The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection of the Plant Materials
2.3. Identification and Quantification of Mycorrhizal Spores from Soil Samples
2.4. Planting Method
2.5. Estimation of Mycorrhizal Root Colonization
2.6. Sample Processing and Extraction
2.7. Analysis of sennosides A and B in SA, SAM, SI and SIM Extracts by HPLC–UV Method
2.8. Antioxidant Activity
2.8.1. DPPH Radical-Scavenging Assay
2.8.2. ABTS Radical Cation Scavenging Activity
2.9. Antimicrobial Activity
2.9.1. Test Microorganisms
2.9.2. Minimum Inhibitory Concentrations
2.10. Statistical Analysis
3. Results
3.1. Determination of the Density, Types of Spores, and Mycorrhiza Colonization
3.2. Analysis of sennosides A and B in SA, SAM, SI, and SIM by HPLC–UV Method
3.3. Antioxidant Activity
3.4. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marazzi, B.; Endress, P.K.; Queiroz, L.P.; Conti, E. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: Patterns in the evolution of floral symmetry and extrafloral nectaries. Am. J. Bot. 2006, 93, 288–303. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, S.K.; Yadav, A. A review on Cassia species: Pharmacological, traditional and medicinal aspects in various countries. AJPCT 2013, 1, 291–312. [Google Scholar]
- Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.K.; Bates, R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complem. Altern. Med. 2016, 16, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaramoorthy, S.; Gunasekaran, S.; Arunachalam, S.; Sathiavelu, M. A phytopharmacological review on Cassia species. J. Pharm. Sci. Res. 2016, 8, 260. [Google Scholar]
- Sbrana, C.; Avio, L.; Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2014, 35, 1535–1546. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Singh, S. Impact of sowing and harvest times and irrigation regimes on the sennoside content of Cassia angustifolia Vahl. Ind. Crops Prod. 2018, 125, 482–490. [Google Scholar]
- Cardoso, I.M.; Kuyper, T.W. Mycorrhizas and tropical soil fertility. AGR Ecosyst Environ. 2006, 116, 72–84. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Harley, J.L.; Harley, E.L. A check-list of mycorrhiza in the British flora. New Phytol. 1987, 105, 1–102. [Google Scholar] [CrossRef]
- Huang, Z.; Zou, Z.; He, C.; He, Z.; Zhang, Z.; Li, J. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 2011, 339, 391–399. [Google Scholar] [CrossRef]
- Sampathkumar, G.N.; Prabakaran, M.; Rajendra, R. Association of AM-fungi in some medicinal plants and its influence on growth. In Organic Farming and Mycorrhizae in Agriculture; IK Int. Pub. House Pvt. Ltd.: New Delhi, India, 2007; pp. 101–106. [Google Scholar]
- Pistelli, L.; Ulivieri, V.; Giovanelli, S.; Avio, L.; Giovannetti, M.; Pistelli, L. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biol. 2017, 19, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Selmar, D.; Kleinwachter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crops Prod. 2013, 42, 558–566. [Google Scholar] [CrossRef]
- Chang, W.; Sui, X.; Fan, X.X.; Jia, T.T.; Song, F.Q. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front. Microbiol. 2018, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 2014, 24, 197–208. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Ghorbanli, M.; Ebrahimzadeh, H.; Sharifi, M. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol. Plant. 2004, 48, 575–581. [Google Scholar] [CrossRef]
- He, Z.; He, C.; Zhang, Z.; Zou, Z.; Wang, H. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf. B Biointerfaces 2007, 59, 128–133. [Google Scholar] [CrossRef]
- Garg, N.; Manchanda, G. Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp.(pigeonpea). J. Agron. Crop Sci. 2009, 195, 110–123. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzadeh, N.; Laiegh, S.F.; Poschenrieder, C. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Barea, J.M.; Ruiz-Lozano, J.M. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci. 2013, 201, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- INVAM. International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. 2013. Available online: http://invam.wvu.edu (accessed on 5 October 2013).
