Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials
Abstract
:1. Introduction
2. The Fundamental Principles of Semiconductor Photocatalysts
3. Semiconductor Photocatalysts
4. Basics and Types of Semiconductor Heterojunctions
5. Synthesis Methods for Semiconductor Heterojunctions
5.1. Hydrothermal/Solvothermal Methods
5.2. Sol–Gel Method
5.3. Chemical Precipitation Method
5.4. Solid-Phase Method
5.5. Sonochemical Method
6. Types of Pollutions
6.1. Heavy Metals
6.2. Organic Dyes
6.3. Pesticides and Herbicides
6.4. Phenolic Compounds
6.5. Pharmaceutical Pollutants
7. Nanostructure Semiconductor Heterojunction Photocatalysts
7.1. Bismuth-Based Semiconductor Photocatalysts
7.2. Metal Chalcogenide-Based Semiconductor Photocatalysts
8. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Yu, C.; Chen, X.; Li, N.; Zhang, Y.; Li, S.; Chen, J.; Yao, L.; Lin, K.; Lai, Y.; Deng, X. Ag3PO4-based photocatalysts and their application in organic-polluted wastewater treatment. Environ. Sci. Pollut. Res. 2022, 29, 18423–18439. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, F.H.; Bakar, N.H.H.A.; Bakar, M.A. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J. Hazard. Mater. 2022, 424, 127416. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, F.; Saravanakumar, K.; Maheskumar, V.; Njaramba, L.K.; Yoon, Y.; Park, C.M. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. J. Hazard. Mater. 2022, 436, 129074. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ma, J.; Chen, Y.; Qian, Y.; Xu, B.; Chu, W.; An, D. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review. Sci. Total Environ. 2022, 804, 150024. [Google Scholar] [CrossRef]
- Al Sharabati, M.; Abokwiek, R.; Al-Othman, A.; Tawalbeh, M.; Karaman, C.; Orooji, Y.; Karimi, F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 2021, 202, 111694. [Google Scholar] [CrossRef]
- Patidar, R.; Srivastava, V.C. Evaluation of the sono-assisted photolysis method for the mineralization of toxic pollutants. Sep. Purif. Technol. 2021, 258, 117903. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Bi, Z.; Chen, X.; Hu, X.; Pan, W. Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef]
- Sivaraman, C.; Vijayalakshmi, S.; Leonard, E.; Sagadevan, S.; Jambulingam, R. Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials. Catalysts 2022, 12, 544. [Google Scholar] [CrossRef]
- Tian, K.; Hu, L.; Li, L.; Zheng, Q.; Xin, Y.; Zhang, G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chin. Chem. Lett. 2022, 33, 4461–4477. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Sgroi, M.; Snyder, S.A.; Roccaro, P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere 2021, 273, 128527. [Google Scholar] [CrossRef]
- Adeola, A.O.; Abiodun, B.A.; Adenuga, D.O.; Nomngongo, P.N. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. J. Contam. Hydrol. 2022, 248, 104019. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomater 2021, 11, 1804. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Liu, J.; Zhai, Z.; Yang, Z.; Xia, J.; Deng, S.; Qu, X.; Zhang, H.; Wu, D.; et al. Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J. Environ. Chem. Eng. 2022, 10, 107091. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Hau Ng, Y.; Sik Ok, Y. Recent advances in photodegradation of antibiotic residues in water. Chem. Eng. J. 2021, 405, 126806. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Akbari, M.Z.; Xu, Y.; Lu, Z.; Peng, L. Review of antibiotics treatment by advance oxidation processes. Environ. Adv. 2021, 5, 100111. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 250, 126198. [Google Scholar] [CrossRef]
- Hong, J.; Cho, K.-H.; Presser, V.; Su, X. Recent advances in wastewater treatment using semiconductor photocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 36, 100644. [Google Scholar] [CrossRef]
- Tahir, M.B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of Nanotechnology in Photocatalysis. Ref. Modul. Mater. Sci. Mater. Eng. 2020, 1, 439–458. [Google Scholar]
- Chawla, H.; Chandra, A.; Ingole, P.P.; Garg, S. Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M=W, Mo, Cr) for environmental remediation and clean energy production. J. Ind. Eng. Chem. 2021, 95, 1–15. [Google Scholar] [CrossRef]
- Dong, C.; Fang, W.; Yi, Q.; Zhang, J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere 2022, 308, 136205. [Google Scholar] [CrossRef]
- Díaz, C.; Segovia, M.; Valenzuela, M.L. Solid State Nanostructured Metal Oxides as Photocatalysts and Their Application in Pollutant Degradation: A Review. Photochem 2022, 2, 609–627. [Google Scholar] [CrossRef]
- Terna, A.D.; Elemike, E.E.; Mbonu, J.I.; Osafile, O.E.; Ezeani, R.O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B 2021, 272, 115363. [Google Scholar] [CrossRef]
- Lai, Y.J.; Lee, D.J. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives. J. Taiwan Inst. Chem. Eng. 2021, 125, 88–114. [Google Scholar] [CrossRef]
- Alahmadi, N.; Amin, M.S.; Mohamed, R.M. Facile synthesis of mesoporous Pt-doped, titania-silica nanocomposites as highly photoactive under visible light. J. Mater. Res. Technol. 2020, 9, 14093–14102. [Google Scholar] [CrossRef]
- Alahmadi, N.; Amin, M.S.; Mohamed, R.M. Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water. J. Nanoparticle Res. 2020, 22, 230. [Google Scholar] [CrossRef]
- De Oliveira Pereira, L.; Marques Sales, I.; Pereira Zampiere, L.; Silveira Vieira, S.; Do Rosário Guimarães, I.; Magalhães, F. Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. J. Photochem. Photobiol. A Chem. 2019, 382, 111907. [Google Scholar] [CrossRef]
