Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Isolation of the Essential Oil
2.4. Preparation of Aqueous and Methanol Extracts
2.5. Identification and Quantification of the Chemical Constituents of the Essential Oil by GC-MS
2.6. Identification and Quantification of Phenolic Compounds
2.7. Determination of Total Phenolic Content in Extracts
2.8. Determination of Total Flavonoid Content
2.9. Methods for Testing the Biological Potential of Essential Oils and Extracts Isolated from T. montanum
2.9.1. Methods for Testing the Antioxidant Potential of Essential Oils and Extracts from T. montanum
The DPPH Radical Scavenging Method, DPPH Method
The Reduction Potential Testing Method, FRAP Method
The Method for Testing the Role of the Extracts in Protecting Lipids from Peroxidation
The Method for Testing the Ability of the Antioxidant to Protect Proteins from Carbonylation
2.9.2. Method for Determining the Ability to Inhibit the Enzyme Cholinesterases
3. Results and Discussion
3.1. Chemical Composition and Content of Volatile Components of Essential Oil from T. montanum
3.2. The Content of Phenol Compounds in Extracts of T. montanum
3.3. Antioxidant Potential of Essential Oil and/or Extracts Isolated from T. montanum from Bosnia and Herzegovina
3.4. Cholinesterase Inhibition Potential of Essential Oil and Extracts Isolated from T. montanum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, L.R.R.; Ferreira, O.O.; Cruz, J.N.; Franco, C.J.P.; Dos Anjos, T.O.; Cascaes, M.M.; Da Costa, W.A.; De Aguiar Andrade, E.H.; De Oliveira, M.S. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Alternat. Med. 2021, 2021, 7203934. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A. Lamiaceae phenols as multifaceted compounds: Bioactivity, industrial, prospects and role of “positive-stress”. Ind. Crop. Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Raja, R.R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant 2012, 6, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zlatic, N.M.; Stankovic, M. Anticholinesterase, Antidiabetic and Anti-inflammatory Activity of Secondary Metabolites of Teucrium Species. In Teucrium Species: Biology and Applications; Stankovic, M., Ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Vukovic, N.; Milosevic, T.; Sukdolak, S.; Solujic, S. Antimicrobial Activities of Essential Oil and Methanol Extract of Teucrium montanum. Evid.-Based Compl. Alt. 2007, 4, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Soljan, D.; Muratovic, E.; Abadzic, S. Biljke planina BiH; Šahinpašić: Sarajevo, Bosnia and Herzegovina, 2009. [Google Scholar]
- Jurisic Grubesic, R.; Kremer, D.; Vladimir-Knezevic, S.; Vukovic Rodríguez, J. Analysis of polyphenols, phytosterols, and bitter principles in Teucrium L. species. Cent. Eur. J. Biol. 2012, 7, 542–550. [Google Scholar] [CrossRef]
- Redzic, S. Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, W. Balkan). J. Med. Plants Res. 2010, 4, 1003–1027. [Google Scholar] [CrossRef]
- Demain, A.L.; Zhang, L. Natural Products and Drug Discovery. In Natural Products Drug Discovery and Therapeutic Medicine; Zhang, L., Demain, A.L., Eds.; Humana Press: Totow, NJ, USA, 2005; pp. 3–33. [Google Scholar] [CrossRef]
