Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition
Abstract
:1. Introduction
2. Short Description of Selected Traditional Preservation/Processing Processes
2.1. Curing
2.2. Drying
2.3. Fermentation
2.4. Other Traditional Processing Processes
3. Classical Methods Used to Evaluate Quality Changes
4. Spectroscopic Monitoring Techniques
4.1. Short Description of Spectroscopic Techniques
4.2. Examples of Applications of Spectroscopic Techniques
5. Current Limitations and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.-N.; Sun, D.-W.; Cheng, J.-H.; Gao, W.-H. Recent Advances for Rapid Identification of Chemical Information of Muscle Foods by Hyperspectral Imaging Analysis. Food Eng. Rev. 2016, 8, 336–350. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Recent Applications of Spectroscopic and Hyperspectral Imaging Techniques with Chemometric Analysis for Rapid Inspection of Microbial Spoilage in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2015, 14, 478–490. [Google Scholar] [CrossRef]
- Pan, C.; Chen, S.; Hao, S.; Yang, X. Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: A review. J. Sci. Food Agric. 2019, 99, 6121–6128. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Heia, K.; Lindberg, S.; Nilsen, H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods 2020, 6, 767. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Sampels, S. The effects of processing technologies and preparation on the final quality of fish products. Trends Food Sci. Technol. 2015, 44, 131–146. [Google Scholar] [CrossRef]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Rajauria, G.; O’Donnell, C.P.; Tiwari, B.K. Emerging food processing technologies and factors impacting their industrial adoption. Crit. Rev. Food Sci. Nutr. 2019, 59, 3082–3101. [Google Scholar] [CrossRef]
- Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X.W.; Fang, Y. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process. Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Skåra, T.; Axelsson, L.; Stefánsson, G.; Ekstrand, B.; Hagen, H. Fermented and ripened fish products in the northern European countries. J. Ethn. Foods 2015, 2, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Tofalo, R.; Fusco, V.; Böhnlein, C.; Kabisch, J.; Logrieco, A.F.; Habermann, D.; Cho, G.S.; Benomar, N.; Abriouel, H.; Schmidt-Heydt, M.; et al. The life and times of yeasts in traditional food fermentations. Crit. Rev. Food Sci. Nutr. 2019, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Madende, M.; Hayes, M. Fish by-product use as biostimulants: An overview of the current state of the art, including relevant legislation and regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosch, S.; Skovlund, B.; Adler-Nissen, J.; Engelbrecht, M. Spectral Imaging as a Tool in Food Research and Quality Monitoring of Food Production. Wide Spectra Qual. Control 2011. [Google Scholar] [CrossRef] [Green Version]
- Kutsanedzie, F.Y.H.; Guo, Z.; Chen, Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev. Int. 2019, 35, 536–562. [Google Scholar] [CrossRef]
- Mathiassen, J.R.; Misimi, E.; Bondø, M.; Veliyulin, E.; Østvik, S.O. Trends in application of imaging technologies to inspection of fish and fish products. Trends Food Sci. Technol. 2011, 22, 257–275. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Crit. Rev. Food Sci. Nutr. 2019, 59, 2202–2213. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit. Rev. Food Sci. Nutr. 2017, 57. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.; Romotowska, P.E.; Karlsdóttir, M.G.; Arason, S. Low field nuclear magnetic resonance and multivariate analysis for prediction of physicochemical characteristics of Atlantic mackerel as affected by season of catch, freezing method, and frozen storage duration. Food Res. Int. 2019, 116, 471–482. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Ezeanaka, M.C.; Nsor-Atindana, J.; Zhang, M. Online Low-field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in Food Processing. Food Bioprocess Technol. 2019, 12, 1435–1451. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Heia, K.; Lindberg, S.K.; Nilsen, H. Performance of fluorescence and diffiuse reflectance hyperspectral imaging for characterization of lutefisk: A traditional norwegian fish dish. Molecules 2020, 25, 1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunestad, B.T.; Grevskott, D.H.; Roiha, I.S.; Svanevik, C.S. Microbiota of lutefisk, a Nordic traditional cod dish with a high pH. Food Control 2018, 90, 312–316. [Google Scholar] [CrossRef]
