Simultaneous Quantification of a Neoadjuvant Treatment Used in Locally Advanced Breast Cancer Using an Eco-Friendly UPLC-MS/MS Method: A Pharmacokinetic Study in Rat Plasma
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Pure Standards
2.1.2. Chemical Reagents
2.2. Methods
2.2.1. Instrumentation and HPLC Conditions
2.2.2. Mass Spectrometric Conditions
2.3. Solutions and Standards
Spiked and Real Plasma Samples
2.4. Sample Preparation
2.5. Method Validation
2.5.1. Linearity
2.5.2. Precision and Accuracy
2.5.3. Specificity and Selectivity
2.5.4. Matrix Effect and Absolute Recovery
2.5.5. Stability
2.6. Method Application in Real Animals
2.7. Ethical Statement
3. Results and Discussion
3.1. Selection of the Internal Standard
3.2. Optimization of Chromatographic Conditions
3.3. Optimization of MS Parameters
3.4. Sample Preparation Development
3.5. Method Validation
3.5.1. Selectivity
3.5.2. Linearity and Sensitivity
3.5.3. Accuracy and Precision
3.5.4. Recovery
3.5.5. Matrix Effect
3.5.6. Stability
3.6. Method Application for Determination of Real Plasma Samples
3.7. Analytical Eco-Scale Tool for Evaluation of the Proposed Method’s Greenness (ESA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singletary, S.E.; Allred, C.; Ashley, P.; Bassett, L.W.; Berry, D.; Bland, K.I.; Borgen, P.I.; Clark, G.; Edge, S.B.; Hayes, D.F. Revision of the American Joint Committee on Cancer staging system for breast cancer. J. Clin. Oncol. 2002, 20, 3628–3636. [Google Scholar] [CrossRef] [PubMed]
- Terjung, A.; Kummer, S.; Friedrich, M. Simultaneous 24 h-infusion of high-dose 5-fluorouracil and sodium-folinate as alternative to capecitabine in advanced breast cancer. Anticancer. Res. 2014, 34, 7233–7238. [Google Scholar] [PubMed]
- Charfare, H.; Limongelli, S.; Purushotham, A. Neoadjuvant chemotherapy in breast cancer. J. Br. Surg. 2005, 92, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, B.L.; Demetriou, G.S.; Moodley, S.D.; Benn, C.A. When and how do I use neoadjuvant chemotherapy for breast cancer? Curr. Treat. Options Oncol. 2014, 15, 86–98. [Google Scholar] [CrossRef]
- Sachelarie, I.; Grossbard, M.L.; Chadha, M.; Feldman, S.; Ghesani, M.; Blum, R.H. Primary systemic therapy of breast cancer. Oncologist 2006, 11, 574–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieog, J.; Van der Hage, J.; Van De Velde, C. Neoadjuvant chemotherapy for operable breast cancer. J. Br. Surg. 2007, 94, 1189–1200. [Google Scholar] [CrossRef]
- Graham, P.J.; Brar, M.S.; Foster, T.; McCall, M.; Bouchard-Fortier, A.; Temple, W.; Quan, M.L. Neoadjuvant Chemotherapy for Breast Cancer, Is Practice Changing? A Population-Based Review of Current Surgical Trends. Ann. Surg. Oncol. 2015, 22, 3376–3382. [Google Scholar] [CrossRef]
- Smorenburg, C.H.; Bontenbal, M.; Verweij, J. Capecitabine in breast cancer: Current status. Clin. Breast Cancer 2001, 1, 288–293. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. New Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- Bergh, J.; Jönsson, P.-E.; Glimelius, B.; Nygren, P. A systematic overview of chemotherapy effects in breast cancer. Acta Oncol. 2001, 40, 253–281. [Google Scholar] [CrossRef]