- Roseiro, L.B.; Rauter, A.P.; Mourato Serralheiro, M.L. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr. Aging 2012, 1, 99–111. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Berkoz, M. The role of oxidative stress in Alzheimer’s disease. In Oxidative Stress and Antioxidant Defense System; Guven, A., Ed.; Livre de Lyon: Lyon, France, 2021; pp. 23–46. [Google Scholar]
- Huang, W.-J.; Zhang, X.; Chen, W.-W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
- Dool, H.V.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Davies, K.M.; Schwinn, K.E. Chemistry, Biochemistry and Applications. In Flavonoids; Andersen, Q.M., Markham, K.R., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 143–219. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. Use of a free radical method to evaluate antioxidant activity. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.C.; Hsieh, C.L. Antioxidant activity of extracts from du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J. Agric. Food Chem. 1998, 46, 3952–3957. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.; Ahn, B.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Natarajan, M.; Lopez-Burillo, S.; Reiter, R.J. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: Comparative effects of melatonin and other antioxidants. Biochim. Biophys. Acta 2003, 1620, 139–150. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.; Demircakmak, B.; Duman, H. Composition of the Essential Oils of Three Teucrium Species from Turkey. J. Essent. Oil Res. 1997, 9, 545–549. [Google Scholar] [CrossRef]
- Bezic, N.; Vuko, E.; Dunkic, V.; Ruscic, M.; Blazevic, I.; Burcul, F. Antiphytoviral Activity of Sesquiterpene-Rich Essential Oils from Four Croatian Teucrium Species. Molecules 2011, 16, 8119–8129. [Google Scholar] [CrossRef] [Green Version]
- Catinella, G.; Badalamenti, N.; Ilardi, V.; Rosselli, S.; De Martino, L.; Bruno, M. The Essential Oil Compositions of Three Teucrium Taxa Growing Wild in Sicily: HCA and PCA Analyses. Molecules 2021, 26, 643. [Google Scholar] [CrossRef] [PubMed]
- Zlatic, N.; Mihailovic, V.; Ljesevic, M.; Beskoski, V.; Stankovic, M. Geological substrate-related variability of Teucrium montanum L. (Lamiaceae) essential oil. Biochem. Syst. Ecol. 2022, 100, 104372. [Google Scholar] [CrossRef]
- Radulovic, N.; Dekic, M.; Joksovic, M.; Vukicevic, R. Chemotaxonomy of Serbian Teucrium Species Inferred from Essential Oil Chemical Composition: The Case of Teucrium scordium L. ssp. scordioides. Chem. Biodivers. 2012, 9, 106–122. [Google Scholar] [CrossRef]
- Vukovic, N.; Milosevic, T.; Sukdolak, S.; Solujic, S. The chemical composition of the essential oil and the antibacterial activities of the essential oil and methanol extract of Teucrium montanum. J. Serb. Chem. Soc. 2008, 73, 299–305. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G.; Canale, A.; Maggi, F.; Mártonfi, P. Exploring essential oils of Slovak medicinal plants for insecticidal activity: The case of Thymus alternans and Teucrium montanum subsp. jailae. Food Chem. Toxicol. 2020, 138, 111203. [Google Scholar] [CrossRef]
- Kovacevic, N.N.; Lakusic, B.S.; Ristic, M.S. Composition of the Essential Oils of Seven Teucrium Species from Serbia and Montenegro. J. Essent. Oil Res. 2001, 13, 163–165. [Google Scholar] [CrossRef]
