed]
- Rios-Corrpio, M.A.; Rojas-López, M.; Delgado-Macuil, R. Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CyTA-J. Food 2012, 10, 119–122. [Google Scholar] [CrossRef]
- Kumaravelu, C.M.; Gopal, A. Detection and quantification of adulteration in honey through near infrared spectroscopy. Int. J. Food Prop. 2015, 18, 1930–1935. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Gajdoš Kjusurić, J.; Jurinjak Tušek, A. Detection of honey adulteration—The potential of UV-VIS and NIR spectroscopy coupled with multivariate analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Raypah, M.E.; Omar, A.F.; Muncan, J.; Zulkurnain, M.; Abdul Najib, A.R. Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics. Molecules 2022, 27, 2324. [Google Scholar] [CrossRef] [PubMed]
- Beratta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Natural Apiculture Programs. Available online: https://agriculture.ec.europa.eu/farming/animal-products/honey/national-apiculture-programmes_en (accessed on 15 July 2022).
- Denžić Lugomer, M.; Pavliček, D.; Kiš, M.; Končurat, A.; Majnarić, D. Quality assessment of different types of Croatian honey between 2012 and 2016. Vetrinaska Stanica 2017, 48, 93–99. [Google Scholar]
- Uršulin-Trstenjak, N.; Puntarić, D.; Levanić, D.; Gvozdić, V.; Pavlek, Ž.; Puntarić, A.; Puntarić, E.; Puntarić, I.; Vidosavljević, D.; Lasić, D.; et al. Pollen, physicochemical, and mineral analysis of croatian acacia honey samples: Applicability for identification of botanical and geographical origin. J Food Qual. 2017, 2017, 8538693. [Google Scholar] [CrossRef]
- Šarić, G.; Mtković, D.; Hruškar, M.; Vahčić, N. Characterisation and classification of Croatian honey by physicochemical parameters. Food Technol. Biotechnol. 2008, 46, 355–367. [Google Scholar]
- Yakubu, A.; Sahabi, S.; Sani, G.D.; Faruku, S. Determination of sugar adulteration in honey using conductivity meter and pH meter. Res. J. Environ. Sci. 2021, 11, 50–57. [Google Scholar]
- Kropf, U.; Jamnik, M.; Bertoncelj, J.; Golob, T. Linear regression model of the ash mass fraction and electrical conductivity for Slovenian honey. Food Technol. Biotechnol. 2008, 46, 335–340. [Google Scholar]
- Popov-Raljić, J.; Arsić, N.; Zlatković, B.; Basarin, B.; Mladenović, M.; Laličić-Petronijević, J.; Ivkov, M.; Popov, V. Evaluation of color, mineral substances and sensory uniqueness of meadow and acacia honey from Serbia. Rom. Biotechnol. Lett. 2015, 20, 10784–10799. [Google Scholar]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Aker, D.; Nisbet, C. Antioxidant activities, total phenolic and flavonoid contents of honey collected from different botanical origins. Ankara Üniv. Vet. Fak. Derg. 2020, 67, 133–136. [Google Scholar] [CrossRef]
- Krpan, M.; Marković, K.; Šarić, G.; Skoko, B.; Hruškar, M.; Vahčić, N. Antioxidant activities and total phenolics of acacia honey. Czech J. Food Sci. 2009, 27, S245–S247. [Google Scholar] [CrossRef]
- Šarić, G.; Marković, K.; Major, N.; Krpan, M.; Uršulin-Trstenjak, N.; Hruškar, M.; Vahčić, N. Changes of antioxidant activity and phenolic content in acacia and multifloral honey during storage. Food Technol. Biotechnol. 2012, 50, 434–441. [Google Scholar]
- Bešlo, D.; Bešlo, K.; Agić, D.; Vikić-Topić, D.; Lučić, B. Variations of total phenolic content in honey samples caused by different calibration lines. Croat. Chem. Acta 2020, 93, 367–375. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- El Orche, A.; Bouatia, M.; Mbarki, M. Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms. J. Anal. Methods Chem. 2020, 2020, 8860161. [Google Scholar] [CrossRef]
