Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples
Abstract
:1. Introduction
Analysed Compounds
2. Optimization of Fabric Phase Sorptive Extraction (FPSE) Methodology
3. Environmental Applications of Fabric Phase Sorptive Extraction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pal, A.; Gin, K.Y.-H.; Lin, A.Y.-C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Anal. Chem. 2015, 66, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.; Ribeiro, A.R.; Maia, A.S.; Gonçalves, V.M.F.; Tiritan, M.E. New Trends in Sample Preparation Techniques for Environmental Analysis. Crit. Rev. Anal. Chem. 2014, 44, 142–185. [Google Scholar] [CrossRef] [PubMed]
- Wasik, A.; Kot-Wasik, A.; Namiesnik, J. New Trends in Sample Preparation Techniques for the Analysis of the Residues of Pharmaceuticals in Environmental Samples. Curr. Anal. Chem. 2016, 12, 280–302. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Padrón, M.; Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. Microextraction Techniques Coupled to Liquid Chromatography with Mass Spectrometry for the Determination of Organic Micropollutants in Environmental Water Samples. Molecules 2014, 19, 10320–10349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extractor (FPSE). U.S. Patent US 20140274660A1, 18 September 2014. [Google Scholar]
- Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Kabir, A.; Furton, K.G.; Santana-Rodríguez, J.J. Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples. Anal. Bioanal. Chem. 2015, 407, 8137–8150. [Google Scholar] [CrossRef] [PubMed]
- García-Guerra, R.B.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Kabir, A.; Furton, K.G.; Santana-Rodríguez, J.J. Rapid monitoring of residual UV-stabilizers in seawater samples from beaches using fabric phase sorptive extraction and UHPLC-MS/MS. Chemosphere 2016, 164, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Ciofi, L.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Bubba, M.D.; Kabir, A.; Furton, K.G. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1437, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Optimization and application of fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry for the determination of cytostatic drug residues in environmental waters. J. Chromatogr. A 2017, 1529, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Isobe, T.; Malarvannan, G.; Sudaryanto, A.; Chang, K.-H.; Prudente, M.; Tanabe, S. Contamination of benzotriazole ultraviolet stabilizers in house dust from the Philippines: Implications on human exposure. Sci. Total Environ. 2012, 424, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Ramaswamy, B.R.; Chang, K.-H.; Isobe, T.; Tanabe, S. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3511–3520. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Isobe, T.; Ramaswamy, B.R.; Chang, K.-H.; Amano, A.; Miller, T.M.; Siringan, F.P.; Tanabe, S. Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography–tandem mass spectrometry. Chemosphere 2011, 85, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Murata, S.; Filatreau, J. Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan. Environ. Sci. Technol. 2009, 43, 6920–6926. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Shinohara, R.-I.; Nakazawa, Y.; Isobe, T.; Sudaryanto, A.; Subramanian, A.; Tanabe, S.; Zakaria, M.P.; Zheng, G.J.; Lam, P.K.S.; et al. Asia-Pacific mussel watch for emerging pollutants: Distribution of synthetic musks and benzotriazole UV stabilizers in Asian and US coastal waters. Mar. Pollut. Bull. 2012, 64, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Shinohara, R.-I.; Murata, S.; Watanabe, M. Detection of benzotriazole UV stabilizers in the blubber of marine mammals by gas chromatography-high resolution mass spectrometry (GC-HRMS). J. Environ. Monit. 2010, 12, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Montesdeoca-Esponda, S.; Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Extraction and determination methodologies for benzotriazole UV stabilizers in personal-care products in environmental and biological samples. TrAC Trends Anal. Chem. 2013, 51. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Bartelt-Hunt, S.; Snow, D.D.; Damon-Powell, T.; Miesbach, D. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J. Contam. Hydrol. 2011, 123, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Azua, A.; Chaudhary, A.; Khan, S.; Willett, K.L.; Gardinali, P.R. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments. Ecotoxicology 2010, 19, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Leet, J.K.; Gall, H.E.; Sepúlveda, M.S. A review of studies on androgen and estrogen exposure in fish early life stages: Effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol. 2011, 31, 379–398. [Google Scholar] [CrossRef] [PubMed]