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. 1970, 55, 158–160. [Google Scholar] [CrossRef]
- Alqahtani, A.; Noman, O.M.; Rehman, M.T.; Siddiqui, N.A.; Alajmi, M.F.; Nasr, F.A.; Shahat, A.A.; Alam, P. The influence of variations of furanosesquiterpenoids content of commercial samples of myrrh on their biological properties. Saudi Pharm. J. 2019, 27, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hosseinian, F.S.; Tsopmo, A.; Friel, J.K.; Beta, T. Evaluation of antioxidant capacity and aroma quality of breast milk. Nutrition 2009, 25, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Food Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Mann, C.; Markham, J. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol. 1998, 84, 538–544. [Google Scholar] [CrossRef]
- Sulaiman, G.M. Antimicrobial and cytotoxic activities of methanol extract of Alhagi maurorum. Afr. J. Microbiol. Res. 2013, 7, 1548–1557. [Google Scholar]
- Mandal, S.; Upadhyay, S.; Wajid, S.; Ram, M.; Jain, D.C.; Singh, V.P.; Abdin, M.Z.; Kapoor, R. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 2015, 25, 345–357. [Google Scholar] [CrossRef]
- Tejavathi, D.H.; Anitha, P.; Murthy, S.M.; Nijagunaiah, R. Effect of AM fungal association with normal and micropropagated plants of Andrographis paniculata Nees on biomass, primary and secondary metabolites. Int. J. Plant Sci. 2011, 2, 338–348. [Google Scholar]
- Copetta, A.; Lingua, G.; Berta, G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, J.P.; Smith, F.A.; Smith, S.E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 2007, 17, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Zubek, S.; Mielcarek, S.; Turnau, K. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 2012, 22, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, M.; Avio, L.; Barale, R.; Ceccarelli, N.; Cristofani, R.; Iezzi, A.; Mignolli, F.; Picciarelli, P.; Pinto, B.; Reali, D.; et al. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 2012, 107, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Chetri, S.K.; Kapoor, H.; Agrawal, V. Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis. PCTOC 2016, 124, 431–446. [Google Scholar] [CrossRef]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.H.C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. SCI HORTIC 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of traditional medicinal plants in Alexandria. Evid. Based Complementary Altern. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [Green Version]
- Chatterjeesup, S.; Dutta, S. A survey on VAM association in three different species of Cassia and determination of antimicrobial property of these phytoextracts. J. Med. Plant Res. 2010, 4, 286–292. [Google Scholar]
- Demirezer, L.O.; Karahan, N.; Ucakturk, E.; Kuruuzum-Uz, A.; Guvenalp, Z.; Kazaz, C. Fingerprinting of sennosides in laxative drugs with isolation of standard substances from some Senna leaves. Rec. Nat. Prod. 2011, 5, 261–270. [Google Scholar]
- Morris, J.B.; Wang, M.L.; Tonnis, B.D. Variability for Sennoside A and B concentrations in eight Senna species. Ind Crops Prod. 2019, 139, 111489. [Google Scholar] [CrossRef]
- Dhanani, T.; Singh, R.; Reddy, N.; Trivedi, A.; Kumar, S. Comparison on extraction yield of sennoside A and sennoside B from senna (Cassia angustifolia) using conventional and non-conventional extraction techniques and their quantification using a validated HPLC-PDA detection method. Nat. Prod. Res. 2017, 31, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