- Fossati, R.; Confalonieri, C.; Torri, V.; Ghislandi, E.; Penna, A.; Pistotti, V.; Tinazzi, A.; Liberati, A. Cytotoxic and hormonal treatment for metastatic breast cancer: A systematic review of published randomized trials involving 31,510 women. J. Clin. Oncol. 1998, 16, 3439–3460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Pan, S.; Fan, X.; Jiang, X.; Yang, Y.; Jin, J.; Liu, Y. Pegylated liposomal doxorubicin as neoadjuvant therapy for stage II–III locally advanced breast cancer. J. Chemother. 2020, 32, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, P.; Buyse, M.E.; Swain, S.M.; Jacobs, S.A.; Robidoux, A.; Liepman, M.K.; Pajon, E.R.; Dy, P.A.; Posada, J.G., Jr.; Melnik, M.K. Concurrent Bevacizumab with a Sequential Regimen of Doxorubicin and Cyclophosphamide Followed by Docetaxel and Capecitabine as Neoadjuvant Therapy for HER2− Locally Advanced Breast Cancer: A Phase II Trial of the NSABP Foundation Research Group. Clin. Breast Cancer 2011, 11, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Skrypnikova, M.; Frolova, M.; Ignatova, E.; Pokataev, I.; Stenina, M.; Tjulandin, S. Primary systemic therapy with metronomic doxorubicin, cyclophosphamide, and capecitabine in locally advanced and metastatic triple-negative breast cancer. J. Clin. Oncol. 2011, 29, 1110. [Google Scholar] [CrossRef]
- Manga, G.P.; Shahi, P.K.; Ureña, M.M.; Pereira, R.Q.; Plaza, M.I.P.; Peron, Y.I.; Val, R.G.D.; Carrión, J.B.; Cañón, E.P.; Alfonso, P.G. Phase II study of neoadjuvant treatment with doxorubicin, docetaxel, and capecitabine (ATX) in locally advanced or inflammatory breast cancer. Breast Cancer 2010, 17, 205–211. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Bontenbal, M.; Creemers, G.-J.; Braun, H.J.; de Boer, A.C.; Janssen, J.T.; Leys, R.B.; Ruit, J.B.; Goey, S.H.; van der Velden, P.C.; Kerkhofs, L.G. Phase II to III study comparing doxorubicin and docetaxel with fluorouracil, doxorubicin, and cyclophosphamide as first-line chemotherapy in patients with metastatic breast cancer: Results of a Dutch Community Setting Trial for the Clinical Trial Group of the Comprehensive Cancer Centre. J. Clin. Oncol. 2005, 23, 7081–7088. [Google Scholar]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef]
- Sabourian, R.; Mirjalili, S.Z.; Namini, N.; Chavoshy, F.; Hajimahmoodi, M.; Safavi, M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal. Biochem. 2020, 610, 113891. [Google Scholar] [CrossRef]
- Prabu, S.L.; Suriyaprakash, T. Extraction of Drug from the Biological Matrix: A Review; IntechOpen: London, UK, 2012. [Google Scholar]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F.; El-Khatib, A.H.; Linscheid, M.W. Simultaneous determination of eight neonicotinoid insecticide residues and two primary metabolites in cucumbers and soil by liquid chromatography–tandem mass spectrometry coupled with QuEChERS. J. Chromatogr. B 2016, 1031, 15–28. [Google Scholar] [CrossRef]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F. Multiresidue analysis of five neonicotinoid insecticides and their primary metabolite in cucumbers and soil using high-performance liquid chromatography with diode-array detection. J. AOAC Int. 2017, 100, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Farouk, M.; Hussein, L.A.E.A.; El Azab, N.F. Simultaneous determination of three neonicotinoid insecticide residues and their metabolite in cucumbers and soil by QuEChERS clean up and liquid chromatography with diode-array detection. Anal. Methods 2016, 8, 4563–4575. [Google Scholar] [CrossRef]
- El Azab, N.F. A validated UHPLC-MS/MS method for simultaneous quantification of some repurposed COVID-19 drugs in rat plasma: Application to a pharmacokinetic study. Microchem. J. 2022, 178, 107321. [Google Scholar] [CrossRef]