- Wei, S.; Ni, S.; Xu, X. A new approach to inducing Ti3+ in anatase TiO2 for efficient photocatalytic hydrogen production. Chin. J. Catal. 2018, 39, 510–516. [Google Scholar] [CrossRef]
- Nair, A.K.; Roy George, D.; Jos Baby, N.; Reji, M.; Joseph, S. Solar dye degradation using TiO2 nanosheet based nanocomposite floating photocatalyst. Mater. Today Proc. 2021, 46, 2747–2751. [Google Scholar] [CrossRef]
- Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734. [Google Scholar] [CrossRef]
- Ajith, M.P.; Aswathi, M.; Priyadarshini, E.; Rajamani, P. Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresour. Technol. 2021, 342, 126000. [Google Scholar] [CrossRef]
- Sarani, M.; Tosan, F.; Hasani, S.A.; Barani, M.; Adeli-Sardou, M.; Khosravani, M.; Niknam, S.; Jadidi Kouhbanani, M.A.; Beheshtkhoo, N. Study of in vitro cytotoxic performance of biosynthesized α-Bi2O3 NPs, Mn-doped and Zn-doped Bi2O3 NPs against MCF-7 and HUVEC cell lines. J. Mater. Res. Technol. 2022, 19, 140–150. [Google Scholar] [CrossRef]
- Bradford, S.A.; Shen, C.; Kim, H.; Letcher, R.J.; Rinklebe, J.; Ok, Y.S.; Ma, L. Environmental applications and risks of nanomaterials: An introduction to CREST publications during 2018–2021. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3753–3762. [Google Scholar] [CrossRef]
- Islam, T.; Ali, I.; Naz, I.; Kayshar, M.S. Chapter 1—Appraisal of nanotechnology for sustainable environmental remediation. In Micro and Nano Technologies; Koduru, J.R., Karri, R.R., Mubarak, N.M., Bandala, E.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–31. ISBN 978-0-12-824547-7. [Google Scholar]
- Arshad, R.; Kiani, M.H.; Rahdar, A.; Sargazi, S.; Barani, M.; Shojaei, S.; Bilal, M.; Kumar, D.; Pandey, S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering 2022, 9, 320. [Google Scholar] [CrossRef]
- Shafiq, M.; Anjum, S.; Hano, C.; Anjum, I.; Abbasi, B.H. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020, 9, 148. [Google Scholar] [CrossRef]
- Su, S.; Sun, Q.; Gu, X.; Xu, Y.; Shen, J.; Zhu, D.; Chao, J.; Fan, C.; Wang, L. Two-dimensional nanomaterials for biosensing applications. TrAC Trends Anal. Chem. 2019, 119, 115610. [Google Scholar] [CrossRef]
- Taghavi, S.M.; Momenpour, M.; Azarian, M.; Ahmadian, M.; Souri, F.; Taghavi, S.A.; Sadeghain, M.; Karchani, M. Effects of Nanoparticles on the Environment and Outdoor Workplaces. Electron. Physician 2013, 5, 706–712. [Google Scholar] [CrossRef]
- Mazari, S.A.; Ali, E.; Abro, R.; Khan, F.S.A.; Ahmed, I.; Ahmed, M.; Nizamuddin, S.; Siddiqui, T.H.; Hossain, N.; Mubarak, N.M.; et al. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges—A review. J. Environ. Chem. Eng. 2021, 9, 105028. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.B.M.S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef] [PubMed]
- Elgohary, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Baaloudj, O.; Alyami, M.S.S.; El Jery, A.; Assadi, A.A.; Amrane, A. A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021, 11, 1498. [Google Scholar] [CrossRef]
- Ameta, R.; Solanki, M.S.; Benjamin, S.; Ameta, S.C. Chapter 6—Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment; Ameta, S.C., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 135–175. ISBN 978-0-12-810499-6. [Google Scholar]
- Liu, B.; Wu, H.; Parkin, I.P. New Insights into the Fundamental Principle of Semiconductor Photocatalysis. ACS Omega 2020, 5, 14847–14856. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, Z.H.; Graimed, B.H. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. J. Water Process Eng. 2022, 47, 102671. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.S.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Zhao, H.; Mao, Q.; Jian, L.; Dong, Y.; Zhu, Y. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chin. J. Catal. 2022, 43, 1774–1804. [Google Scholar] [CrossRef]
- Kausar, F.; Varghese, A.; Pinheiro, D.; Devi, K.R.S. Recent trends in photocatalytic water splitting using titania based ternary photocatalysts—A review. Int. J. Hydrog. Energy 2022, 47, 22371–22402. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Singh, P.; Verma, N.; Khan, A.A.P.; Singh, A.; Selvasembian, R.; Kim, S.Y.; Hussain, C.M.; Nguyen, V.-H.; et al. Progress on the photocatalytic reduction of hexavalent Cr(VI) using engineered graphitic carbon nitride. Process Saf. Environ. Prot. 2021, 152, 663–678. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Tang, L.; Zeng, G.; Chen, Z.; Zhang, M. Nanohybrid Photocatalysts for Heavy Metal Pollutant Control. In Nanohybrid and Nanoporous Materials for Aquatic Pollution Control; Elsevier: Amsterdam, The Netherlands, 2019; pp. 125–153. ISBN 9780128141557. [Google Scholar]
- Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review. Sensors 2018, 18, 2072. [Google Scholar] [CrossRef] [Green Version]
- Mohadesi, M.; Sanavi Fard, M.; Shokri, A. The application of modified nano-TiO2 photocatalyst for wastewater treatment: A review. Int. J. Environ. Anal. Chem. 2022, 1–22. [Google Scholar] [CrossRef]
- Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar] [CrossRef]
- Parul; Kaur, K.; Badru, R.; Singh, P.P.; Kaushal, S. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng. 2020, 8, 103666. [Google Scholar] [CrossRef]
- Alhebshi, A.; Sharaf Aldeen, E.; Mim, R.S.; Tahir, B.; Tahir, M. Recent advances in constructing heterojunctions of binary semiconductor photocatalysts for visible light responsive CO2 reduction to energy efficient fuels: A review. Int. J. Energy Res. 2022, 46, 5523–5584. [Google Scholar] [CrossRef]