- Tavman, S.; Otles, S.; Glaue, S.; Gogus, N. Food preservation technologies. In Saving Food. Production, Supply Chain, Food Waste and Food Consumption; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 117–140. ISBN 9781420061154. [Google Scholar]
- Lonergan, S.M.; Topel, D.G.; Marple, D.N. Fresh and cured meat processing and preservation. In The Science of Animal Growth and Meat Technology; Lonergan, S.M., Topel, D.G., Marple, D.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 205–228. ISBN 9780128152775. [Google Scholar]
- Albarracín, W.; Sánchez, I.C.; Grau, R.; Barat, J.M. Salt in food processing; usage and reduction: A review. Int. J. Food Sci. Technol. 2011, 46, 1329–1336. [Google Scholar] [CrossRef]
- Pittia, P.; Antonello, P. Safety by Control of Water Activity: Drying, Smoking, and Salt or Sugar Addition. In Regulating Safety of Traditional and Ethnic Foods; Prakash, V., Martín-Belloso, O., Keener, L., Astley, S., Braun, S., McMahon, H., Lelieveld, H., Eds.; Academic Press: Waltham, MA, USA, 2016; pp. 7–28. ISBN 9780128006207. [Google Scholar]
- Ruiz-Carrascal, J. Cured Foods: Health Effects. In. Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Waltham, MA, USA, 2016; pp. 338–342. ISBN 9780123849472. [Google Scholar]
- Skibsted, L.H. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 2011, 24, 176–183. [Google Scholar] [CrossRef]
- Lerfall, J. Sodium Nitrite, Salt-Curing and Effects on Carotenoid and N-Nitrosoamines in Marine Foods. In Processing and Impact on Active Components in Food; Elsevier Inc.: Waltham, MA, USA, 2015; pp. 433–438. ISBN 9780124047099. [Google Scholar]
- Parthasarathy, D.; Bryan, N.S. Physiology of Nitric Oxide. Encycl. Meat Sci. 2014, 1, 436–441. [Google Scholar]
- Koral, S.; Tufan, B.; Andrej, S.; Ko, D.; Köse, S. Investigation of the contents of biogenic amines and some food safety parameters of various commercially salted fish products. Food Control 2013, 32, 597–606. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Masud, M.H. A Brief History of Food Preservation. In Food Preservation in Developing Countries: Challenges and Solutions; Joardder, M.U.H., Masud, M.H., Eds.; Springer: Cham, Switzerland, 2019; pp. 55–67. ISBN 9783030115302. [Google Scholar]
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6. [Google Scholar] [CrossRef]
- Mahmud, A.; Abraha, B.; Samuel, M.; Abraham, W.; Mahmud, E. Fish preservation: A multi-dimensional approach. MOJ Food Process. Technol. 2018, 6, 303–310. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res. Int. 2019, 116, 90–102. [Google Scholar] [CrossRef]
- Kwon, D.; Nyakudya, E.; Jeong, Y. Fermentation: Food Products. Enciyclopedia Agric. Food Syst. 2014, 3, 113–123. [Google Scholar]
- Ohshima, T.; Giri, A. Traditional Fish Fermentation Technology and Recent Developments. Encycl. Food Microbiol. 2014, 2, 852–869. [Google Scholar]
- Leroy, F.; Geyzen, A.; Janssens, M.; De Vuyst, L.; Scholliers, P. Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends Food Sci. Technol. 2013, 31, 130–137. [Google Scholar] [CrossRef]
- Devi, P.B.; Shetty, P.H. Traditional preserved and fermented foods and their nutritional aspects. In Nutritional and Health Aspects of Food in South Asian Countries; Prakash, J., Waisundara, V., Prakash, V., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 61–73. ISBN 9780128200117. [Google Scholar]
- Kumar, P.; Chatli, M.K.; Verma, A.K.; Mehta, N.; Malav, O.P. Quality, Functionality and Shelf Life of Fermented Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 57, 2844–2856. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Cai, W.-Q.; Shi, Y.-G.; Dong, X.-P.; Bai, F.; Shen, S.-K.; Jiao, R.; Zhang, X.-Y.; Zhu, X. Effects of different salt concentrations and vacuum packaging on the shelf-stability of Russian sturgeon (Acipenser gueldenstaedti) stored at 4 °C. Food Control 2020, 109, 106865. [Google Scholar] [CrossRef]
