Development and Validation of Analytical Method Using Gas Chromatography with Triple Quadrupole Mass Spectrometry for the Detection of Alkyl Halides as Potential Genotoxic Impurities in Posaconazole
Abstract
:1. Introduction
2. Results
2.1. Optimization of Mass Spectrometric Parameters
2.2. Optimization of Chromatographic Conditions
2.3. Method Validation Study
2.4. System Specificity and Suitability
2.5. LOQ, LOD, and Precision at LOQ
2.6. Linearity
2.7. Repeatability (Method Precision) (MP)
2.8. Intermediate Precision
2.9. Accuracy
2.10. Robustness
2.11. Solution Stability
3. Discussion
4. Experimental
4.1. Materials and Reagents
4.2. Equipment
4.3. Chromatographic Conditions
4.4. Mass Spectrometer Conditions
4.5. Impurity Standard and Test Sample Solution Preparation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eder, E.; Henschler, D.; Neudecker, T. Mutagenic properties of allylic and α, β-unsaturated compounds: Consideration of alkylating mechanisms. Xenobiotica 1982, 12, 831–848. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Z.; Engel, M.; Rubitski, E.; Ku, W.; Aubrecht, J.; Schiestl, R. Genotoxicity profiles of common alkyl halides and esters with alkylating activity. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2007, 633, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Szekely, G.; Amores de Sousa, M.C.; Gil, M.; Castelo Ferreira, F.; Heggie, W. Genotoxic impurities in pharmaceutical manufacturing: Sources, regulations, and mitigation. Chem. Rev. 2015, 115, 8182–8229. [Google Scholar] [CrossRef]
- Bolt, H.M.; Gansewendt, B. Mechanisms of carcinogenicity of methyl halides. Crit. Rev. Toxicol. 1993, 23, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yoo, W.; Jeong, J.H. Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design. Molecules 2022, 27, 4437. [Google Scholar] [CrossRef]
- Stauffer, F.; Vanhoorne, V.; Pilcer, G.; Chavez, P.; Rome, S.; Schubert, M.; Aerts, L.; De Beer, T. Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing. Eur. J. Pharm. Biopharm. 2018, 127, 92–103. [Google Scholar] [CrossRef]
- Burcham, C.L.; Florence, A.J.; Johnson, M.D. Continuous manufacturing in pharmaceutical process development and manufacturing. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 253–281. [Google Scholar] [CrossRef]
- Ozawa, S.; Chen, H.-H.; Lee, Y.-F.A.; Higgins, C.R.; Yemeke, T.T. Characterizing medicine quality by active pharmaceutical ingredient levels: A systematic review and meta-analysis across low-and middle-income countries. Am. J. Trop. Med. Hyg. 2022, 106, 1778. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: Regulatory need. Arab. J. Chem. 2017, 10, S3412–S3425. [Google Scholar] [CrossRef]
- Müller, L.; Mauthe, R.J.; Riley, C.M.; Andino, M.M.; De Antonis, D.; Beels, C.; DeGeorge, J.; De Knaep, A.G.; Ellison, D.; Fagerland, J.A. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul. Toxicol. Pharm. 2006, 44, 198–211. [Google Scholar] [CrossRef]
- Bercu, J.P.; Dobo, K.L.; Gocke, E.; McGovern, T.J. Overview of genotoxic impurities in pharmaceutical development. Int. J. Toxicol. 2009, 28, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Raman, N.; Prasad, A.; Reddy, K.R. Strategies for the identification, control and determination of genotoxic impurities in drug substances: A pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 2011, 55, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.R.; Ryan, M.P.; Neubert-Langille, B.J.; Naji, R. Risk assessment of potentially genotoxic impurities within the framework of quality by design. Org. Process Res. Dev. 2010, 14, 1032–1036. [Google Scholar] [CrossRef]
- Bolt, H.M.; Foth, H.; Hengstler, J.G.; Degen, G.H. Carcinogenicity categorization of chemicals—New aspects to be considered in a European perspective. Toxicol. Lett. 2004, 151, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Tubbs, A.; Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 2017, 168, 644–656. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation Guideline M7 (R1) on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk Step 4 Version. 2017. Available online: https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf (accessed on 3 May 2022).