- Humulescu, I.; Flutur, M.-M.; Cioanca, O.; Mircea, C.; Robu, S.; Marin-Batir, D.; Spac, A.; Corciova, A.; Hancianu, M. Comparative Chemical and Biological Activity of Selective Herbal Extracts. Farmacia 2021, 69, 861–866. [Google Scholar] [CrossRef]
- Oaldje, M.M.; Kolarevic, S.M.; Zivkovic, J.C.; Vukovic-Gacic, B.S.; Jovanovic Maric, J.M.; Kracun Kolarevic, M.J.; Djordjevic, J.Z.; Alimpic Aradski, A.Z.; Marin, P.D.; Savikin, K.P.; et al. The impact of different extracts of six Lamiaceae species on deleterious effects of oxidative stress assessed in acellular, prokaryotic and eukaryotic models in vitro. Saudi Pham. J. 2020, 28, 1592–1604. [Google Scholar] [CrossRef]
- Nastic, N.; Svarc-Gajic, J.; Delerue-Matos, C.; Morais, S.; Barroso, M.F.; Moreira, M.M. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). J. Supercrit. Fluid 2018, 138, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Tumbas, V.T.; Mandic, A.I.; Cetkovic, G.S.; Djilas, S.M.; Canadanovic-Brunet, J.M. HPLC analysis of phenolic acids in mountain germander (Teucrium montanum L.) extracts. Acta Period. Technol. 2004, 35, 265–273. [Google Scholar] [CrossRef]
- Vladimir-Knezevic, S.; Blazekovic, B.; Kindl, M.; Vladic, J.; Lower-Nedza, A.D.; Brantner, A.H. Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules 2014, 19, 767–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadifkova Panovska, T.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm. 2005, 55, 207–214. [Google Scholar] [PubMed]
- Zlatic, N.M.; Stankovic, S.; Simic, Z.S. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ. Monit. Assess. 2017, 189, 110. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Niciforovic, N.; Topuzovic, M.; Solujic, S. Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb. Biotechnol. Biotechnol. Equip. 2011, 25, 2222–2227. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, M.S.; Curcic, M.G.; Zizic, J.B.; Topuzovic, M.D.; Solujic, S.R.; Markovic, S.D. Teucrium Plant Species as Natural Sources of Novel Anticancer Compounds: Antiproliferative, Proapoptotic and Antioxidant Properties. Int. J. Mol. Sci. 2011, 12, 4190–4205. [Google Scholar] [CrossRef] [PubMed]
- Canadanovic-Brunet, J.M.; Djilas, S.M.; Cetkovic, G.S.; Tumbas, V.T.; Mandic, A.I.; Canadanovic, V.M. Antioxidant activities of different Teucrium montanum L. extracts. Int. J. Food Sci. Tech. 2006, 41, 667–673. [Google Scholar] [CrossRef]
- Teixeira, B.; Marquesa, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.; Saraiva, J.A.; Nunes, M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Khettaf, A.; Belloula, N.; Dridi, S. Antioxidant activity, phenolic and flavonoid contents of some wild medicinal plants in southeastern Algeria. Afr. J. Biotechnol. 2016, 15, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Nino, J.; Anjum, N.; Tripathi, Y.C. Phytochemical screening and evaluation of polyphenols, flavonoids and antioxidant activity of Prunus cerasoids. D. Don leaves. J. Pharm. Res. 2016, 10, 502–508. [Google Scholar]
- Candela, R.G.; Rosselli, S.; Bruno, M.; Fontana, G.A. Review of the Phytochemistry, Traditional Uses and Biological Activities of the Essential Oils of Genus Teucrium. Planta Med. 2020, 87, 432–479. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab. J. Chem. 2020, 13, 3866–3874. [Google Scholar] [CrossRef]