- El Azab, N.F.; Hotar, S.F.; Trabik, Y.A. Investigation of a QuEChERS-Based Method for Determination of Polycyclic Aromatic Hydrocarbons in Rat Plasma by GC–MS. J. Anal. Toxicol. 2021, 46, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS-Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Zufıa, L.; Aldaz, A.; Giráldez, J. Simple determination of capecitabine and its metabolites by liquid chromatography with ultraviolet detection in a single injection. J. Chromatogr. B 2004, 809, 51–58. [Google Scholar] [CrossRef]
- Siethoff, C.; Orth, M.; Ortling, A.; Brendel, E.; Wagner-Redeker, W. Simultaneous determination of capecitabine and its metabolite 5-fluorouracil by column switching and liquid chromatographic/tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 884–889. [Google Scholar] [CrossRef]
- Deng, P.; Ji, C.; Dai, X.; Zhong, D.; Ding, L.; Chen, X. Simultaneous determination of capecitabine and its three nucleoside metabolites in human plasma by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2015, 989, 71–79. [Google Scholar] [CrossRef]
- Forough, M.; Farhadi, K.; Molaei, R.; Khalili, H.; Shakeri, R.; Zamani, A.; Matin, A.A. Capillary electrophoresis with online stacking in combination with AgNPs@ MCM-41 reinforced hollow fiber solid-liquid phase microextraction for quantitative analysis of Capecitabine and its main metabolite 5-Fluorouracil in plasma samples isolated from cancer patients. J. Chromatogr. B 2017, 1040, 22–37. [Google Scholar]
- Salvador, A.; Millerioux, L.; Renou, A. Simultaneous LC-MS-MS analysis of capecitabine and its metabolites (5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil) after off-line SPE from human plasma. Chromatographia 2006, 63, 609–615. [Google Scholar] [CrossRef]
- Deenen, M.J.; Rosing, H.; Hillebrand, M.J.; Schellens, J.H.; Beijnen, J.H. Quantitative determination of capecitabine and its six metabolites in human plasma using liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. B 2013, 913, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Švobaitė, R.; Solassol, I.; Pinguet, F.; Mazard, T.; Ivanauskas, L.; Ychou, M.; Bressolle, F.M. A liquid chromatography-mass spectrometry method for the simultaneous determination of capecitabine, 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil, and 5-fluorodihydrouracil in human plasma. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1705–1719. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Zhao, L. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 12 anti-tumor drugs in human plasma and its application in therapeutic drug monitoring. J. Pharm. Biomed. Anal. 2021, 206, 114380. [Google Scholar] [CrossRef] [PubMed]
- Negreira, N.; Mastroianni, N.; de Alda, M.L.; Barceló, D. Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography–electrospray–tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution. Talanta 2013, 116, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Dhananjeyan, M.R.; Liu, J.; Bykowski, C.; Trendel, J.A.; Sarver, J.G.; Ando, H.; Erhardt, P.W. Rapid and simultaneous determination of capecitabine and its metabolites in mouse plasma, mouse serum, and in rabbit bile by high-performance liquid chromatography. J. Chromatogr. A 2007, 1138, 101–108. [Google Scholar] [CrossRef]
- Food and Drug Administration, USA. Bioanalytical Method Validation Guidance for Industry; US Department of Health and Human Services: Washington, DC, USA, 2018; pp. 1–41.