- Kondo, K.; Watanabe, A.; Iwanaga, Y.; Abe, I.; Tanaka, H.; Nagaoka, M.H.; Akiyama, H.; Maitani, T. Determination of genotoxic phenylhydrazine agaritine in mushrooms using liquid chromatography–electrospray ionization tandem mass spectrometry. Food Addit. Contam. 2006, 23, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Humfrey, C.D. Recent developments in the risk assessment of potentially genotoxic impurities in pharmaceutical drug substances. Toxicol. Sci. 2007, 100, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Giordani, A.; Kobel, W.; Gally, H.U. Overall impact of the regulatory requirements for genotoxic impurities on the drug development process. Eur. J. Pharm. Sci. 2011, 43, 1–15. [Google Scholar] [CrossRef]
- Dow, L.K.; Hansen, M.M.; Pack, B.W.; Page, T.J.; Baertschi, S.W. The assessment of impurities for genotoxic potential and subsequent control in drug substance and drug product. J. Pharm. Sci. 2013, 102, 1404–1418. [Google Scholar] [CrossRef]
- Food and Drug Administration; HHS. International Conference on Harmonisation; revised guidance on Q3B (R) Impurities in New Drug Products; Availability. Notice. Fed. Regist. 2003, 68, 64628–64629. [Google Scholar]
- Ramachandra, B. Development of impurity profiling methods using modern analytical techniques. Crit. Rev. Anal. Chem. 2017, 47, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Basniwal, P.K. Forced degradation and impurity profiling: Recent trends in analytical perspectives. J. Pharm. Biomed. Anal. 2013, 86, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Chittireddy, H.N.P.R.; Kumar, J.S.; Bhimireddy, A.; Shaik, M.R.; Shaik, A.H.; Alwarthan, A.; Shaik, B. Development and Validation for Quantification of Cephapirin and Ceftiofur by Ultraperformance Liquid Chromatography with Triple Quadrupole Mass Spectrometry. Molecules 2022, 27, 7920. [Google Scholar] [CrossRef] [PubMed]
- Chittireddy, H.N.P.R.; Kumar, J.S.; Bhimireddy, A.; Shaik, M.R.; Khan, M.; Adil, S.F.; Khan, M.; Aldhuwayhi, F.N. Development and Validation for Quantification of 7-Nitroso Impurity in Sitagliptin by Ultraperformance Liquid Chromatography with Triple Quadrupole Mass Spectrometry. Molecules 2022, 27, 8581. [Google Scholar] [CrossRef] [PubMed]
- Chittireddy, H.N.P.R.; Kumar, J.S.; Bhimireddy, A.; Shaik, M.R.; Hatshan, M.R.; Khan, M.; Alwarthan, A.; Shaik, B. Development and Validation for Quantitative Determination of Genotoxic Impurity in Gemfibrozil by Gas Chromatography with Mass Spectrometry. Separations 2023, 10, 145. [Google Scholar] [CrossRef]
- Nanda, K.K.; Mozziconacci, O.; Small, J.; Allain, L.R.; Helmy, R.; Wuelfing, W.P. Enrichment of relevant oxidative degradation products in pharmaceuticals with targeted chemoselective oxidation. J. Pharm. Sci. 2019, 108, 1466–1475. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, G.G.; George, K.L.S.; Zhou, D. A novel accelerated oxidative stability screening method for pharmaceutical solids. J. Pharm. Sci. 2011, 100, 3529–3538. [Google Scholar] [CrossRef]
- Roberto de Alvarenga Junior, B.; Lajarim Carneiro, R. Chemometrics approaches in forced degradation studies of pharmaceutical drugs. Molecules 2019, 24, 3804. [Google Scholar] [CrossRef]
- Gomes, A.R.; Varela, C.L.; Tavares-da-Silva, E.J.; Roleira, F.M. Epoxide containing molecules: A good or a bad drug design approach. Eur. J. Med. Chem. 2020, 201, 112327. [Google Scholar] [CrossRef]
- Ensign, S.A.; Allen, J.R. Aliphatic epoxide carboxylation. Annu. Rev. Biochem 2003, 72, 55–76. [Google Scholar] [CrossRef]
- Wilson, S.C.; Howard, P.W.; Forrow, S.M.; Hartley, J.A.; Adams, L.J.; Jenkins, T.C.; Kelland, L.R.; Thurston, D.E. Design, synthesis, and evaluation of a novel sequence-selective epoxide-containing DNA cross-linking agent based on the pyrrolo [2, 1-c][1, 4] benzodiazepine system. J. Med. Chem. 1999, 42, 4028–4041. [Google Scholar] [CrossRef]
- Schuch, A.P.; Menck, C.F.M. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. J. Photochem. Photobiol. B 2010, 99, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Douki, T.; Reynaud-Angelin, A.; Cadet, J.; Sage, E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 2003, 42, 9221–9226. [Google Scholar] [CrossRef] [PubMed]
- Savale, S.K. Genotoxicity of drugs: Introduction, prediction and evaluation. Asian J. Biomater. Res. 2018, 4, 1–29. [Google Scholar]
- Guideline, E. Guideline on the Limits of Genotoxic Impurities. CPMP/SWP/5199/02. 2006. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-limits-genotoxic-impurities_en.pdf (accessed on 1 January 2023).