- Åsli, M.; Mørkøre, T. Brines added sodium bicarbonate improve liquid retention and sensory attributes of lightly salted Atlantic cod. LWT Food Sci. Technol. 2012, 46, 196–202. [Google Scholar] [CrossRef]
- Qin, N.; Zhang, L.; Zhang, J.; Song, S.; Wang, Z.; Regenstein, J.M.; Luo, Y. Influence of lightly salting and sugaring on the quality and water distribution of grass carp (Ctenopharyngodon idellus) during super-chilled storage. J. Food Eng. 2017, 215, 104–112. [Google Scholar] [CrossRef]
- Siripatrawan, U. Hyperspectral imaging for rapid evaluation and visualization of quality deterioration index of vacuum packaged dry-cured sausages. Sensors Actuators B Chem. 2018, 254, 1025–1032. [Google Scholar] [CrossRef]
- Perisic, N.; Afseth, N.K.; Ofstad, R.; Narum, B.; Kohler, A. Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis. Meat Sci. 2013, 95, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Wen, R.; Liu, Q.; Chen, Q.; Kong, B. Effect of NaCl substitutes on the physical, microbial and sensory characteristics of Harbin dry sausage. Meat Sci. 2019, 156, 205–213. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M. Quality, functionality, and microbiology of fermented fish: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1228–1242. [Google Scholar] [CrossRef]
- Axelsson, L.; Bjerke, G.A.; Mcleod, A.; Berget, I.; Holck, A.L. Growth Behavior of Listeria monocytogenes in a Traditional Norwegian Fermented Fish Product (Rakfisk), and Its Inhibition through Bacteriophage Addition. Foods 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Belleggia, L.; Aquilanti, L.; Ferrocino, I.; Milanović, V.; Garofalo, C.; Clementi, F.; Cocolin, L.; Mozzon, M.; Foligni, R.; Haouet, M.N.; et al. Discovering microbiota and volatile compounds of surströmming, the traditional Swedish sour herring. Food Microbiol. 2020, 91. [Google Scholar] [CrossRef] [PubMed]
- Jónsdóttir, R.; Sveinsdóttir, K.; Magnússon, H.; Arason, S.; Lauritzsen, K.; Thorarinsdottir, K.A. Flavor and quality characteristics of salted and desalted cod (Gadus morhua) produced by different salting methods. J. Agric. Food Chem. 2011, 59, 3893–3904. [Google Scholar] [CrossRef]
- Lorentzen, G.; Breiland, M.S.W.; Østli, J.; Wang-Andersen, J.; Olsen, R.L. Growth of halophilic microorganisms and histamine content in dried salt-cured cod (Gadus morhua L.) stored at elevated temperature. LWT Food Sci. Technol. 2015, 60, 598–602. [Google Scholar] [CrossRef]
- Lorentzen, G.; Egeness, F.-A.; Pleym, I.E.; Ytterstad, E. Shelf life of packaged loins of dried salt-cured cod (Gadus morhua L.) stored at elevated temperatures. Food Control 2016, 64, 65–69. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Lv, R.; Dai, C.; Bonah, E.; Chang, X. Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: The hyperspectral imaging and multi-gas-sensory approaches. J. Food Process Eng. 2020, 43, e13092. [Google Scholar] [CrossRef]
- Du, X.; Sun, Y.; Pan, D.; Wang, Y.; Ou, C.; Cao, J. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing. J. Sci. Food Agric. 2018, 98, 3140–3147. [Google Scholar] [CrossRef]
- Martínez-López, B.; Bertelsen, N.W.; Jessen, F. Determination of transport properties and mechanistic modeling of the coupled salt and water transport during osmotic dehydration of salmon induced by dry salting. J. Food Process Eng. 2019, 42, e13019. [Google Scholar] [CrossRef]
- Esteves, E.; Lourenço, H.; Rosa, I.; Aníbal, J. Physicochemical and microbiological changes in dried small-spotted catshark (Scyliorhynus canicula): Contributing to the developing an alternative shark-based salted-dried seafood product. J. Aquat. Food Prod. Technol. 2018, 27, 176–184. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, N.; Raghavan, G.S.V.; Pei, Y.; Song, C.; Zhu, G. Novel Sensing Technologies During the Food Drying Process. Food Eng. Rev. 2020, 12, 121–148. [Google Scholar] [CrossRef]
- Power, A.C.; Chapman, J.; Chandra, S.; Cozzolino, D. Ultraviolet-visible spectroscopy for food quality analysis. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Kidlington, UK, 2019; pp. 91–104. [Google Scholar]
- Albani, J.-R. Fluorescence Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons: New York, NY, USA, 2012; p. 32. [Google Scholar]
- Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: New York, NY, USA, 2009; ISBN 9780123741363. [Google Scholar]
- Menezes, J.C.; Ferreira, A.P.; Rodrigues, L.O.; Brás, L.P.; Alves, T.P. Chemometrics Role within the PAT Context: Examples from Primary Pharmaceutical Manufacturing. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 4, pp. 313–355. ISBN 9781509048304. [Google Scholar]
- Zhang, Z. Raman spectroscopic sensing in food safety and quality analysis. In Sensing Techniques for Food Safety and Quality Control; Lu, X., Ed.; RSC: London, UK, 2017; pp. 2–16. [Google Scholar]
- Amigo, J.M. Hyperspectral and multispectral imaging: Setting the scene. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 3–16. ISBN 9789896540821. [Google Scholar]
- Spyros, A.; Dais, P. NMR Spectroscopy in Food Analysis; Royal Society of Chemistry: Cambridge, UK, 2012; ISBN 9781849731751. [Google Scholar]
- Pérez-Santaescolástica, C.; Fraeye, I.; Barba, F.J.; Gómez, B.; Tomasevic, I.; Romero, A.; Moreno, A.; Toldrá, F.; Lorenzo, J.M. Application of non-invasive technologies in dry-cured ham: An overview. Trends Food Sci. Technol. 2019, 86, 360–374. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y. Colour analysis in sausages stuffed in modified casings with different storage days using hyperspectral imaging—A feasibility study. Food Control 2020, 111, 107047. [Google Scholar] [CrossRef]
- Møller, J.K.S.; Parolari, G.; Gabba, L.; Christensen, J.; Skibsted, L.H. Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy. J. Agric. Food Chem. 2003, 51, 1224–1230. [Google Scholar] [CrossRef]
- Garrido-Novell, C.; Garrido-Varo, A.; Pérez-Marín, D.; Guerrero-Ginel, J.E.; Kim, M. Quantification and spatial characterization of moisture and NaCl content of Iberian dry-cured ham slices using NIR hyperspectral imaging. J. Food Eng. 2015, 153, 117–123. [Google Scholar] [CrossRef]
- Wu, D.; Wang, S.; Wang, N.; Nie, P.; He, Y.; Sun, D.W.; Yao, J. Application of Time Series Hyperspectral Imaging (TS-HSI) for Determining Water Distribution Within Beef and Spectral Kinetic Analysis During Dehydration. Food Bioprocess Technol. 2013, 6, 2943–2958. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Xiaoyu, T.; Bonah, E.; Ren, Y.; Alenyorege, E.A.; Chunxia, D. Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging. J. Food Process. Preserv. 2019, 43, e14197. [Google Scholar] [CrossRef]
- Picone, G.; De Noni, I.; Ferranti, P.; Nicolai, M.A.; Alamprese, C.; Trimigno, A.; Brodkorb, A.; Portmann, R.; Pihlanto, A.; El, S.N.; et al. Monitoring molecular composition and digestibility of ripened bresaola through a combined foodomics approach. Food Res. Int. 2019, 115, 360–368. [Google Scholar] [CrossRef]
- Laub-Ekgreen, M.H.; Martinez-Lopez, B.; Jessen, F.; Skov, T. Non-destructive measurement of salt using NIR spectroscopy in the herring marinating process. LWT 2018, 97, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Izaskun, C.; Bocker, U.; Ofstad, R.; Sørheim, O.; Kohler, A. Monitoring secondary structural changes in salted and smoked salmon muscle myofiber proteins by FT-IR microspectroscopy. J. Agric. Food Chem. 2009, 57, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Galvis-Sánchez, A.C.; Tóth, I.V.; Portela, A.; Delgadillo, I.; Rangel, A.O.S.S. Monitoring sodium chloride during cod fish desalting process by flow injection spectrometry and infrared spectroscopy. Food Control 2011, 22, 277–282. [Google Scholar] [CrossRef]
- Segtnan, V.H.; HoØy, M.; Lundby, F.; Narum, B.; Wold, J.P. Fat distribution analysis in salmon fillets using non-contact near infrared interactance imaging: A sampling and calibration strategy. J. Near Infrared Spectrosc. 2009, 17, 247–253. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Høy, M.; Sørheim, O.; Kohler, A.; Lundby, F.; Wold, J.P.; Ofstad, R. Noncontact salt and fat distributional analysis in salted and smoked salmon fillets using x-ray computed tomography and nir interactance imaging. J. Agric. Food Chem. 2009, 57, 1705–1710. [Google Scholar] [CrossRef]
- Carneiro, C.D.S.; Mársico, E.T.; Ribeiro, R.D.O.R.; Conte-Júnior, C.A.; Mano, S.B.; Augusto, C.J.C.; Oliveira De Jesus, E.F. Low-Field Nuclear Magnetic Resonance (LF NMR 1H) to assess the mobility of water during storage of salted fish (Sardinella brasiliensis). J. Food Eng. 2016, 169, 321–325. [Google Scholar] [CrossRef]