- Guan, Q.; Zeng, G.; Song, J.; Liu, C.; Wang, Z.; Wu, S. Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. J. Environ. Manag. 2021, 293, 112961. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Y.; Zhu, X.; Fang, J.; Xu, W.; Hu, X.; Li, R.; Yao, L.; Qin, J.; Fang, Z. Semiconductor heterojunctions for photocatalytic hydrogen production and Cr(VI) Reduction: A review. Mater. Res. Bull. 2022, 147, 111636. [Google Scholar] [CrossRef]
- Eivazihollagh, A.; Bäckström, J.; Dahlström, C.; Carlsson, F.; Ibrahem, I.; Lindman, B.; Edlund, H.; Norgren, M. One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Mater. Lett. 2017, 187, 170–172. [Google Scholar] [CrossRef]
- Huang, D.; Chen, S.; Zeng, G.; Gong, X.; Zhou, C.; Cheng, M.; Xue, W.; Yan, X.; Li, J. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coord. Chem. Rev. 2019, 385, 44–80. [Google Scholar] [CrossRef]
- Hasija, V.; Kumar, A.; Sudhaik, A.; Raizada, P.; Singh, P.; Van Le, Q.; Le, T.T.; Nguyen, V.-H. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: A review. Environ. Chem. Lett. 2021, 19, 2941–2966. [Google Scholar] [CrossRef]
- San Martín, S.; Rivero, M.J.; Ortiz, I. Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts 2020, 10, 901. [Google Scholar] [CrossRef]
- Jiang, W.; Zong, X.; An, L.; Hua, S.; Miao, X.; Luan, S.; Wen, Y.; Tao, F.F.; Sun, Z. Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catal. 2018, 8, 2209–2217. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Stelo, F.; Kublik, N.; Ullah, S.; Wender, H. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants. J. Alloys Compd. 2020, 829, 154591. [Google Scholar] [CrossRef]
- Kafle, B.P. Chapter 6—Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization. In Chemical Analysis and Material Characterization by Spectrophotometry; Kafle, B.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–198. ISBN 978-0-12-814866-2. [Google Scholar]
- Dahiya, M.S.; Tomer, V.K.; Duhan, S. 31—Metal–ferrite nanocomposites for targeted drug delivery. In Woodhead Publishing Series in Biomaterials; Asiri, Inamuddin, A.M., Mohammad, A., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 737–760. ISBN 978-0-12-813741-3. [Google Scholar]
- Da Silva, A.K.; Ricci, T.G.; De Toffoli, A.L.; Maciel, E.V.S.; Nazario, C.E.D.; Lanças, F.M. Chapter 4—The role of magnetic nanomaterials in miniaturized sample preparation techniques. In Handbook on Miniaturization in Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–98. ISBN 978-0-12-819763-9. [Google Scholar]
- Ren, W.; Yang, J.; Zhang, J.; Li, W.; Sun, C.; Zhao, H.; Wen, Y.; Sha, O.; Liang, B. Recent progress in SnO2/g-C3N4 Heterojunction Photocatalysts: Synthesis, Modification, and Application. J. Alloy. Compd. 2022, 906, 164372. [Google Scholar] [CrossRef]
- Prasad, C.; Liu, Q.; Tang, H.; Yuvaraja, G.; Long, J.; Rammohan, A.; Zyryanov, G. V An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J. Mol. Liq. 2020, 297, 111826. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Sarkar, A.; Saha, N.; Majumdar, G.B.T.-R.M. in M.S. and M.E. Fabrication and Characterization of Flexible Semi-conducting Nanocomposite Polymer. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-803581-8. [Google Scholar]
- Yilmaz, E.; Soylak, M. 15—Functionalized nanomaterials for sample preparation methods. In Handbook of Nanomaterials in Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–413. ISBN 978-0-12-816699-4. [Google Scholar]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Kumar, V.; Tiwari, S.P.; Ntwaeaborwa, O.M.; Swart, H.C. 10—Luminescence properties of rare-earth doped oxide materials. In Woodhead Publishing Series in Electronic and Optical Materials; Dhoble, S.J., Pawade, V.B., Swart, H.C., Chopra, V.B., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 345–364. ISBN 978-0-08-102935-0. [Google Scholar]
- Ben Smida, Y. Synthesis Methods in Solid-State Chemistry; Marzouki, R., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 2; pp. 1–16. ISBN 978-1-83880-224-0. [Google Scholar]
- Foroughi, F.; Lamb, J.J.; Burheim, O.S.; Pollet, B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts 2021, 11, 284. [Google Scholar] [CrossRef]
- Fuentes-García, J.A.; Carvalho Alavarse, A.; Moreno Maldonado, A.C.; Toro-Córdova, A.; Ibarra, M.R.; Goya, G.F. Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia. ACS Omega 2020, 5, 26357–26364. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Meng, X. Photocatalysis for Heavy Metal Treatment: A Review. Processes 2021, 9, 1729. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Mahmoud, M.H.H. MnCo2O4@ZrO2 nanocomposites prepared via facile route toward photoreduction of Hg (II) ions. Opt. Mater. 2022, 125, 112135. [Google Scholar] [CrossRef]
- Reddy, C.V.; Koutavarapu, R.; Shim, J.; Cheolho, B.; Reddy, K.R. Novel g-C3N4/Cu-doped ZrO2 hybrid heterostructures for efficient photocatalytic Cr(VI) photoreduction and electrochemical energy storage applications. Chemosphere 2022, 295, 133851. [Google Scholar] [CrossRef]
- Shahzad, K.; Tahir, M.B.; Sagir, M.; Kabli, M.R. Role of CuCo2S4 in Z-scheme MoSe2/BiVO4 composite for efficient photocatalytic reduction of heavy metals. Ceram. Int. 2019, 45, 23225–23232. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Li, N.; Xia, J.; Meng, Q.; Ding, J.; Lu, J. Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv. 2018, 8, 34241–34251. [Google Scholar] [CrossRef]
- Raja, A.; Rajasekaran, P.; Selvakumar, K.; Arivanandhan, M.; Asath Bahadur, S.; Swaminathan, M. Efficient Photoreduction of Hexavalent Chromium Using the Reduced Graphene Oxide–Sm2MoO6–TiO2 Catalyst under Visible Light Illumination. ACS Omega 2020, 5, 6414–6422. [Google Scholar] [CrossRef]
- Spanu, D.; Dal Santo, V.; Malara, F.; Naldoni, A.; Turolla, A.; Antonelli, M.; Dossi, C.; Marelli, M.; Altomare, M.; Schmuki, P.; et al. Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochim. Acta 2018, 292, 828–837. [Google Scholar] [CrossRef]