S. No. | Sample | Sennoside A Content (µg/mg of Dried Weight of Extract) | Sennoside B Content (µg/mg of Dried Weight of Extract) |
---|---|---|---|
1. | SA | 2.25 ± 0.07 | 10.78 ± 0.89 |
2. | SAM | 3.85 ± 0.19 | 20.29 ± 1.17 |
3. | SI | 4.73 ± 0.09 | 13.69 ± 0.23 |
4. | SIM | 5.05 ± 0.23 | 18.67 ± 0.32 |
Sample | (DPPH-Radical Scavenging Activity in %) | ||||
---|---|---|---|---|---|
10 (µg/mL) | 50 (µg/mL) | 100 (µg/mL) | 500 (µg/mL) | 1000 (µg/mL) | |
SA | 12.7 ± 0.9 | 20.3 ± 1.3 | 34.3 ± 1.9 | 53.3 ± 2.1 | 69.7 ± 2.3 |
SAM | 23.5 ± 0.4 | 32.3 ± 0.3 | 45.1 ± 1.2 | 60.3 ± 0.2 | 72.2 ± 1.9 |
SI | 2.3 ± 0.3 | 10.2 ± 3.1 | 19.7 ± 0.7 | 31.7 ± 2.1 | 44.7 ± 1.3 |
SIM | 7.3 ± 2.8 | 13.2 ± 0.9 | 27.1 ± 2.2 | 41.2 ± 1.4 | 51.6 ± 2.3 |
Ascorbic acid | 80.7 ± 2.0 | 85.1 ± 1.3 | 85 ± 1.2 | 88.7 ± 2.4 | 90.7 ± 1.4 |
(ABTS Radical Cation Scavenging Activity in %) | |||||
SA | 10.2 ± 0.7 | 17.1 ± 1.2 | 30.3 ± 1.1 | 50.1 ± 1.5 | 65.1 ± 1.2 |
SAM | 19.5 ± 0.6 | 29.4 ± 0.9 | 42.1 ± 2.2 | 57.1 ± 0.9 | 69.8 ± 1.5 |
SI | 2.3 ± 1.9 | 8.2 ± 2.1 | 15.7 ± 1.9 | 29.8 ± 2.1 | 40.3 ± 1.7 |
SIM | 5.8 ± 2.3 | 10.2 ± 1.9 | 24.1 ± 1.2 | 37.9 ± 1.6 | 47.9 ± 2.6 |
Ascorbic acid | 80.7 ± 2.4 | 81.2 ± 2.1 | 84.2 ± 1.9 | 87.2 ± 2.4 | 88.7 ± 2.1 |
Test Extracts | Activity | S. aureus µg/mL) | E. faecalis (µg/mL) | E. coli (µg/mL) | P. vulgaris (µg/mL) | Candida albicans (µg/mL) |
---|---|---|---|---|---|---|
SA | MIC | 625 | 312.5 | - | - | 156.25 |
MBC | 1250 | 625 | - | - | NT | |
MFC | NT | NT | NT | NT | 312.5 | |
SI | MIC | 625 | 312.5 | - | - | 156.25 |
MBC | 1250 | 625 | - | - | NT | |
MFC | NT | NT | NT | NT | 312.5 | |
SAM | MIC | 156.25 | 156.25 | 625 | 312.5 | 78.12 |
MBC | 312.5 | 312.5 | 1250 | 625 | NT | |
MFC | NT | NT | NT | NT | 156.25 | |
SIM | MIC | 156.25 | 156.25 | 625 | 312.5 | 78.12 |
MBC | 312.5 | 312.5 | 1250 | 625 | NT | |
MFC | NT | NT | NT | NT | 156.25 | |
Gentamycin | MIC | 7.8 | 7.8 | 3.9 | 3.9 | NT |
MBC | 15.6 | 15.6 | 7.8 | 7.8 | NT | |
Nystatin | MIC | NT | NT | NT | NT | 3.5 |
MFC | NT | NT | NT | NT | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlZain, M.N.; AlAtar, A.A.; Alqarawi, A.A.; Mothana, R.A.; Noman, O.M.; Herqash, R.N.; AlSheddi, E.S.; Farshori, N.N.; Alam, P. The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica. Separations 2020, 7, 65. https://doi.org/10.3390/separations7040065
AlZain MN, AlAtar AA, Alqarawi AA, Mothana RA, Noman OM, Herqash RN, AlSheddi ES, Farshori NN, Alam P. The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica. Separations. 2020; 7(4):65. https://doi.org/10.3390/separations7040065
Chicago/Turabian StyleAlZain, Mashail N., Abdulrahman A. AlAtar, Abdulaziz A. Alqarawi, Ramzi A. Mothana, Omar M. Noman, Rashed N. Herqash, Ebtesam S. AlSheddi, Nida N. Farshori, and Perwez Alam. 2020. "The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica" Separations 7, no. 4: 65. https://doi.org/10.3390/separations7040065
APA StyleAlZain, M. N., AlAtar, A. A., Alqarawi, A. A., Mothana, R. A., Noman, O. M., Herqash, R. N., AlSheddi, E. S., Farshori, N. N., & Alam, P. (2020). The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica. Separations, 7(4), 65. https://doi.org/10.3390/separations7040065