- Vitalis, F.; Zaukuu, J.-L.Z.; Bodor, Z.; Aouadi, B.; Hitka, G.; Kaszab, T.; Zsom-Muha, V.; Gillay, Z.; Kovacs, Z. Detection and quantification of tomato paste adulteration using conventional and rapid analytical methods. Sensors 2020, 20, 6059. [Google Scholar] [CrossRef]
- Bodor, Z.; Benedek, C.; Aouadi, B.; Zsom-Muha, V.; Kovacs, Z. Revealing the effect of heat treatment on the spectral pattern of unifloral honeys using aquaphotomics. Molecules 2022, 27, 780. [Google Scholar] [CrossRef] [PubMed]
- Thangaraju, S.; Modupalli, N.; Natarajan, V. Food adulteration and its impacts on our health/balanced nutrition. In Food Chemistry: The Role of Additives, Preservatives and Adulteration; Sen, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 189–216. [Google Scholar] [CrossRef]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef]
- Krepper, G.; Romeo, F.; Fernandes, D.D.S.; Diniz, P.H.G.D.; de Araújo, M.C.U.; Di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Parrini, S.; Staglianò, N.; Bozzi, R.; Argenti, G. Can grassland chemical quality be quantified using transform near-infrared spectroscopy? Animals 2022, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; León, L.; Contador, R.; Tejerina, D. Near-Infrared Spectroscopy (NIRS) as a tool for classification of pre-sliced Iberian salchichón, modified atmosphere packaged (map) according to the official commercial categories of raw meat. Foods 2021, 10, 1865. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.V.S.; Fernandes, D.D.S.; de Araúju, M.C.A.; Diniz, P.H.G.D.; Maciel, M.I.S. Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. LWT 2020, 127, 109427. [Google Scholar] [CrossRef]
- Mabood, F.; Jabeen, F.; Ahmed, M.; Hussain, J.; Al Mashaykhi, S.A.A.; Al Rubaiey, Z.M.A.; Farooq, S.; Boqué, R.; Ali, L.; Hussain, Z.; et al. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chem. 2017, 221, 746–750. [Google Scholar] [CrossRef]
- Basri, K.N.; Hussain, M.N.; Bakar, J.; Sharif, Z.; Khir, M.F.A.; Zoolfakar, A.S. Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectroc. Acta A Mol. Biomol. Spectrosc. 2016, 173, 335–342. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Foca, G.; MArchetti, A.; Tassi, L.; Ulrici, A. Durum wheat adulteration detection by NIR spectroscopy multivariate calibration. Talanta 2006, 68, 1505–1511. [Google Scholar] [CrossRef]
- Amirvaresi, A.; Nikounezhad, N.; Amirahmadi, M.; Daraei, B.; Parastar, H. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Food Chem. 2021, 334, 128647. [Google Scholar] [CrossRef]
- Shawky, E.; El-Khair, M.A.; Selim, D.A. NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus L.) stigmas. LWT 2020, 122, 109032. [Google Scholar] [CrossRef]
- Genis, H.E.; Durina, S.; Boyaci, I.H. Determination of green pea and spinach adulteration in pistachio nuts using NIR spectroscopy. LWT 2021, 136, 110008. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Kamruzzamn, M. Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour. Food Control 2022, 138, 108970. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of artificial neural networks and NIR Spectroscopy for non-destructive grape prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Jurinjak Tušek, A.; Jurina, T.; Čulo, I.; Valinger, D.; Gajdoš Kljusurić, J.; Benković, M. Application of NIRs coupled with PLS and ANN modelling to predict average droplet size in oil-in-water emulsions prepared with different microfluidic devices. Spectroc. Acta A Mol. Biomol. Spectrosc 2022, 270, 120860. [Google Scholar] [CrossRef]