- Raez, J.M.; Arencibia, A.; Segura, Y.; Arsuaga, J.M.; López-Muñoz, M.J. Combination of immobilized TiO2 and zero valent iron for efficient arsenic removal in aqueous solutions. Sep. Purif. Technol. 2021, 258, 118016. [Google Scholar] [CrossRef]
- Salmanvandi, H.; Rezaei, P.; Tamsilian, Y. Photoreduction and Removal of Cadmium Ions over Bentonite Clay-Supported Zinc Oxide Microcubes in an Aqueous Solution. ACS Omega 2020, 5, 13176–13184. [Google Scholar] [CrossRef]
- Abbasi, H.; Salimi, F.; Golmohammadi, F. Removal of Cadmium from Aqueous Solution by Nano Composites of Bentonite /TiO2 and Bentonite/ZnO Using Photocatalysis Adsorption Process. Silicon 2020, 12, 2721–2731. [Google Scholar] [CrossRef]
- Murruni, L.; Conde, F.; Leyva, G.; Litter, M.I. Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Appl. Catal. B Environ. 2008, 84, 563–569. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Rusydah bt Mohamad Shahdad, N.; Lim, Y.-C.; Pace, A. Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustain. Chem. Pharm. 2019, 14, 100176. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A. Photocatalytic reduction and removal of mercury ions over mesoporous CuO/ZnO S-scheme heterojunction photocatalyst. Ceram. Int. 2021, 47, 9659–9667. [Google Scholar] [CrossRef]
- Spanu, D.; Bestetti, A.; Hildebrand, H.; Schmuki, P.; Altomare, M.; Recchia, S. Photocatalytic reduction and scavenging of Hg(ii) over templated-dewetted Au on TiO2 nanotubes. Photochem. Photobiol. Sci. 2019, 18, 1046–1055. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Emerging bismuth-based direct Z-scheme photocatalyst for the degradation of organic dye and antibiotic residues. Chemosphere 2022, 297, 134227. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’ rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Badawy, A.A.; Essawy, H.A. Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation. J. Nanostructure Chem. 2019, 9, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Tomar, R.; Abdala, A.A.; Chaudhary, R.G.; Singh, N.B. Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 2020, 29, 967–973. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Reports 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Ali, N.; Said, A.; Ali, F.; Raziq, F.; Ali, Z.; Bilal, M.; Reinert, L.; Begum, T.; Iqbal, H.M.N. Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance. Water, Air, Soil Pollut. 2020, 231, 50. [Google Scholar] [CrossRef]
- Pinna, M.; Binda, G.; Altomare, M.; Marelli, M.; Dossi, C.; Monticelli, D.; Spanu, D.; Recchia, S. Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts 2021, 11, 1048. [Google Scholar] [CrossRef]
- Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Chai, B.; Yan, J.; Wang, C.; Ren, Z.; Zhu, Y. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride. Appl. Surf. Sci. 2017, 391, 376–383. [Google Scholar] [CrossRef]
- Bano, K.; Kaushal, S.; Singh, P.P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021, 209, 115465. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci. 2022, 127, 234–250. [Google Scholar] [CrossRef]
- Bhandari, G.; Atreya, K.; Scheepers, P.T.J.; Geissen, V. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere 2020, 253, 126594. [Google Scholar] [CrossRef]
- Ramadan, M.F.A.; Abdel-Hamid, M.M.A.; Altorgoman, M.M.F.; AlGaramah, H.A.; Alawi, M.A.; Shati, A.A.; Shweeta, H.A.; Awwad, N.S. Evaluation of Pesticide Residues in Vegetables from the Asir Region, Saudi Arabia. Molecules 2020, 25, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Vaya, D.; Surolia, P.K. Semiconductor based photocatalytic degradation of pesticides: An overview. Environ. Technol. Innov. 2020, 20, 101128. [Google Scholar] [CrossRef]
- Brillas, E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J. Clean. Prod. 2021, 290, 125841. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Mohamed, R.M. Synthesis and characterization of Cu-BaTiO3 nanocomposite for atrazine remediation under visible-light radiation from wastewater. J. Mater. Res. Technol. 2020, 9, 9550–9558. [Google Scholar] [CrossRef]
- Hazaraimi, M.H.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Wu, Z.; Subramaniam, M.N.; Lim, J.W.; Kanakaraju, D. The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. Sci. Total Environ. 2022, 843, 156975. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zong, H.; Tan, X.; Wang, X.; Qiu, J.; Kong, F.; Zhang, J.; Fang, S. Facile synthesis of modified carbon nitride with enhanced activity for photocatalytic degradation of atrazine. J. Environ. Chem. Eng. 2021, 9, 105807. [Google Scholar] [CrossRef]
- Basaleh, A.S.; El-Hout, S.I.; Mahmoud, M.H.H. Li2MnO3@ZrO2 heterojunctions for highly efficient catalytic photodegradation of Atrazine herbicide. Ceram. Int. 2022, 48, 30978–30987. [Google Scholar] [CrossRef]
- Zheng, Z.; Deletic, A.; Toe, C.Y.; Amal, R.; Zhang, X.; Pickford, R.; Zhou, S.; Zhang, K. Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation. J. Hazard. Mater. 2022, 436, 129239. [Google Scholar] [CrossRef]
- Yadav, G.; Ahmaruzzaman, M. New generation advanced nanomaterials for photocatalytic abatement of phenolic compounds. Chemosphere 2022, 304, 135297. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Ismail, A.F.; Abdul Karim, Z.; Abdullah, M.S.; Hafeez, A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf. Environ. Prot. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Xue, Y.; Hu, X.; Sun, Q.; Wang, H.; Wang, H.; Hou, X. Review of electrochemical degradation of phenolic compounds. Int. J. Miner. Metall. Mater. 2021, 28, 1413–1428. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Z.; Luo, Y.; Bai, Y.; Fan, J. Bioremediation of phenolic pollutants by algae—current status and challenges. Bioresour. Technol. 2022, 350, 126930. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Khan, M.A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 2021, 195, 110742. [Google Scholar] [CrossRef]