- Djilas, S.M.; Markov, S.L.; Cvetkovic, D.D.; Canadanovic-Brunet, J.M.; Cetkovic, G.S.; Tumbas, V.T. Antimicrobial and free radical scavenging activities of Teucrium montanum. Fitoterapia 2006, 77, 401–403. [Google Scholar] [CrossRef]
- Srabovic, M.; Poljakovic, M.; Hodzic, Z.; Banjanin, B.; Saletovic, M.; Salimovic, C.; Pehlic, E. Antioxidant capacity in some medicinal plants and fruits extracts. Healthmed 2011, 5, 2252–2257. [Google Scholar]
- Kefayati, Z.; Motamed, S.M.; Shojaii, A.; Noori, M.; Ghods, R. Antioxidant Activity and Phenolic and Flavonoid Contents of the Extract and Subfractions of Euphorbia splendida Mobayen. Pharmacogn. Res. 2017, 9, 362–365. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Abdellaoui, A. Antioxidant activity of two wild Teucrium species from Morocco. Int. J. Pharm. Sci. Res. 2019, 10, 723–2729. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A. Lipids. In Fennema’s Food Chemistry, 4th ed.; Damodaran, S., Parkin, K.L., Fennema, O.R., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008; pp. 155–217. [Google Scholar]
- Dorman, H.J.; Hiltunen, R. Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts. Food Chem. 2011, 129, 1612–1618. [Google Scholar] [CrossRef]
- Stadtman, E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993, 62, 797–821. [Google Scholar] [CrossRef]
- Burcul, F.; Blazevic, I.; Radan, M.; Politeo, O. Terpenes, Phenylpropanoids, Sulfur and Other Essential Oil Constituents as Inhibitors of Cholinesterases. Curr. Med. Chem. 2020, 27, 4297–4343. [Google Scholar] [CrossRef] [PubMed]
No. | Identified Compounds | % a | RI | Identification b |
---|---|---|---|---|
Terpene Compounds Non-Oxygenated Monoterpenes | 15.3 | |||
1. | α-Thujene | 0.3 | 930 | RI, MS |
2. | α-Pinene | 6.4 | 937 | RI, MS |
3. | Verbenene | 0.2 | 958 | RI, MS |
4. | Sabinene | 3.3 | 976 | RI, MS |
5. | ß-Pinene | 2.7 | 980 | RI, MS |
6. | ß-Myrcene | 0.2 | 991 | RI, MS |
7. | α-Terpinene | 0.2 | 1020 | RI, MS |
8. | p-Cymene | 0.6 | 1027 | RI, MS |
9. | Limonene | 1.0 | 1032 | RI, MS |
10. | γ-Terpinene | 0.4 | 1062 | RI, MS |
Oxygenated Monoterpenes | 10.0 | |||
11. | Linalool | 0.3 | 1101 | RI, MS |
12. | α-Campholenal | 0.5 | 1129 | RI, MS |
13. | trans-Pinocarveol | 0.6 | 1143 | RI, MS |
14. | cis-Verbenol | 0.4 | 1145 | RI, MS |
15. | exo-Isocitral | 1.7 | 1150 | RI, MS |
16. | Menthone | 0.4 | 1158 | RI, MS |
17. | Pinocarvone | 0.5 | 1166 | RI, MS |
18. | p-Mentha-1,5-dien-8-ol | 0.4 | 1171 | RI, MS |
19. | Terpinen-4-ol | 0.6 | 1180 | RI, MS |
20. | Myrtenal | 1.0 | 1197 | RI, MS |
21. | Verbenone | 0.5 | 1212 | RI, MS |
22. | Pulegone | 2.3 | 1243 | RI, MS |
23. | Bornyl acetate | 0.3 | 1287 | RI, MS |
24. | p-Mentha-1,4-dien-7-ol | 0.5 | 1332 | RI, MS |
Non-Oxygenated Sesquiterpenes | 29.7 | |||
25. | β-Elemene | 0.7 | 1393 | RI, MS |
26. | α-Gurjunene | 0.5 | 1410 | RI, MS |
27. | (E)-Caryophyllene | 2.8 | 1420 | RI, MS |
28. | α-Humulene | 1.8 | 1455 | RI, MS |
29. | allo-Aromadendrene | 0.5 | 1463 | RI, MS |
30. | Germacrene D | 1.7 | 1482 | RI, MS |
31. | ß-Selinene | 9.0 | 1488 | RI, MS |
32. | α-Selinene | 2.0 | 1496 | RI, MS |
33. | α-Muurolene | 1.2 | 1500 | RI, MS |
34. | γ-Cadinene | 1.7 | 1516 | RI, MS |
35. | δ-Cadinene | 6.9 | 1526 | RI, MS |
36. | α-Cadinene | 0.4 | 1540 | RI, MS |
37. | Cadalene | 0.5 | 1677 | RI, MS |
