Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Machine Learning Models
2.3. The Increment Predictions
3. Results and Discussion
3.1. Evaluating Available RI Prediction Models
3.2. Domain Specific Modeling
3.3. Increment-Based Method
3.4. Homology Trees
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vanninen, P. Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament, 2017th ed.; University of Helsinki: Helsinki, Finland, 2017. [Google Scholar]
- Kováts, E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Mesilaakso, D.M. The OPCW Central Analytical Database. In Chemical Weapons Convention Chemicals Analysis; Mesilaakso, D.M., Ed.; Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), University of Helsinki: Helsinki, Finland, 2005; pp. 133–149. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Sholokhova, A.Y.; Buryak, A.K. Deep Learning Driven GC-MS Library Search and Its Application for Metabolomics. Anal. Chem. 2020, 92, 11818–11825. [Google Scholar] [CrossRef] [PubMed]
- Zhokhov, A.K.; Loskutov, A.Y.; Rybal’Chenko, I.V. Methodological Approaches to the Calculation and Prediction of Retention Indices in Capillary Gas Chromatography. J. Anal. Chem. 2018, 73, 207–220. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Sholokhova, A.; Buryak, A.K. A deep convolutional neural network for the estimation of gas chromatographic retention indices. J. Chromatogr. A 2019, 1607, 460395. [Google Scholar] [CrossRef] [PubMed]
- Vrzal, T.; Malečková, M.; Olšovská, J. DeepReI: Deep learning-based gas chromatographic retention index predictor. Anal. Chim. Acta 2020, 1147, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Schneider, B.I.; Kearsley, A.J.; Keyrouz, W.; Allison, T.C. Predicting Kováts Retention Indices Using Graph Neural Networks. J. Chromatogr. A 2021, 1646, 462100. [Google Scholar] [CrossRef] [PubMed]
- Matyushin, D.D.; Buryak, A.K. Gas Chromatographic Retention Index Prediction Using Multimodal Machine Learning. IEEE Access 2020, 8, 223140–223155. [Google Scholar] [CrossRef]
- Weininger, D.; Weininger, A.; Weininger, J.L. Smiles-Documentation. Available online: https://docs.chemaxon.com/display/docs/SMILES.html (accessed on 29 August 2022).
- Karpov, P.; Godin, G.; Tetko, I.V. Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J. Chemin 2020, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Chemin 2018, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.Q.; Guestrin, C. Assoc Comp, XGBoost: A Scalable Tree Boosting System, Kdd’16. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Bonini, P.; Kind, T.; Tsugawa, H.; Barupal, D.K.; Fiehn, O. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics. Anal. Chem. 2020, 92, 7515–7522. [Google Scholar] [CrossRef] [PubMed]
- Osipenko, S.; Bashkirova, I.; Sosnin, S.; Kovaleva, O.; Fedorov, M.; Nikolaev, E.; Kostyukevich, Y. Machine learning to predict retention time of small molecules in nano-HPLC. Anal. Bioanal. Chem. 2020, 412, 7767–7776. [Google Scholar] [CrossRef] [PubMed]
- Osipenko, S.; Botashev, K.; Nikolaev, E.; Kostyukevich, Y. Transfer learning for small molecule retention predictions. J. Chromatogr. A 2021, 1644, 462119. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.E.; Babushok, V.I.; Brown, A.R.L.; Linstrom, P.J. Estimation of Kováts Retention Indices Using Group Contributions. J. Chem. Inf. Model. 2007, 47, 975–980. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: The Next Grand Challenge for Chemical Analysis. Acc. Chem. Res. 2003, 37, 53–59. [Google Scholar] [CrossRef] [PubMed]
Model | Mean Absolute Error | Median Absolute Error | Mean Relative Error, % | Median Relative Error, % |
---|---|---|---|---|
1D-CNN | 39.95 | 28.77 | 2.68 | 1.88 |
2D-CNN | 51.46 | 38.00 | 3.32 | 2.53 |
Transformer-CNN | 48.11 | 33.45 | 3.23 | 2.17 |
Chemical Name | CAS | Formula | RIs in OCAD | Schedule |
---|---|---|---|---|
1,2-Dimethylbutyl methylphosphonofluoridate | 1005239-89-3 | C7H16FO2P | 1087 | 1.A.01 |
1,2-Dimethylbutyl ethylphosphonofluoridate | 1005258-27-4 | C8H18FO2P | 1180 | 1.A.01 |
1,2-Dimethylbutyl isopropylphosphonofluoridate | 1005249-16-0 | C9H20FO2P | 1231 | 1.A.01 |
1,2-Dimethylbutyl propylphosphonofluoridate | N0014 | C9H20FO2P | 1264 | 1.A.01 |
1,2-Dimethylpropyl ethylphosphonofluoridate | N0032 | C7H16FO2P | 1087 | 1.A.01 |
Test Set | 1D-CNN | XGboost | Increment-Based |
---|---|---|---|
Methyl–P | 35 | 39 | 4.0 |
Ethyl–P | 11 | 21 | 1.8 |
Propyl–P | 52 | 20 | 3.4 |
1.A.01 | 30 | 27 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kireev, A.; Osipenko, S.; Mallard, G.; Nikolaev, E.; Kostyukevich, Y. Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods. Separations 2022, 9, 265. https://doi.org/10.3390/separations9100265
Kireev A, Osipenko S, Mallard G, Nikolaev E, Kostyukevich Y. Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods. Separations. 2022; 9(10):265. https://doi.org/10.3390/separations9100265
Chicago/Turabian StyleKireev, Albert, Sergey Osipenko, Gary Mallard, Evgeny Nikolaev, and Yury Kostyukevich. 2022. "Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods" Separations 9, no. 10: 265. https://doi.org/10.3390/separations9100265
APA StyleKireev, A., Osipenko, S., Mallard, G., Nikolaev, E., & Kostyukevich, Y. (2022). Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods. Separations, 9(10), 265. https://doi.org/10.3390/separations9100265