- Chen, X.; Guo, R.; Pan, W.; Yuan, Y.; Hu, X.; Bi, Z.; Wang, J. A novel double S-scheme photocatalyst Bi7O9I3/Cd0.5Zn0.5S QDs/WO3−x with efficient full-spectrum-induced phenol photodegradation. Appl. Catal. B Environ. 2022, 318, 121839. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Wang, G.; Liu, D.; Liu, S. Construction of Cu-Fe bimetallic oxide/biochar/Ag3PO4 heterojunction for improving photocorrosion resistance and photocatalytic performance achieves efficient removal of phenol. Appl. Surf. Sci. 2022, 592, 153307. [Google Scholar] [CrossRef]
- Parwaz Khan, A.A.; Singh, P.; Raizada, P.; M Asiri, A. Converting Ag3PO4/CdS/Fe doped C3N4 based dual Z-scheme photocatalyst into photo- Fenton system for efficient photocatalytic phenol removal. J. Ind. Eng. Chem. 2021, 98, 148–160. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, H.; Liang, H.; Bai, J.; Li, C. Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light. Chem. Res. Chin. Univ. 2020, 36, 1227–1233. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Ma, Y.-L.; Zhang, J.-T.; Fan, N.-S.; Huang, B.-C.; Jin, R.-C. A critical review of antibiotic removal strategies: Performance and mechanisms. J. Water Process Eng. 2020, 38, 101681. [Google Scholar] [CrossRef]
- Meng, M.; Zheng, J.; Cui, Y.; Li, B.; Yang, L.; Zhu, Y.; Li, C. Recent advances in photodegradation of antibiotic residues in water antibiotic activity. J. Mater. Sci. 2022, 57, 598–617. [Google Scholar] [CrossRef]
- Noor, Z.Z.; Rabiu, Z.; Sani, M.H.M.; Samad, A.F.A.; Kamaroddin, M.F.A.; Perez, M.F.; Dib, J.R.; Fatima, H.; Sinha, R.; Khare, S.K.; et al. A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater. Curr. Pollut. Reports 2021, 7, 494–509. [Google Scholar] [CrossRef]
- Velempini, T.; Prabakaran, E.; Pillay, K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review. Mater. Today Chem. 2021, 19, 100380. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, H.; Wang, X.; Hong, X.; Liang, B. Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater. RSC Adv. 2021, 11, 26855–26875. [Google Scholar] [CrossRef] [PubMed]
- Dutta, V.; Sharma, S.; Raizada, P.; Kumar, R.; Thakur, V.K.; Nguyen, V.-H.; Asiri, A.M.; Khan, A.A.P.; Singh, P. Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications. J. Environ. Chem. Eng. 2020, 8, 104505. [Google Scholar] [CrossRef]
- Song, S.; Xing, Z.; Zhao, H.; Li, Z.; Zhou, W. Recent advances in bismuth-based photocatalysts: Environment and energy applications. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- Subhiksha, V.; Kokilavani, S.; Sudheer Khan, S. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. Chemosphere 2022, 290, 133228. [Google Scholar] [CrossRef]
- Shawky, A.; Alahmadi, N.; Mohamed, R.M.; Zaki, Z.I. Bi2S3-sensitized TiO2 nanostructures prepared by solution process for highly efficient photoreduction of hexavalent chromium ions in water under visible light. Opt. Mater. 2022, 124, 111964. [Google Scholar] [CrossRef]
- Mao, Y.; Qiu, B.; Zhang, M.; Yin, H.; Yao, J.; Liu, X.; Chen, S. Bismuth molybdate heterojunction composited by nickel hydroxide ultrafine nanosheet with high photodecomposition efficiency. Sol. Energy 2020, 207, 832–840. [Google Scholar] [CrossRef]
- Du, M.; Zhang, S.; Xing, Z.; Li, Z.; Yin, J.; Zou, J.; Zhu, Q.; Zhou, W. All-Solid Z-Scheme Bi–BiOCl/AgCl Heterojunction Microspheres for Improved Electron–Hole Separation and Enhanced Visible Light-Driven Photocatalytic Performance. Langmuir 2019, 35, 7887–7895. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Guo, S.; Jiang, Z.; Wang, J.; Sun, M.; Wang, S.; Wen, T.; Wang, X. In situ low-temperature pyrolysis fabrication type II BiOIO3/Bi4O5I2 heterostructures with enhanced visible-light-driven photooxidation activity. Sci. Total Environ. 2022, 837, 155836. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z.; Liu, D.; Tan, Z.; Mamba, B.B.; Kuvarega, A.T.; Gui, J. S-Scheme Bi2S3/CdS Nanorod Heterojunction Photocatalysts with Improved Carrier Separation and Redox Capacity for Pollutant Removal. ACS Appl. Nano Mater. 2022, 5, 5448–5458. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. J. Mater. Sci. Technol. 2022, 123, 177–190. [Google Scholar] [CrossRef]
- Wang, Y.; Qiang, Z.; Zhu, W.; Yao, W.; Tang, S.; Yang, Z.; Wang, J.; Duan, J.; Ma, C.; Tan, R. BiPO4 Nanorod/Graphene Composite Heterojunctions for Photocatalytic Degradation of Tetracycline Hydrochloride. ACS Appl. Nano Mater. 2021, 4, 8680–8689. [Google Scholar] [CrossRef]
- Zhu, P.; Luo, D.; Liu, M.; Duan, M.; Lin, J.; Wu, X. Flower-globular BiOI/BiVO4/g-C3N4 with a dual Z-scheme heterojunction for highly efficient degradation of antibiotics under visible light. Sep. Purif. Technol. 2022, 297, 121503. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Syed, K.; Pagidi, S.; Jeon, M.Y.; Rao, M.C.; Lee, D.-Y.; Shim, J. An effective CuO/Bi2WO6 heterostructured photocatalyst: Analyzing a charge-transfer mechanism for the enhanced visible-light-driven photocatalytic degradation of tetracycline and organic pollutants. Chemosphere 2022, 287, 132015. [Google Scholar] [CrossRef]
- Shen, W.; Li, N.; Zuo, S.; Wu, M.; Sun, G.; Li, Q.; Shi, M.; Ma, J. Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect. Ceram. Int. 2022, 48, 15899–15907. [Google Scholar] [CrossRef]