Oxygenated Sesquterpenes | 36.0 | |||
38. | endo-1-Bourbonanol | 2.6 | 1519 | RI, MS |
39. | Germacrene D-4-ol | 6.8 | 1578 | RI, MS |
40. | Caryophyllene oxide | 2.4 | 1584 | RI, MS |
41. | Viridiflorol | 1.1 | 1592 | RI, MS |
42. | Guaiol | 1.5 | 1599 | RI, MS |
43. | epi-α-Cadinol | 6.9 | 1645 | RI, MS |
44. | δ-Cadinol | 0.9 | 1649 | RI, MS |
45. | α-Cadinol | 9.0 | 1659 | RI, MS |
46. | Bulnesol | 2.2 | 1670 | RI, MS |
47. | α-Cyperone | 2.6 | 1752 | RI, MS |
Total | 91.0 |
No. | Phenol Compounds | AE (mg/g Extract) | ME (mg/g Extract) |
---|---|---|---|
Flavonols | |||
1 | Kaempferol | 0.07 ± 0.00 | 0.02 ± 0.00 |
2 | Myricetin | 0.13 ± 0.01 | nd |
Flavons | |||
3 | Apigenin | nd | 0.01 ± 0.00 |
4 | Diosmetin | nd | 0.05 ± 0.05 |
5 | Luteolin | 0.03 ± 0.00 | 0.04 ± 0.00 |
Flavanones | |||
6 | Naringenin | 0.13 ± 0.00 | 0.76 ± 0.01 |
7 | Eriodictyol | 0.03 ± 0.01 | nd |
Hydroxybenzoic Acids | |||
8 | Gallic acid | 0.01 ± 0.00 | nd |
9 | Syringic acid | 0.27 ± 0.01 | 0.02 ± 0.00 |
10 | Ellagic acid | 3.51 ± 0.99 | 7.25 ± 0.42 |
11 | Protocatechuic acid | nd | nd |
Hydroxycinnamic Acids | |||
12 | Ferulic acid | 0.18 ± 0.01 | 0.08 ± 0.02 |
13 | Caffeic acid | 0.71 ± 0.01 | 10.73 ± 0.09 |
14 | Chlorogenic acid | 0.40 ± 0.00 | 0.21 ± 0.00 |
15 | p-Coumaric acid | 15.95 ± 0.11 | 21.98 ± 0.23 |
16 | Rosmarinic acid | 0.51 ± 0.07 | 0.18 ± 0.01 |
Σ mg/g extract | 21.91 ± 0.09 | 41.34 ± 0.07 | |
% g/100 g extract | 2.19 ± 0.01 | 4.134 ± 0.01 | |
Total Phenol Content mg GAE/g extract | 136.97 ± 1.65 | 214.75 ± 1.98 | |
Total Flavonoid Content mg QE/g extract | 15.66 ± 0.42 | 24.72 ± 0.92 |
DPPH IC50 (µg/mL) | FRAP Fe2+ µmol/g Sample | Lipid Peroxidation Inhibition % | Protein Carbonylation Inhibition % | |||
---|---|---|---|---|---|---|
0.1 mg/mL a | 1 mg/mL a | 1 h b | 24 h b | |||
EO | 201.91 | 13.02 ± 4.31 | nt | nt | nt | nt |
AE | 38.09 | 761.33 ± 11.89 | 52.47 ± 2.73 | 58.79 ± 6.60 | 8.49 ± 0.94 | pa |
ME | 21.43 | 1548.00 ± 16.16 | 34.82 ± 0.17 | 39.58 ± 3.11 | 11.11 ± 5.05 | pa |
BHA | 17.62 | 5586.29 ± 174.76 | 59.90 ± 2.29 | 64.78 ± 0.38 | pa | 8.04 ± 3.63 |
BHT | nt | nt | 60.36 ± 1.25 | 64.58 ± 0.36 | 11.12 ± 4.29 | 13.54 ± 3.45 |
AA | 16.67 | 5568.43 ± 125.26 | pa | 95.52 ± 1.92 | nt | nt |
Inhibition % | ||
---|---|---|
AChE % | BChE % | |
EO (1 mg/mL) a | 51.92 ± 3.39 | 35.65 ± 5.69 |
EO (2 mg/mL) b | 59.32 ± 11.12 | 49.54 ± 3.12 |
AE a | 27.77 ± 3.71 | 4.30 ± 2.71 |
ME a | 10.05 ± 1.39 | na |
eserine (0.1 mg/mL) | 95.92 ± 1.47 | 79.12 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bektasevic, M.; Jurin, M.; Roje, M.; Politeo, O. Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina. Separations 2023, 10, 421. https://doi.org/10.3390/separations10080421
Bektasevic M, Jurin M, Roje M, Politeo O. Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina. Separations. 2023; 10(8):421. https://doi.org/10.3390/separations10080421
Chicago/Turabian StyleBektasevic, Mejra, Mladenka Jurin, Marin Roje, and Olivera Politeo. 2023. "Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina" Separations 10, no. 8: 421. https://doi.org/10.3390/separations10080421
APA StyleBektasevic, M., Jurin, M., Roje, M., & Politeo, O. (2023). Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina. Separations, 10(8), 421. https://doi.org/10.3390/separations10080421