- Guidance, F. Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches; US Food and Drug Administration, Department of Health and Human Services: Washington, DC, USA, 2008.
- Guideline, I.H.T. Impurities in New Drug Substances Q3A (R2). In Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 25 October 2006. [Google Scholar]
- Liu, K.-T.; Chen, C.-H. Determination of impurities in pharmaceuticals: Why and how? In Quality Management and Quality Control-New Trends and Developments; IntechOpen: London, UK, 2019; pp. 1–17. [Google Scholar]
- Gerding, J.; Anhäuser, L.; Eickmann, U.; Nienhaus, A. A simple approach to assess the cancer risk of occupational exposure to genotoxic drugs in healthcare settings. J. Occup. Med. Toxicol. 2022, 17, 1–9. [Google Scholar] [CrossRef]
- Gaunt, M.J.; Johansson, C.C.; McNally, A.; Vo, N.T. Enantioselective organocatalysis. Drug Discov. Today 2007, 12, 8–27. [Google Scholar] [CrossRef]
- Casado, N.; Valimaña-Traverso, J.; García, M.Á.; Marina, M.L. Enantiomeric determination of drugs in pharmaceutical formulations and biological samples by electrokinetic chromatography. Crit. Rev. Anal. Chem. 2020, 50, 554–584. [Google Scholar] [CrossRef]
- Mwamwitwa, K.W.; Kaibere, R.M.; Fimbo, A.M.; Sabitii, W.; Ntinginya, N.E.; Mmbaga, B.T.; Shewiyo, D.H.; Shearer, M.C.; Smith, A.D.; Kaale, E.A. A retrospective cross-sectional study to determine chirality status of registered medicines in Tanzania. Sci. Rep. 2020, 10, 17834. [Google Scholar] [CrossRef]
- Phillips, D.H.; Arlt, V.M. Genotoxicity: Damage to DNA and its consequences. In Molecular, Clinical and Environmental Toxicology: Volume 1: Molecular Toxicology; Springer: Basel, Switzerland, 2009; pp. 87–110. [Google Scholar]
- Vogel, E.; Natarajan, A. DNA damage and repair in somatic and germ cells in vivo. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1995, 330, 183–208. [Google Scholar] [CrossRef]
- Rotter, S.; Beronius, A.; Boobis, A.; Hanberg, A.; Van Klaveren, J.; Luijten, M.; Machera, K.; Nikolopoulou, D.; Van Der Voet, H.; Zilliacus, J. Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: The potential EuroMix contribution. Crit. Rev. Toxicol. 2018, 48, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Committee, E.S. Scientific Opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 2011, 9, 2379. [Google Scholar]
- Charoo, N.A.; Ali, A.A. Quality risk management in pharmaceutical development. Drug Dev. Ind. Pharm. 2013, 39, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Suprin, M.; Chow, A.; Pillwein, M.; Rowe, J.; Ryan, M.; Rygiel-Zbikowska, B.; Wilson, K.J.; Tomlin, I. Quality risk management framework: Guidance for successful implementation of risk management in clinical development. Ther. Innov. Regul. Sci. 2019, 53, 36–44. [Google Scholar] [CrossRef]
- Noxafil® Approval Label by United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022003s018s020,0205053s002s004,0205596s001s003lbl.pdf (accessed on 1 January 2023).