- Sattari, M.; Farhadian, M.; Reza Solaimany Nazar, A.; Moghadam, M. Enhancement of Phenol degradation, using of novel Z-scheme Bi2WO6/C3N4/TiO2 composite: Catalyst and operational parameters optimization. J. Photochem. Photobiol. A Chem. 2022, 431, 114065. [Google Scholar] [CrossRef]
- Liu, T.; Wang, B.; Zhang, J.; Lu, Z.; Gu, J.; Wang, W.; Wang, M.; Zhou, Q. 0D/1D BiVO4/CdS Z-scheme nanoarchitecture for efficient photocatalytic environmental remediation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129583. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757. [Google Scholar] [CrossRef]
- Lu, C.; Wang, L.; Yang, D.; Jin, Z.; Wang, X.; Xu, J.; Li, Z.; Shi, W.; Guan, W.; Huang, W. Boosted tetracycline and Cr(VI) simultaneous cleanup over Z-Scheme BiPO4/CuBi2O4 p-n heterojunction with 0D/1D trepang-like structure under simulated sunlight irradiation. J. Alloys Compd. 2022, 919, 165849. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Li, Y.; Yao, J.; Shu, S.; Huang, L.; Song, Y.; Tian, Q. Constructing an S-scheme CuBi2O4/Bi4O5I2 heterojunction for lightemittingdiode-driven pollutant degradation and bacterial inactivation. J. Colloid Interface Sci. 2022, 621, 295–310. [Google Scholar] [CrossRef]
- Yan, X.; Ji, Q.; Wang, C.; Xu, J.; Wang, L. In situ construction bismuth oxycarbonate/bismuth oxybromide Z-scheme heterojunction for efficient photocatalytic removal of tetracycline and ciprofloxacin. J. Colloid Interface Sci. 2021, 587, 820–830. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Bao, T.; Hao, D.; Chen, Z.; Wei, W.; Wang, D.; Wang, S.; Ni, B.-J. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. J. Hazard. Mater. 2022, 430, 128195. [Google Scholar] [CrossRef]
- Lou, W.; Wang, L.; Zhang, Y.; Xing, Y. Synthesis of BiOBr/Mg metal organic frameworks catalyst application for degrade organic dyes rhodamine B under the visible light. Appl. Organomet. Chem. 2021, 35, e6324. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, H.; Chen, C.; Cao, W.; Jiang, C.; Wang, Y. Design of hollow mesoporous TiO2@BiOBr/Bi4O5Br2 type-II/Z-scheme tandem heterojunctions under confinement effect: Improved space charge separation and enhanced visible-light photocatalytic performance. J. Colloid Interface Sci. 2022, 617, 341–352. [Google Scholar] [CrossRef]
- Lu, Q.; Dong, C.; Wei, F.; Li, J.; Wang, Z.; Mu, W.; Han, X. Rational fabrication of Bi2WO6 decorated TiO2 nanotube arrays for photocatalytic degradation of organic pollutants. Mater. Res. Bull. 2022, 145, 111563. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Liu, Y.; Cai, M.; Wang, Y.; Zhang, H.; Guo, Y.; Zhao, W.; Wang, Z.; Chen, X. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 429, 132519. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, R.; Zhang, Y.; Liu, X.; Xu, H. Preparation and photocatalytic properties of Bi2WO6/g-C3N4. Inorg. Chem. Commun. 2021, 132, 108761. [Google Scholar] [CrossRef]
- Raza, W.; Ahmad, K. Chapter 29—Artificial photosynthesis system for the reduction of carbon dioxide to value-added fuels. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Kharisov, B., Kharissova, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 917–938. ISBN 978-0-12-821938-6. [Google Scholar]
- Siddiqui, M.S.; Aslam, M. 3—Chalcogenides as well as chalcogenides-based nanomaterials and its importance in photocatalysis. In Micro and Nano Technologies; Khan, M.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–76. ISBN 978-0-12-820498-6. [Google Scholar]
- Xia, D.; Chen, Q.; Li, Z.; Luo, M.; Wong, P.K. 6—Band gap engineered chalcogenide nanomaterials for visible light-induced photocatalysis. In Micro and Nano Technologies; Khan, M.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 135–172. ISBN 978-0-12-820498-6. [Google Scholar]
- Chen, B.; Meng, Y.; Sha, J.; Zhong, C.; Hu, W.; Zhao, N. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: Progress, challenges, and perspective. Nanoscale 2018, 10, 34–68. [Google Scholar] [CrossRef]
- Kumar, N.; Bhadwal, A.S.; Mizaikoff, B.; Singh, S.; Kranz, C. Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: Paracetamol. Sens. Bio-Sensing Res. 2019, 24, 100288. [Google Scholar] [CrossRef]
- Su, J.; Yu, S.; Xu, M.; Guo, Y.; Sun, X.; Fan, Y.; Zhang, Z.; Yan, J.; Zhao, W. Enhanced visible light photocatalytic performances of few-layer MoS2@TiO2 hollow spheres heterostructures. Mater. Res. Bull. 2020, 130, 110936. [Google Scholar] [CrossRef]
- Shan, Y.; Cui, J.; Liu, Y.; Zhao, W. TiO2 anchored on MoS2 nanosheets based on molybdenite exfoliation as an efficient cathode for enhanced Cr(VI) reduction in microbial fuel cell. Environ. Res. 2020, 190, 110010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Zhu, X.; Liu, X.; Li, H. 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Appl. Surf. Sci. 2021, 556, 149768. [Google Scholar] [CrossRef]
- Cao, D.; Wang, Q.; Zhu, S.; Zhang, X.; Li, Y.; Cui, Y.; Xue, Z.; Gao, S. Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Sep. Purif. Technol. 2021, 265, 118463. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Shao, L.; Wang, C. Direct Z-scheme N-doped TiO2/MoS2 Heterojunction Photocatalyst for Photodegradation of Methylene Blue under Simulated Sunlight. ChemistrySelect 2021, 6, 181–186. [Google Scholar] [CrossRef]
- Shi, H.; Xie, Y.; Wang, W.; Zhang, L.; Zhang, X.; Shi, Y.; Fan, J.; Tang, Z. In-situ construction of step-scheme MoS2/Bi4O5Br2 heterojunction with improved photocatalytic activity of Rhodamine B degradation and disinfection. J. Colloid Interface Sci. 2022, 623, 500–512. [Google Scholar] [CrossRef]
- Xu, A.; Tu, W.; Shen, S.; Lin, Z.; Gao, N.; Zhong, W. BiVO4@MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of Rhodamine, B. Appl. Surf. Sci. 2020, 528, 146949. [Google Scholar] [CrossRef]