- Valinger, D.; Kušen, M.; Jurinjak Tušek, A.; Panić, M.; Jurina, T.; Benković, M.; Radojčić Redovniković, I.; Gajdoš Kljusurić, J. Development of near infrared spectroscopy models for the quantitative prediction of olive leaves bioactive compounds content. Chem. Biochem. Eng. Q. 2018, 32, 535–543. [Google Scholar] [CrossRef]
- Son, S.; Kim, D.; Choi, M.C.; Lee, J.; Kim, B.; Choi, C.M.; Kim, S. Weight interpretation of artificial neural network model for analysis of rice (Oryza sativa L.) with near-infrared spectroscopy. Food Chem. X 2022, 15, 100430. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Liu, M.; Cai, J. Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy and pattern recognition. Czech J. Food Sci. 2008, 26, 360–367. [Google Scholar] [CrossRef]
Property | Pre-Treatment | R2cal | RMSEC | R2cval | RMSECV | R2pred | RMSEP | Bias | RPD | RER |
---|---|---|---|---|---|---|---|---|---|---|
Amount of adulterant | No | 0.8530 | 12.1806 | 0.8068 | 14.1580 | 0.8238 | 13.2365 | −0.1931 | 2.3925 | 7.5549 |
SG | 0.8276 | 13.1927 | 0.7431 | 16.0956 | 0.0169 | 57.0295 | 25.5142 | 0.5553 | 1.7535 | |
SNV | 0.8505 | 12.2854 | 0.8286 | 13.3238 | 0.8302 | 12.9964 | −0.2964 | 2.4367 | 7.6944 | |
MSC | 0.8978 | 10.1552 | 0.8557 | 12.2011 | 0.8660 | 11.4736 | 0.7141 | 2.7601 | 8.7157 | |
SG-SNV | 0.8418 | 12.6388 | 0.7743 | 15.4918 | 0.0950 | 14.3069 | 23.2721 | 2.2135 | 6.9896 | |
SG-MSC | 0.8464 | 12.4536 | 0.7758 | 15.2649 | 0.0382 | 38.8224 | 40.6612 | 0.8157 | 2.5758 | |
moisture | No | 0.6039 | 0.7573 | 0.4609 | 0.9205 | 0.6126 | 0.7638 | −0.0020 | 1.6246 | 7.2008 |
SG | 0.5405 | 0.8449 | 0.4002 | 0.9761 | 0.0468 | 3.7426 | 3.5347 | 0.3316 | 1.4696 | |
SNV | 0.6028 | 0.7855 | 0.4061 | 0.9739 | 0.6201 | 0.7564 | −0.0021 | 1.6405 | 7.2713 | |
MSC | 0.6517 | 0.7356 | 0.5951 | 0.9729 | 0.6623 | 0.7131 | 0.0039 | 1.7401 | 7.7128 | |
SG-SNV | 0.5489 | 0.8372 | 0.4744 | 0.9108 | 0.0459 | 3.4556 | 2.9932 | 0.3591 | 1.5916 | |
SG-MSC | 0.6183 | 0.7701 | 0.4762 | 0.9104 | 0.1157 | 17.5681 | 8.7225 | 0.0706 | 0.3131 | |
conductivity | No | 0.7333 | 26.4676 | 0.6667 | 29.8836 | 0.7222 | 25.3602 | −0.0427 | 1.9668 | 7.3805 |
SG | 0.7218 | 27.0330 | 0.6375 | 31.2293 | 0.0388 | 46.8494 | −4.6610 | 1.0647 | 3.9951 | |
SNV | 0.7284 | 26.7088 | 0.6987 | 28.5952 | 0.7193 | 25.4936 | 0.1399 | 1.9565 | 7.3418 | |
MSC | 0.7274 | 26.7563 | 0.6791 | 29.2807 | 0.7162 | 25.6356 | 0.0891 | 1.9457 | 7.3012 | |
SG-SNV | 0.7099 | 27.6011 | 0.6201 | 32.0004 | 0.0216 | 61.8526 | 23.4137 | 0.8064 | 3.0261 | |
SG-MSC | 0.7393 | 26.1659 | 0.65 | 30.4876 | 0.0537 | 47.0045 | 11.1163 | 1.0612 | 3.9820 | |
total colour change | No | 0.2487 | 0.7078 | 0.1696 | 0.7539 | 0.1013 | 0.9191 | −0.1642 | 0.9756 | 4.1257 |
SG | 0.2332 | 0.7151 | 0.2175 | 0.7415 | 0.0697 | 1.2607 | −0.8317 | 0.7113 | 3.0078 | |
SNV | 0.3222 | 0.6723 | 0.2257 | 0.7347 | 0.2098 | 0.8631 | −0.1888 | 1.0389 | 4.3934 | |
MSC | 0.3213 | 0.6728 | 0.2292 | 0.7359 | 0.2101 | 0.8631 | −0.1893 | 1.0389 | 4.3934 | |
SG-SNV | 0.2297 | 0.7167 | 0.1875 | 0.7401 | 0.0183 | 1.6852 | 1.3988 | 0.5321 | 2.2501 | |
SG-MSC | 0.2300 | 0.7166 | 0.1877 | 0.7395 | 0.0645 | 4.3454 | 1.3222 | 0.2064 | 0.8726 | |
TPC | No | 0.5787 | 15.1062 | 0.4016 | 18.1346 | 0.3308 | 19.8989 | 0.3618 | 1.1656 | 5.3772 |
SG | 0.6161 | 14.4203 | 0.4465 | 17.4767 | 0.1807 | 26.8291 | 2.6712 | 0.8645 | 3.9882 | |
SNV | 0.5868 | 14.9603 | 0.4047 | 18.2062 | 0.2115 | 20.3965 | 0.2148 | 1.1372 | 5.2460 | |