- Council, N.; Studies, D. Research ILA, Animals CUGCUL. In Guide for the Care and Use of Laboratory Animals; The National Academic Press: Washington, DC, USA, 2010; Volume 8. [Google Scholar]
- Jarugula, V.R.; Lam, S.S.; Boudinot, F.D. Nonlinear pharmacokinetics of 5-fluorouracil in rats. J. Pharm. Sci. 1997, 86, 756–758. [Google Scholar] [CrossRef]
- Colombo, T.; Donelli, M.; Urso, R.; Dallarda, S.; Bartosek, I.; Guaitani, A. Doxorubicin toxicity and pharmacokinetics in old and young rats. Exp. Gerontol. 1989, 24, 159–171. [Google Scholar] [CrossRef]
- Onodera, H.; Kuruma, I.; Ishitsuka, H.; Horii, I. Pharmacokinetic study of capecitabine in monkeys and mice; species differences in distribution of the enzymes responsible for its activation to 5-FU. Drug Metab. Pharmacokinet. 2000, 15, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Knikman, J.E.; Rosing, H.; Guchelaar, H.J.; Cats, A.; Beijnen, J.H. A review of the bioanalytical methods for the quantitative determination of capecitabine and its metabolites in biological matrices. Biomed. Chromatogr. 2020, 34, e4732. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Sambasivam, G.; Shewade, D.G.; Dubashi, B.; Sundaram, R. A simple and rapid method for simultaneous quantification of doxorubicin, epirubicin, cyclophosphamide and 5-fluorouracil in human plasma by LCMS/MS. World J. Pharm. Res. 2016, 5, 747–757. [Google Scholar]
- da Silva, C.B.P.; Julio, I.P.; Donadel, G.E.; Martins, I. UPLC-MS/MS method for simultaneous determination of cyclophosphamide, docetaxel, doxorubicin and 5-fluorouracil in surface samples. J. Pharmacol. Toxicol. Methods 2016, 82, 68–73. [Google Scholar] [CrossRef]
- Guichard, S.M.; Mayer, I.; Jodrell, D.I. Simultaneous determination of capecitabine and its metabolites by HPLC and mass spectrometry for preclinical and clinical studies. J. Chromatogr. B 2005, 826, 232–237. [Google Scholar] [CrossRef]
- Radovanovic, M.; Schneider, J.J.; Shafiei, M.; Martin, J.H.; Galettis, P. Measurement of 5-fluorouracil, capecitabine and its metabolite concentrations in blood using volumetric absorptive microsampling technology and LC-MS/MS. J. Chromatogr. B 2022, 1188, 123075. [Google Scholar] [CrossRef]
- Alrobaian, M.; Panda, S.S.; Almalki, W.H.; Afzal, O.; Kazmi, I.; Alossaimi, M.A.; Al-Abbasi, F.A.; Katouah, H.A.; Rub, R.A.; Kumar, B. Development and Validation of Chemometrics-Assisted Green UPLC-MS/MS Bioanalytical Method for Simultaneous Estimation of Capecitabine and Lapatinib in Rat Plasma. J. Chromatogr. Sci. 2021, 60, 559–570. [Google Scholar] [CrossRef]
- Vaudreuil, M.-A.; Duy, S.V.; Munoz, G.; Furtos, A.; Sauvé, S. A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. Talanta 2020, 220, 121407. [Google Scholar] [CrossRef]
- Montange, D.; Bérard, M.; Demarchi, M.; Muret, P.; Piédoux, S.; Kantelip, J.P.; Royer, B. An APCI LC-MS/MS method for routine determination of capecitabine and its metabolites in human plasma. J. Mass Spectrom. 2010, 45, 670–677. [Google Scholar] [CrossRef]
- Vainchtein, L.D.; Rosing, H.; Schellens, J.H.; Beijnen, J.H. A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma. Biomed. Chromatogr. 2010, 24, 374–386. [Google Scholar] [CrossRef]