- Atla, R.; Oh, T.H. Novel fabrication of the recyclable MoS2/Bi2WO6 heterostructure and its effective photocatalytic degradation of tetracycline under visible light irradiation. Chemosphere 2022, 303, 134922. [Google Scholar] [CrossRef]
- Peng, L.-G.; Wang, H.; Liu, J.; Sun, M.; Ni, F.-R.; Chang, M.-J.; Du, H.-L.; Yang, J. Fabrication of fibrous BiVO4/Bi2S3/MoS2 heterojunction and synergetic enhancement of photocatalytic activity towards pollutant degradation. J. Solid State Chem. 2021, 299, 122195. [Google Scholar] [CrossRef]
- Liu, J.; Hui, Q.; Chang, M.-J.; Cui, W.-N.; Xi, T.; Wang, L.-D.; Sun, M.; Yuan, B.; Ni, F.-R. Facile fabrication of fibrous Bi4Ti3O12/Bi2S3/MoS2 with enhanced photocatalytic activities towards pollutant degradation under visible light irradiation. J. Mater. Sci. Mater. Electron. 2020, 31, 17688–17702. [Google Scholar] [CrossRef]
- Shawky, A.; Mohamed, R.M.; Alahmadi, N.; Zaki, Z.I. Enhanced photocatalytic reduction of hexavalent chromium ions over S-Scheme based 2D MoS2-supported TiO2 heterojunctions under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128564. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Opoku, F.; Govender, P.P.; Ray, S.S. MoS2Nanosheet/ZnS Composites for the Visible-Light-Assisted Photocatalytic Degradation of Oxytetracycline. ACS Appl. Nano Mater. 2021, 4, 4721–4734. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, G.; Zhang, Y.; Dong, J.; Wang, Y.; Liu, Y.; Li, H.; Xia, J. Fabrication of MoS2/FeOCl composites as heterogeneous photo-fenton catalysts for the efficient degradation of water pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129357. [Google Scholar] [CrossRef]
- Chen, S.; Di, Y.; Li, H.; Wang, M.; Jia, B.; Xu, R.; Liu, X. Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light. Appl. Surf. Sci. 2021, 559, 149855. [Google Scholar] [CrossRef]
- Madhushree, R.; Jaleel Uc, J.R.; Pinheiro, D.; Nk, R.; Devi Kr, S.; Park, J.; Manickam, S.; Choi, M.Y. Architecture of visible-light induced Z-scheme MoS2/g-C3N4/ZnO ternary photocatalysts for malachite green dye degradation. Environ. Res. 2022, 214, 113742. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Jang, W.Y.; Rao, M.C.; Arumugam, M.; Shim, J. Novel BiVO4-nanosheet-supported MoS2-nanoflake-heterostructure with synergistic enhanced photocatalytic removal of tetracycline under visible light irradiation. Chemosphere 2022, 305, 135465. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Gao, Y.; Liu, B.; Gao, C.; Ma, Y. Investigation on morphological properties of In2S3 by high pressure X-ray diffraction. Mater. Res. Express 2017, 4, 85902. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z. Efficient Indium Sulfide Photoelectrode with Crystal Phase and Morphology Control for High-Performance Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 12328–12336. [Google Scholar] [CrossRef]
- Ma, B.; Yue, M.; Zhang, P.; Li, S.; Cong, R.; Gao, W.; Yang, T. Tetragonal β-In2S3: Partial ordering of In3+ vacancy and visible-light photocatalytic activities in both water and nitrate reduction. Catal. Commun. 2017, 88, 18–21. [Google Scholar] [CrossRef]
- Lee, B.R.; Jang, H.W. β-In2S3 as Water Splitting Photoanodes: Promise and Challenges. Electron. Mater. Lett. 2021, 17, 119–135. [Google Scholar] [CrossRef]
- Liu, J.; Jatav, S.; Hill, E.H. Few-Layer In2S3 in Laponite Interlayers: A Colloidal Route toward Heterostructured Nanohybrids with Enhanced Photocatalysis. Chem. Mater. 2020, 32, 10015–10024. [Google Scholar] [CrossRef]
- Li, H.; Yuan, Z.; Bittencourt, C.; Li, X.; Li, W.; Chen, M.; Li, W.; Snyders, R. Anion exchange synthesis of hollow β-In2S3 nanoparticles: Adsorption and visible light photocatalytic performances. J. Environ. Chem. Eng. 2019, 7, 102910. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, H.; Ru, Y.; Yang, L.; Liu, W.; Ma, T.; Yang, L.; Zhang, S.; Dai, W. In2S3 nanoflakes grounded in Bi2WO6 nanoplates: A novel hierarchical heterojunction catalyst anchored on W mesh for efficient elimination of toluene. Environ. Res. 2022, 212, 113148. [Google Scholar] [CrossRef]
- Yang, R.; Mei, L.; Fan, Y.; Zhang, Q.; Zhu, R.; Amal, R.; Yin, Z.; Zeng, Z. ZnIn2S4-Based Photocatalysts for Energy and Environmental Applications. Small Methods 2021, 5, 2100887. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204. [Google Scholar] [CrossRef]
- Li, Y.; Yu, B.; Hu, Z.; Wang, H. Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 429, 132105. [Google Scholar] [CrossRef]
- Li, P.; Liang, T.; Liu, H.; Li, J.; Duo, S.; Xu, X.; Qiu, L.; Wen, X.; Shi, R. In2O3 microspheres decorated with ZnIn2S4 nanosheets as core-shell hybrids for boosting visible-light photodegradation of organic dyes. Mater. Res. Express 2021, 8, 25505. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Hollow SnO2 nanotubes decorated with ZnIn2S4 nanosheets for enhanced visible-light photocatalytic activity. J. Alloys Compd. 2020, 843, 155772. [Google Scholar] [CrossRef]
- Li, C.; Che, H.; Yan, Y.; Liu, C.; Dong, H. Z-scheme AgVO3/ZnIn2S4 photocatalysts: “One Stone and Two Birds” strategy to solve photocorrosion and improve the photocatalytic activity and stability. Chem. Eng. J. 2020, 398, 125523. [Google Scholar] [CrossRef]
- Yuan, D.; Sun, M.; Tang, S.; Zhang, Y.; Wang, Z.; Qi, J.; Rao, Y.; Zhang, Q. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chin. Chem. Lett. 2020, 31, 547–550. [Google Scholar] [CrossRef]