- Frankel, T.E.; Meyer, M.T.; Orlando, E.F. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki). Gen. Comp. Endocrinol. 2016, 234, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Liquid chromatography methodologies for the determination of steroid hormones in aquatic environmental systems. Trends Environ. Anal. Chem. 2014, 3–4, 14–27. [Google Scholar] [CrossRef]
- Johnson, A.C.; Jürgens, M.D.; Williams, R.J.; Kümmerer, K.; Kortenkamp, A.; Sumpter, J.P. Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J. Hydrol. 2008, 348, 167–175. [Google Scholar] [CrossRef]
- Lenz, K.; Mahnik, S.N.; Weissenbacher, N.; Mader, R.M.; Krenn, P.; Hann, S.; Koellensperger, G.; Uhl, M.; Knasmüller, S.; Ferk, F.; et al. Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci. Technol. 2007, 56, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Cytostatic drugs in environmental samples: An update on the extraction and determination procedures. TrAC Trends Anal. Chem. 2016, 80, 373–386. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, V.W.C.; Giannis, A.; Wang, J.-Y. Removal of cytostatic drugs from aquatic environment: A review. Sci. Total Environ. 2013, 445–446, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Kovács, R.; Csenki, Z.; Bakos, K.; Urbányi, B.; Horváth, Á.; Garaj-Vrhovac, V.; Gajski, G.; Gerić, M.; Negreira, N.; de Alda, M.L.; et al. Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Res. 2015, 77, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Al-Ahmad, A. Estimation of the cancer risk to humans resulting from the presence of cyclophosphamide and ifosfamide in surface water. Environ. Sci. Pollut. Res. 2010, 17, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Mater, N.; Geret, F.; Castillo, L.; Faucet-Marquis, V.; Albasi, C.; Pfohl-Leszkowicz, A. In vitro tests aiding ecological risk assessment of ciprofloxacin, tamoxifen and cyclophosphamide in range of concentrations released in hospital wastewater and surface water. Environ. Int. 2014, 63, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel, M.; Cárdenas, S.; Lucena, R. Novel Sol-Gel Sorbents in Sorptive Microextraction. In Analytical Microextraction Techniques; Kabir, A., Furton, K.G., Eds.; Bentham Science Publishers: Emirate of Sharjah, UAE, 2017; pp. 28–69. [Google Scholar]
- Carpinteiro, I.; Ramil, M.; Rodríguez, I.; Nogueira, J.M.F. Combining stir-bar sorptive extraction and large volume injection-gas chromatography-mass spectrometry for the determination of benzotriazole UV stabilizers in wastewater matrices. J. Sep. Sci. 2012, 35, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Serôdio, P.; Nogueira, J.M.F. Multi-residue screening of endocrine disrupters chemicals in water samples by stir bar sorptive extraction-liquid desorption-capillary gas chromatography-mass spectrometry detection. Anal. Chim. Acta 2004, 517, 21–32. [Google Scholar] [CrossRef]
- Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.A.; Etxebarria, N.; Zuloaga, O. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A 2010, 1217, 2642–2666. [Google Scholar] [CrossRef] [PubMed]
- Do Rosário, P.M.Á.; Nogueira, J.M.F. Combining stir bar sorptive extraction and MEKC for the determination of polynuclear aromatic hydrocarbons in environmental and biological matrices. Electrophoresis 2006, 27, 4694–4702. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Nogueira, J.M.F. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J. Pharm. Biomed. Anal. 2006, 41, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Liu, W.; Huang, M.; Zhang, L. Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples. J. Chromatogr. A 2010, 1217, 7461–7470. [Google Scholar] [CrossRef] [PubMed]