- Chen, L.; Krekels, E.H.; Verweij, P.E.; Buil, J.B.; Knibbe, C.A.; Brüggemann, R.J. Pharmacokinetics and pharmacodynamics of posaconazole. Drugs 2020, 80, 671–695. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.V.; Costa, G.R.; Mendez, A.S. Stability-indicating HPLC method for posaconazole bulk assay. Sci. Pharm. 2012, 80, 317–328. [Google Scholar] [CrossRef]
- Cendejas-Bueno, E.; Forastiero, A.; Rodriguez-Tudela, J.; Cuenca-Estrella, M.; Gomez-Lopez, A. HPLC/UV or bioassay: Two valid methods for posaconazole quantification in human serum samples. Clin. Microbiol. Infect. 2012, 18, 1229–1235. [Google Scholar] [CrossRef]
- Santana, A.C.S.G.V.; Danda, L.J.d.A.; Nunes, L.C.C.; Soares Sobrinho, J.L. Simultaneous Quantification of Benznidazole and Posaconazole by HPLC-DAD Using QbD Approach. J. Chromatogr. Sci. 2019, 57, 156–162. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, Y.-K.; Pattengale, P.; O’Gorman, M.R.; Fu, X. A rapid high-performance LC-MS/MS method for therapeutic drug monitoring of voriconazole, posaconazole, fluconazole, and itraconazole in human serum. J. Appl. Lab. Med. 2017, 1, 626–636. [Google Scholar] [CrossRef]
- Cunliffe, J.M.; Noren, C.F.; Hayes, R.N.; Clement, R.P.; Shen, J.X. A high-throughput LC–MS/MS method for the quantitation of posaconazole in human plasma: Implementing fused core silica liquid chromatography. J. Pharm. Biomed. Anal. 2009, 50, 46–52. [Google Scholar] [CrossRef]
- Milind, G.; Vivek, K.; Srinivas Reddy, S.; Ganesh, C.; Jitendra, V.; Mubeen Ahmed, K. Process for preparation of posaconazole and crystalline polymorphic form v of posaconazole, WO2011158248A2 World Intellectual Property Organization (Patent Corperation Treaty). 2011. Available online: https://patents.google.com/patent/WO2011158248A3/da (accessed on 12 March 2023).
- Bethanne, W.; Angela, G.; Guodong, C. Analysis of Impurities and Degradants in Pharmaceuticals by High Resolution Tandem Mass Spectrometry and On-line H/D Exchange LC/MS. Am. Pharm. Rev. 2010, 13, 20–27. [Google Scholar]
- Wang, K.C.; Guo, Q.; Kuang, Z.; Jin, J.; Li, D.; Chen, W.; Zhu, W.; Li, M. Structural elucidation of two novel degradants of lurasidone and their formation mechanisms under free radical-mediated oxidative and photolytic conditions via liquid chromatography-photodiode array/ultraviolet-tandem mass spectrometry and one-dimensional/two-dimensional nuclear magnetic resonance spectroscopy. J. Mass Spectrom. 2022, 57, e4871. [Google Scholar] [PubMed]
- Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Jaafar, J.; Umar, K.; Majid, Z.A.; Aris, A.B.; Talib, J.; Madhavi, G. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: A comprehensive review. J. Sep. Sci. 2015, 38, 764–779. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ni, T.; Chai, X.; Wang, T.; Wang, H.; Chen, J.; Jin, Y.; Zhang, D.; Yu, S.; Jiang, Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur. J. Med. Chem. 2018, 143, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
Parameters | Typical Acceptance Limits | Results | ||
---|---|---|---|---|
PGI-1 | PGI-2 | PGI-3 | ||
System suitability | %RSD ≤ 20.0 for each PGI | 4.0 | 3.7 | 4.4 |
Specificity | RT of PGIs in all the solutions | 13.2 | 20.3 | 20.7 |
blank Interference at PGIs RT | No interference | |||
LOD | Concentration in ppm | 0.010 | 0.011 | 0.010 |
s/n ≥ 3 | 7.6 | 9.4 | 7.8 | |
LOQ | Concentration in ppm | 0.0251 | 0.0250 | 0.0251 |
s/n ≥ 10 | 18.2 | 28.4 | 19.4 | |
LOQ precision | %RSD ≤ 20.0 for each PGI | 5.5 | 6.1 | 4.8 |
Linearity | Range (ppm) | 0.0251 to 0.151 | 0.0250 to 0.150 | 0.0251 to 0.151 |
(R) ≥ 0.99 | 0.998 | 0.997 | 0.996 | |