MSC | 0.5876 | 14.9465 | 0.3661 | 18.6234 | 0.3191 | 20.3672 | 0.3109 | 1.1388 | 5.2535 | |
SG-SNV | 0.6255 | 14.2430 | 0.4104 | 18.1452 | 0.1710 | 26.5735 | 3.9364 | 0.8729 | 4.0266 | |
SG-MSC | 0.5664 | 15.3244 | 0.3751 | 18.9777 | 0.2241 | 26.6504 | 2.9317 | 0.8703 | 4.0149 | |
FRAP | No | 0.4515 | 7.6689 | 0.3940 | 8.7829 | 0.5015 | 7.7951 | −0.3005 | 1.4192 | 6.2365 |
SG | 0.3941 | 8.5729 | 0.3303 | 9.1163 | 0.0236 | 20.1556 | −16.7923 | 0.5489 | 2.4119 | |
SNV | 0.5154 | 7.6670 | 0.4063 | 8.3726 | 0.4829 | 7.9384 | −0.2364 | 1.3936 | 6.1239 | |
MSC | 0.6068 | 6.9056 | 0.4746 | 8.1335 | 0.4032 | 8.8715 | −0.5949 | 1.2470 | 5.4798 | |
SG-SNV | 0.5023 | 7.7691 | 0.3812 | 8.7352 | 0.0277 | 37.8779 | 22.7238 | 0.2921 | 1.2834 | |
SG-MSC | 0.5050 | 7.7483 | 0.4014 | 8.5661 | 0.0804 | 25.0587 | 19.6255 | 0.4415 | 1.9400 |
Property/ Pre-Treatment | MLP | Training Perf./ Training Error | Test Perf./ Test Error | Validation Perf./ Validation Error | Hidden Activation | Output Activation |
---|---|---|---|---|---|---|
Amount of adulterant-moisture-total colour change/ MSC | MLP 5-4-3 | 0.9434 0.1503 | 0.9306 1.9238 | 0.9232 1.9672 | Exponential | Exponential |
MLP 5-10-3 | 0.9440 0.0858 | 0.9340 0.1142 | 0.9247 0.1186 | Exponential | Identity | |
MLP 5-7-3 | 0.9422 0.1112 | 0.9297 0.1476 | 0.9203 0.2004 | Exponential | Exponential | |
MLP 5-9-3 | 0.9617 0.1092 | 0.9354 0.1304 | 0.9056 0.1888 | Exponential | Exponential | |
MLP 5-8-3 | 0.9625 0.0748 | 0.9215 0.0777 | 0.9202 0.0851 | Tanh | Identity | |
conductivity TPC-FRAP/ No | MLP 5-5-3 | 0.8120 1.5222 | 0.8086 1.5611 | 0.7243 1.5771 | Logistic | Identity |
MLP 5-5-3 | 0.8222 1.4466 | 0.8104 1.5394 | 0.7384 1.5773 | Tanh | Identity | |
MLP 5-11-3 | 0.8104 1.4836 | 0.8298 1.5460 | 0.7268 1.6095 | Logistic | Identity | |
MLP 5-6-3 | 0.7968 1.5257 | 0.8427 1.5606 | 0.7303 1.5814 | Logistic | Logistic | |
MLP 5-9-3 | 0.8401 1.4883 | 0.8323 1.5301 | 0.7254 1.5553 | Logistic | Exponentail |
ANN | Output | R2training RMSEtraining | R2test RMSEtest | R2validation RMSEvalidation |
---|---|---|---|---|
MLP 5-4-3 | amount of adulterant | 0.9991 1.2010 | 0.9987 1.4554 | 0.9987 1.9674 |
Moisture | 0.9116 0.2087 | 0.9072 0.5663 | 0.8503 0.6017 | |
total colour change | 0.9505 0.2364 | 0.9431 0.3623 | 0.9261 0.5244 | |
MLP 5-4-3 | Conductivity | 0.9396 19.7537 | 0.9130 20.9560 | 0.8994 21.4561 |
TPC | 0.7234 16.3911 | 0.7152 16.4769 | 0.5639 17.7901 | |
FRAP | 0.8604 5.2505 | 0.8156 6.5094 | 0.6726 8.2014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benković, M.; Jurina, T.; Longin, L.; Grbeš, F.; Valinger, D.; Jurinjak Tušek, A.; Gajdoš Kljusurić, J. Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy. Separations 2022, 9, 312. https://doi.org/10.3390/separations9100312
Benković M, Jurina T, Longin L, Grbeš F, Valinger D, Jurinjak Tušek A, Gajdoš Kljusurić J. Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy. Separations. 2022; 9(10):312. https://doi.org/10.3390/separations9100312
Chicago/Turabian StyleBenković, Maja, Tamara Jurina, Lucija Longin, Franjo Grbeš, Davor Valinger, Ana Jurinjak Tušek, and Jasenka Gajdoš Kljusurić. 2022. "Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy" Separations 9, no. 10: 312. https://doi.org/10.3390/separations9100312
APA StyleBenković, M., Jurina, T., Longin, L., Grbeš, F., Valinger, D., Jurinjak Tušek, A., & Gajdoš Kljusurić, J. (2022). Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy. Separations, 9(10), 312. https://doi.org/10.3390/separations9100312