- Montesdeoca-Esponda, S.; del Toro-Moreno, A.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Development of a sensitive determination method for benzotriazole UV stabilizers in enviromental water samples with stir bar sorption extraction and liquid desorption prior to ultra-high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2013, 36, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Carpinteiro, I.; Abuín, B.; Rodríguez, I.; Cela, R.; Ramil, M. Headspace solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the sensitive determination of benzotriazole UV stabilizers in water samples. Anal. Bioanal. Chem. 2010, 397, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. On-line solid-phase extraction coupled to ultra-performance liquid chromatography with tandem mass spectrometry detection for the determination of benzotriazole UV stabilizers in coastal marine and wastewater samples. Anal. Bioanal. Chem. 2012, 403, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Simultaneous determination of hormonal residues in treated waters using ultrahigh performance liquid chromatography-tandem mass spectrometry. J. Anal. Methods Chem. 2013, 2013, 210653. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal. Bioanal. Chem. 2013, 405, 5937–5952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Canela, C.; Ventura, F.; Caixach, J.; Lacorte, S. Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 3801–3814. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Shao, B.; Zhang, J.; Li, K. A Preliminary Study on the Occurrence of Cytostatic Drugs in Hospital Effluents in Beijing, China. Bull. Environ. Contam. Toxicol. 2010, 84, 39–45. [Google Scholar] [CrossRef] [PubMed]
Benzotriazole Ultraviolet Stabilizers (BUVSs) in Sewage a | BUVSs Stabilizers in Seawater b | Steroid Hormones in Sewage and Urine c | Cytostatic Compounds in Sewage d | |
---|---|---|---|---|
Type of FPSE | Sol-gel PDMDPS | Sol-gel PDMDPS | Sol-gel PTFH | M-CW20M |
Extraction time | 60 min | 150 min | 20 min | 60 min |
Sample Volume | 10 mL | 25 mL | 10 mL (20 mL urine) | 10 mL |
pH | 6 | 6 | 5.7 | 8 and 10 |
Ionic strength | 0% | 5% | 0% | 0% |
Elution volume | 1 mL | 1 mL | 0.75 mL | 1 mL |
Elution solvent | MeOH | MeOH | MeOH | MeOH |
Elution time | 5 min | 10 min | 3 min | 5 min |
MDLs | 1.06–8.96 ng·L−1 | 6.01–60.7 ng·L−1 | 1–264 ng·L−1 (sewage) 8.9–132 ng·L−1 (urine) | 0.20–80 ng·L−1 |
Stir Bar Sorptive Extraction (SBSE) a | Solid Phase Microextraction (SPME)–Molecularly Imprinted Polymer b | FPSE c |
---|---|---|
Dilute 5 mL of urine to 30 mL | Conditioning of the fibre during 5 min | Conditioning of the FPSE media for 10 min |
Insert stir bar and extract for 2–4 h. | Centrifuge urine for 15 min | Centrifuge urine for 10 min |
Dry stir bar using lint-free tissue | Immerse the fibre into 20 mL of sample during 30 min | Dilute 10 times centrifuged urine |
Ultrasound desorption for 15 min with 1.5 mL of solvent | Air-dried the fibre for 3 min | Immerse FPSE media for 20 min |
Evaporate to dryness | Thermally desorption at 240 °C for 1 min | Desorption using 750 uL of MeOH for 3 min |
Redissolve in 100 uL of CAN/H2O | ||
Total extraction time: up to 5 h | Total extraction time: 1 h approximately | Total extraction time: 45 min approximately |
MDLs: 300–1000 ng·L−1 | MDLs: 8–20 ng·L−1 | MDLs: 8.9–132.3 ng·L−1 |
SBSE a | SPME b | FPSE c |
---|---|---|
Sample vessel was equilibrated in a water bath at 100 °C for 5 min | Conditioning of the FPSE media for 10 min | |
Insert stir bar and extract for 120 min | Exposed the fiber in head space way for 30 min | Immerse FPSE media for 60 min |
Dry stir bar using lint-free tissue | ||
Ultrasound desorption for 20 min with 1.5 mL of solvent | Thermally desorption at 270 °C for 3 min | Desorption using 1 mL of MeOH for 5 min |
Total extraction time: 150 min approximately | Total extraction time: 40 min approximately | Total extraction time: 80 min approximately |
MQLs: 61.5–184 ng·L−1 | MQLs: <2 ng·L−1 | MQLs: 20.0–202 ng·L−1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesdeoca-Esponda, S.; Guedes-Alonso, R.; Santana-Viera, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples. Separations 2018, 5, 35. https://doi.org/10.3390/separations5030035
Montesdeoca-Esponda S, Guedes-Alonso R, Santana-Viera S, Sosa-Ferrera Z, Santana-Rodríguez JJ. Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples. Separations. 2018; 5(3):35. https://doi.org/10.3390/separations5030035
Chicago/Turabian StyleMontesdeoca-Esponda, Sarah, Rayco Guedes-Alonso, Sergio Santana-Viera, Zoraida Sosa-Ferrera, and José Juan Santana-Rodríguez. 2018. "Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples" Separations 5, no. 3: 35. https://doi.org/10.3390/separations5030035
APA StyleMontesdeoca-Esponda, S., Guedes-Alonso, R., Santana-Viera, S., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2018). Applications of Fabric Phase Sorptive Extraction to the Determination of Micropollutants in Liquid Samples. Separations, 5(3), 35. https://doi.org/10.3390/separations5030035