MP | % RSD ≤ 20.0 | 4.2 | 5.5 | 5.9 |
IP | % RSD ≤ 20.0 | 5.0 | 4.2 | 6.1 |
MP and IP (n = 12) spike | % RSD ≤ 20.0 | ≤20.0 | ≤20.0 | ≤20.0 |
Accuracy | Spiked samples average recovery between 80 to 120%. | |||
LOQ spiked solutions | 95.4 | 96.7 | 95.9 | |
50% spiked solutions | 96.7 | 95.8 | 96.4 | |
100% spiked solutions | 95.6 | 96.3 | 95.8 | |
150% spiked solutions | 96.2 | 95.9 | 95.2 | |
Robustness | (+) Flow: concentration and RT | 3.9% 12.10 min | 2.7% 19.23 min | 2.3% 19.68 min |
(−) Flow: concentration and RT | 3.0% 13.98 min | 2.8% 21.43 min | 1.5% 21.86 min | |
(+) Oven 122 °C: concentration and RT | 3.2% 13.01 min | 2.4% 20.02 min | 2.2% 20.43 min | |
(−) Oven 118 °C: concentration and RT | 3.7% 13.32 min | 2.2% 20.61 min | 3.2% 21.00 min | |
Solution Stability | Report the results | Solutions are Stable up to 24 h |
Instrument Parameters | Final Condition Details | ||
---|---|---|---|
Gas chromatography conditions | |||
system of chromatography | Agilent Technologies 7890B GC system | ||
GC Column | USP phase G43, 60 m in length, 0.32 mm inner diameter, and 1.8 µm film thickness | ||
Carrier Gas | Helium | ||
Column Mode | Standard Flow | ||
Flow rate | 1.5 mL/min | ||
Injector (Heater) temperature | 200 °C | ||
Injection volume | 2 μL | ||
Oven Programming | Ramping (°C/min) | Temperature (°C) | Hold time (min) |
- | 120 | 5 | |
5 | 250 | 6 | |
Run time | 38 min | ||
Mass spectrometry conditions | |||
MS system | Agilent Technologies 7010B GC/TQ | ||
Ion source and Detection mode | EI and MRM | ||
Impurity | PGI-1 | PGI-2 | PGI-3 |
For qualification (m/z) | 156 amu 113 amu | 233 amu 150 amu | 153 amu 132 amu |
For quantification (m/z) | 156 amu 141 amu | 233 amu 153 amu | 153 amu 127 amu |
Collision energy (CE) | 0 | 15 | 25 |
Gain Factor | 20 | ||
Dwell time (in milliseconds) | 100 | ||
Detector off (MS -Off) | As required | ||
MS Source temperature | 240 °C | ||
MS Transfer Line temperature | 270 °C | ||
MS Quad temperature | 150 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chittireddy, H.N.P.R.; Kumar, J.V.S.; Bhimireddy, A.; Shaik, M.R.; Khan, M.; Khan, M.; Oh, T.H.; Shaik, B. Development and Validation of Analytical Method Using Gas Chromatography with Triple Quadrupole Mass Spectrometry for the Detection of Alkyl Halides as Potential Genotoxic Impurities in Posaconazole. Separations 2023, 10, 295. https://doi.org/10.3390/separations10050295
Chittireddy HNPR, Kumar JVS, Bhimireddy A, Shaik MR, Khan M, Khan M, Oh TH, Shaik B. Development and Validation of Analytical Method Using Gas Chromatography with Triple Quadrupole Mass Spectrometry for the Detection of Alkyl Halides as Potential Genotoxic Impurities in Posaconazole. Separations. 2023; 10(5):295. https://doi.org/10.3390/separations10050295
Chicago/Turabian StyleChittireddy, Hari Naga Prasada Reddy, J. V. Shanmukha Kumar, Anuradha Bhimireddy, Mohammed Rafi Shaik, Mujeeb Khan, Merajuddin Khan, Tae Hwan Oh, and Baji Shaik. 2023. "Development and Validation of Analytical Method Using Gas Chromatography with Triple Quadrupole Mass Spectrometry for the Detection of Alkyl Halides as Potential Genotoxic Impurities in Posaconazole" Separations 10, no. 5: 295. https://doi.org/10.3390/separations10050295
APA StyleChittireddy, H. N. P. R., Kumar, J. V. S., Bhimireddy, A., Shaik, M. R., Khan, M., Khan, M., Oh, T. H., & Shaik, B. (2023). Development and Validation of Analytical Method Using Gas Chromatography with Triple Quadrupole Mass Spectrometry for the Detection of Alkyl Halides as Potential Genotoxic Impurities in Posaconazole. Separations, 10(5), 295. https://doi.org/10.3390/separations10050295