- Hu, Q.; Yin, S.; Chen, Y.; Wang, B.; Li, M.; Ding, Y.; Di, J.; Xia, J.; Li, H. Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124078. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Wang, Z.; Wang, L.; Zhao, Z.; Li, S.; Li, G.; Cai, Z. Facile construction of g-C3N4/ZnIn2S4 nanocomposites for enhance Cr(VI) photocatalytic reduction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121184. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qiu, J.; Yang, L.; Feng, Y.; Yao, J. Fabrication of TiO2 embedded ZnIn2S4 nanosheets for efficient Cr(VI) reduction. Mater. Res. Bull. 2020, 122, 110671. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.C.; Gong, J.; Li, Q. Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Cryst. Growth Des. 2007, 7, 2444–2448. [Google Scholar] [CrossRef]
- Gunjal, A.R.; Kulkarni, A.K.; Kawade, U.V.; Sethi, Y.A.; Sonawane, R.S.; Ook-Baeg, J.; Nagawade, A.V.; Kale, B.B. A hierarchical SnS@ZnIn2S4 marigold flower-like 2D nano-heterostructure as an efficient photocatalyst for sunlight-driven hydrogen generation. Nanoscale Adv. 2020, 2, 2577–2586. [Google Scholar] [CrossRef]
- Raja, A.; Son, N.; Pandey, S.; Kang, M. Fabrication of solar-driven hierarchical ZnIn2S4/rGO/SnS2 heterojunction photocatalyst for hydrogen generation and environmental pollutant elimination. Sep. Purif. Technol. 2022, 293, 121119. [Google Scholar] [CrossRef]
- He, Z.; Yang, H.; Sunarso, J.; Wong, N.H.; Huang, Z.; Xia, Y.; Wang, Y.; Su, J.; Wang, L.; Kang, L. Novel scheme towards interfacial charge transfer between ZnIn2S4 and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere 2022, 303, 134973. [Google Scholar] [CrossRef]
No | Catalyst | Synthesis Method | Photocatalytic Applications | Efficiency % | Ref. |
---|---|---|---|---|---|
1 | Bi2S3/TiO2 | Coprecipitation/sol–gel | Photoreduction of Cr(VI) | 100%, 30 min | [137] |
2 | Ni(OH)2/Bi2MoO6 | Solvothermal method | Photoreduction of Rh B | 98%, 135 min | [138] |
3 | Bi–BiOCl/AgCl | Hydrothermal method | Photodegradation of BPA 2,6-dichlorophenol, 2,4,5-trichlorophenol | 96%, 99%, 96%, 210 min | [139] |
4 | BiOIO3/Bi4O5I2 | Hydrothermal method | Photodegradation of BPA | 99.4%, 30 min | [140] |
5 | Bi2S3/CdS | Hydrothermal method | Photodegradation of CIP Photoreduction of Cr(VI) | 86%, 50 min 90.9%, 30 min | [141] |
6 | Ta3N5/BiOCl | Electrospinning-calcination-nitridation/Hydrothermal | Photodegradation of TC Photoreduction of Cr(VI) | 86%, 60 min 91.6%, 80 min | [142] |
7 | BiPO4/GA | Hydrothermal method/Hummers’ method | Photodegradation of TC | 81%, 60 min | [143] |
8 | BiOI/BiVO4/g-C3N4 | Ultrasonic-assisted hydrothermal method | Photodegradation of LEF | 89.01%, 120 min | [144] |
9 | CuO/Bi2WO6 | Hydrothermal method | Photodegradation of TC and MB | 97.72%, 75 min 99.4% 45 min | [145] |
10 | Bi2WO6/B–TiO2 | Hydrothermal method | Photodegradation of RhB | 98.43% in 60 min | [146] |
11 | Bi2WO6/C3N4/TiO2 | Sol–gel/hydrothermal method | Photodegradation of phenol | 84.7%, 180 min | [147] |
12 | BiVO4/CdS | Ultrasonic-assisted hydrothermal method | Photodegradation of ENR | 97.7%, 120 min | [148] |
13 | BiVO4/BiOBr | Solvothermal method | Photodegradation of OTC | 91%, 60 min | [149] |
14 | BiPO4/CuBi2O4 | Hydrothermal method | Photodegradation of TC Photoreduction of Cr(VI) | 92.0%, 90 min 60.3%, 90 min | [150] |
15 | CuBi2O4/Bi4O5I2 | Hydrothermal method | Photodegradation of TC | 81.67% 90 min | [151] |
No | Catalyst | Synthesis Method | Photocatalytic Applications | Efficiency% | Ref. |
---|---|---|---|---|---|
1 | TiO2/MoS2 | Hydrothermal method | Photodegradation of MB, Rh B | 100%, 76.33%, 60, 180 min | [167] |
2 | N-TiO2/MoS2 | Hydrothermal method | Photodegradation of MB | 97.9%, 100 min | [168] |
3 | MoS2/Bi4O5Br2 | Mechanical assembly route | Photodegradation of RhB | 97.9%, 24 min | [169] |
4 | MoS2/BiVO4 | Hydrothermal method/electrospinning method | Photodegradation of RhB | 100%, 20 min | [170] |
5 | MoS2/Bi2WO6 | Hydrothermal method | Photodegradation of TC | 96.3%, 90 min | [171] |
6 | BiVO4/Bi2S3/MoS2 | Electrospinning method/hydrothermal method | Photodegradation of RhB | 78%, 120 min | [172] |
7 | Bi4Ti3O12/Bi2S3/MoS2 | Electrospinning method/hydrothermal method | Photodegradation of RhB | 87%, 120 min | [173] |
No | Catalyst | Synthesis Method | Photocatalytic Applications | Efficiency % | Ref. |
---|---|---|---|---|---|
1 | SnS2@ZnIn2S4@kaolinite | Hydrothermal method | Photodegradation of TC | 88%, 60 min | [189] |
2 | 2D/3D ZnIn2S4/In2O3 | Hydrothermal method | Photodegradation of MB | 84.5%, 60 min | [190] |
3 | ZnIn2S4/SnO2 | Hydrothermal method/sol–gel method | Photoreduction of Cr(VI) | 100%, 80 min | [191] |
4 | AgVO3/ZnIn2S4 | Hydrothermal method | Photoreduction Cr(VI) | 100%, 25 min | [192] |
5 | BiVO4/ZnIn2S4 | Hydrothermal method | Photodegradation of MB | 86%, 240 min | [193] |
6 | MIL-125(Ti)/ZnIn2S4 | Hydrothermal method | Photoreduction Cr(VI) | 93%, 120 min | [194] |
7 | g-C3N4/ZnIn2S4 | Hydrothermal method | Photoreduction Cr(VI) | 95%, 60 min | [195] |
8 | TiO2/ZnIn2S4 | Hydrothermal method | Photoreduction Cr(VI) | 100%, 60 min | [196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmadi, N. Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials. Separations 2022, 9, 264. https://doi.org/10.3390/separations9100264
Alahmadi N. Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials. Separations. 2022; 9(10):264. https://doi.org/10.3390/separations9100264
Chicago/Turabian StyleAlahmadi, Nadiyah. 2022. "Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials" Separations 9, no. 10: 264. https://doi.org/10.3390/separations9100264
APA StyleAlahmadi, N. (2022). Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials. Separations, 9(10), 264. https://doi.org/10.3390/separations9100264