- Licea-Perez, H.; Wang, S.; Bowen, C. Development of a sensitive and selective LC-MS/MS method for the determination of α-fluoro-β-alanine, 5-fluorouracil and capecitabine in human plasma. J. Chromatogr. B 2009, 877, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Grem, J.L. Liquid chromatography–mass spectrometry method for the analysis of the anti-cancer agent capecitabine and its nucleoside metabolites in human plasma. J. Chromatogr. B 2003, 783, 273–285. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time (Min) | Precurs-or Ion (m/z) | ESI Mode | Product Ion (m/z) | Dwell Time (Msec) | Q1 Pre Bias (V) | Collision Energy (CE) | Q3 Pre Bias (V) |
---|---|---|---|---|---|---|---|---|
5-Fluorouracil | 2.15 | 129.00 | - | 42.00 * | 100.0 | 13 | 22 | 14 |
85.95 | 13 | 21 | 28 | |||||
Caffeine (IS) | 2.70 | 195.10 | + | 138.10 * | 100.0 | 20 | 20 | 25 |
42.10 | 13 | 37 | 15 | |||||
110.10 | 14 | 23 | 20 | |||||
Doxorubicin | 5.06 | 544.20 | + | 397.15 * | 100.0 | 20 | 14 | 28 |
361.10 | 20 | 28 | 25 | |||||
321.20 | 20 | 27 | 22 | |||||
Capecitabine | 6.62 | 360.30 | + | 244.15 * | 100.0 | 10 | 12 | 17 |
174.10 | 10 | 22 | 18 | |||||
130.15 | 13 | 32 | 22 |
Parameter | Analyte | ||
---|---|---|---|
5-Fluorouracil | Doxorubicin | Capecitabine | |
Linear Range (ng/mL) | 50.00–500.00 | 25.00–500.00 | 5.00–100.00 |
Mean ± Standard deviation (S.D) | 101.75 ± 0.73 | 101.27 ± 1.46 | 100.46 ± 1.19 |
R.S.D * | 0.72 | 1.44 | 1.18 |
Regression Equation | Y = 0.0003x − 0.0067 | Y = 0.0031x + 0.1383 | Y = 0.0112x + 0.1636 |
Correlation Coefficient (r) | 0.9999 | 0.9997 | 0.9994 |
Intraday precision (% R.S.D) | 1.10 | 1.27 | 1.38 |
Interday Precision (% R.S.D) * | 1.21 | 2.46 | 1.74 |
Limit of Detection (LOD) ** (ng/mL) | 13.50 | 4.02 | 1.33 |
Limit of Quantitation (LOQ) *** (ng/mL) | 44.91 | 12.18 | 4.03 |
Name of Analyte | Absolute Recovery | Matrix Effect | ||||
---|---|---|---|---|---|---|
Spiked Level (ng/mL) | Found (ng/mL) | Rec % * | Spiked Level (ng/mL) | Found (ng/mL) | Matrix Effect (ME %) * | |
Caffeine (IS) | 50.00 | 60.05 | 120.10 | 50.00 | 61.55 | 123.10 |
50.00 | 57.01 | 114.02 | 50.00 | 56.55 | 113.10 | |
50.00 | 56.14 | 112.28 | 50.00 | 61.12 | 122.24 | |
50.00 | 58.83 | 117.66 | 50.00 | 59.98 | 119.96 | |
50.00 | 60.41 | 120.82 | 50.00 | 57.77 | 115.54 | |
Rec ± S.D | 116.98 ± 3.73 | Rec ± S.D | 118.79 ± 4.32 | |||
5-Fluorouracil | 50.00 | 35.81 | 71.62 | 50.00 | 39.98 | 79.96 |
150.00 | 116.64 | 77.76 | 150.00 | 122.04 | 81.60 | |
250.00 | 179.25 | 71.70 | 250.00 | 269.70 | 89.90 | |
350.00 | 258.68 | 73.91 | 350.00 | 280.98 | 80.28 | |
500.00 | 423.25 | 84.65 | 500.00 | 441.35 | 88.27 | |
Rec ± S.D | 75.93 ± 5.47 | Rec ± S.D | 84.00 ± 4.72 | |||
Doxorubicin | 25.00 | 28.18 | 112.72 | 25.00 | 22.99 | 91.96 |
50.00 | 45.94 | 91.88 | 50.00 | 47.53 | 95.06 | |
100.00 | 90.55 | 90.55 | 100.00 | 90.49 | 90.49 | |
250.00 | 260.75 | 104.30 | 250.00 | 268.38 | 89.46 | |
500.00 | 553.80 | 110.76 | 500.00 | 441.50 | 88.23 | |
Rec ± S.D | 102.04 ± 10.37 | Rec ± S.D | 91.04 ± 2.63 | |||
Capecitabine | 5.00 | 3.61 | 72.20 | 5.00 | 5.89 | 117.80 |
20.00 | 14.92 | 74.60 | 20.00 | 24.08 | 120.40 | |
50.00 | 37.26 | 74.52 | 50.00 | 59.29 | 118.58 | |
70.00 | 51.27 | 73.24 | 70.00 | 79.73 | 113.90 | |
100.00 | 74.39 | 74.39 | 100.00 | 121.29 | 121.29 | |
Rec ± S.D | 73.79 ± 1.05 | Rec ± S.D | 118.39 ± 2.87 |
Compound | Short Term Stability | Autosampler Stability | ||||||||
Initial Conc. | After 6 h * | After 12 h * | Accuracy | % RSD | Initial Conc. | After 18 h * | After 24 h * | Accuracy | % RSD | |
5-Fluorouracil | 50.00 | 44.67 | 36.38 | 81.05 | 14.46 | 50.00 | 47.41 | 45.51 | 92.92 | 2.89 |
500.00 | 478.31 | 353.97 | 83.24 | 21.13 | 500.00 | 479.32 | 454.31 | 93.36 | 3.79 | |
Doxorubicin | 25.00 | 21.98 | 21.55 | 87.06 | 1.40 | 25.00 | 23.61 | 22.09 | 91.40 | 4.70 |
500.00 | 470.41 | 459.83 | 93.02 | 1.61 | 500.00 | 483.01 | 520.05 | 100.31 | 5.22 | |
Capecitabine | 5.00 | 4.82 | 5.18 | 100.00 | 5.09 | 5.00 | 4.61 | 5.31 | 99.20 | 9.98 |
100.00 | 96.91 | 107.06 | 101.99 | 7.04 | 100.00 | 93.01 | 111.09 | 102.05 | 12.53 | |
Compound | Freeze and thaw Stability | Long term Stability | ||||||||
Initial Conc. | 1st cycle * | 3rd cycle * | Accuracy | % RSD | Initial Conc. | 1st day * | Last day * | Accuracy | % RSD | |
5-Fluorouracil | 50.00 | 46.19 | 45.81 | 92 | 0.58 | 50.00 | 46.70 | 43.51 | 90.21 | 5.00 |
500.00 | 463.71 | 451.88 | 91.56 | 1.83 | 500.00 | 461.07 | 480.54 | 94.16 | 2.92 | |
Doxorubicin | 25.00 | 21.99 | 21.81 | 87.60 | 0.58 | 25.00 | 23.81 | 22.45 | 92.52 | 4.16 |
500.00 | 450.04 | 446.43 | 89.65 | 0.57 | 500.00 | 473.89 | 450.92 | 92.48 | 3.51 | |
Capecitabine | 5.00 | 4.50 | 5.41 | 99.10 | 12.99 | 5.00 | 4.47 | 4.31 | 87.80 | 2.58 |
100.00 | 106.91 | 109.63 | 108.27 | 1.78 | 100.00 | 92.61 | 88.22 | 90.42 | 3.43 |
Analyte (Dose in mg/kg) | Plasma Concentrations (ng/mL) at Different Time Intervals * | Cmax (ng/mL) | Tmax (h) | AUC ** | ||||
---|---|---|---|---|---|---|---|---|
0.5 h | 1.0 h | 2.0 h | 4.0 h | 6.0 h | ||||
5-Fluorouracil (100 mg/kg) | 70.42 | 12,952.07 | 135.14 | 38.40 | ND | 12,952.07 | 1.0 | 6717.15 |
Doxorubicin (5 mg/kg) | 35.61 | 6.49 | 2.61 | ND | ND | 35.61 | 0.5 | 15.08 |
Capecitabine (540 mg/kg) | 12.58 | 1062.82 | 17.77 | 1.55 | ND | 1062.82 | 1.0 | 559.62 |
Hazard | Penalty Points | |
---|---|---|
Proposed Method | Reported Method a | |
Reagents | ||
Reagent amount | ||
Acetonitrile | 1 | 1 |
Methanol | 1 | |
Formic acid | 1 | 1 |
Magnesium sulphate | 1 | |
Sodium Chloride | 1 | |
PSA | 1 | |
Hazardous reagents | ||
Instruments | ||
Energy (1.5 kW h per sample) | 2 | 2 |
Occupational hazard | 0 | 0 |
Waste | 3 | 3 |
Total penalty points | 10 | 7 |
Analytical Eco-Scale total score b | 90 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Azab, N.F.; Binjubair, F.A.; Al-Rashood, S.T.; Okeil, S.; El Zahar, N.M. Simultaneous Quantification of a Neoadjuvant Treatment Used in Locally Advanced Breast Cancer Using an Eco-Friendly UPLC-MS/MS Method: A Pharmacokinetic Study in Rat Plasma. Separations 2022, 9, 403. https://doi.org/10.3390/separations9120403
El Azab NF, Binjubair FA, Al-Rashood ST, Okeil S, El Zahar NM. Simultaneous Quantification of a Neoadjuvant Treatment Used in Locally Advanced Breast Cancer Using an Eco-Friendly UPLC-MS/MS Method: A Pharmacokinetic Study in Rat Plasma. Separations. 2022; 9(12):403. https://doi.org/10.3390/separations9120403
Chicago/Turabian StyleEl Azab, Noha F., Faizah A. Binjubair, Sara T. Al-Rashood, Sherif Okeil, and Noha M. El Zahar. 2022. "Simultaneous Quantification of a Neoadjuvant Treatment Used in Locally Advanced Breast Cancer Using an Eco-Friendly UPLC-MS/MS Method: A Pharmacokinetic Study in Rat Plasma" Separations 9, no. 12: 403. https://doi.org/10.3390/separations9120403
APA StyleEl Azab, N. F., Binjubair, F. A., Al-Rashood, S. T., Okeil, S., & El Zahar, N. M. (2022). Simultaneous Quantification of a Neoadjuvant Treatment Used in Locally Advanced Breast Cancer Using an Eco-Friendly UPLC-MS/MS Method: A Pharmacokinetic Study in Rat Plasma. Separations, 9(12), 403. https://doi.org/10.3390/separations9120403