- Carneiro, C.d.S.; Mársico, E.T.; Ribeiro, R.d.O.R.; Conte Júnior, C.A.; Álvares, T.S.; de Jesus, E.F.O. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and Low Field Nuclear Magnetic Resonance (LF 1H NMR). LWT Food Sci. Technol. 2013, 50, 401–407. [Google Scholar] [CrossRef]
- Aursand, I.G.; Gallart-Jornet, L.; Erikson, U.; Axelson, D.E.; Rustad, T. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): A low-field 1H NMR study. J. Agric. Food Chem. 2008, 56, 6252–6260. [Google Scholar] [CrossRef]
- Pitombo, R.N.M.; Lima, G.A.M.R. Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish. J. Food Eng. 2003, 58, 59–66. [Google Scholar] [CrossRef]
- Johnsen, S.O.; Jørgensen, K.B.; Birkeland, S.; Skipnes, D.; Skåra, T. Effects of phosphates and salt in ground raw and cooked farmed cod (Gadus morhua) muscle studied by the water holding capacity (WHC), and supported by 31P-NMR measurements. J. Food Sci. 2009, 74. [Google Scholar] [CrossRef]
- Kartakoullis, A.; Comaposada, J.; Cruz-Carrión, A.; Serra, X.; Gou, P. Feasibility study of smartphone-based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chem. 2019, 278, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wold, J.P.; Haugholt, K.H.; Wold, E.; Tschudi, J.; Segtnan, V.H.; Johansen, I.-R.; Narum, B.; Thielemann, J. Non-Contact Transflectance near Infrared Imaging for Representative on-Line Sampling of Dried Salted Coalfish (Bacalao). J. Near Infrared Spectrosc. 2006, 14, 59–66. [Google Scholar] [CrossRef]
- Wu, D.; Shi, H.; Wang, S.; He, Y.; Bao, Y.; Liu, K. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. Acta 2012, 726, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, G.; Sun, Y.; Ge, C.; Liao, G. Changes in physicochemical parameters, free fatty acid profile and water-soluble compounds of Yunnan dry-cured beef during processing. J. Food Process. Preserv. 2020, 44, 1–13. [Google Scholar] [CrossRef]
- Liu, S.; Wang, G.; Xiao, Z.; Pu, Y.; Ge, C.; Liao, G. 1H-NMR-based water-soluble low molecular weight compound characterization and free fatty acid composition of five kinds of Yunnan dry-cured hams. LWT 2019, 108, 174–182. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Nicolai, B.; Pu, H.; Verboven, P.; Wei, Q.; Liu, Z. Comparison of spectral properties of three hyperspectral imaging (HSI) sensors in evaluating main chemical compositions of cured pork. J. Food Eng. 2019, 261, 100–108. [Google Scholar] [CrossRef]
- Collell, C.; Gou, P.; Arnau, J.; Muñoz, I.; Comaposada, J. NIR technology for on-line determination of superficial aw and moisture content during the drying process of fermented sausages. Food Chem. 2012, 135, 1750–1755. [Google Scholar] [CrossRef]
- Stawczyk, J.; Muñoz, I.; Collell, C.; Comaposada, J. Control System for Sausage Drying Based on On-Line NIR aw Determination. Dry. Technol. 2009, 27, 1338–1343. [Google Scholar] [CrossRef]
- Liu, D.; Qu, J.; Sun, D.W.; Pu, H.; Zeng, X.A. Non-destructive prediction of salt contents and water activity of porcine meat slices by hyperspectral imaging in a salting process. Innov. Food Sci. Emerg. Technol. 2013, 20, 316–323. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, T.; Yao, L.; Wang, X.; Song, Y.; Wang, H.; Wang, H.; Tan, M. Use of low-field-NMR and MRI to characterize water mobility and distribution in pacific oyster (Crassostrea gigas) during drying process. Dry. Technol. 2018, 36, 630–636. [Google Scholar] [CrossRef]
- Wang, S.; Lin, Z.; Xia, K.; Li, Y.; Tan, M. Dynamics of water mobility and distribution in Sur clam (Mactra chinensis) during dehydration and rehydration processes assessed by low-field NMR and MRI. J. Food Meas. Charact. 2017, 11, 1342–1354. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. Study of the oxidative stability of salted and unsalted salmon fillets by 1H nuclear magnetic resonance. Food Chem. 2004, 86, 297–304. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, D.W.; Cheng, W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J. Food Eng. 2017, 192, 53–60. [Google Scholar] [CrossRef]
- Biancolillo, A.; Boqué, R.; Cocchi, M.; Marini, F. Data fusion strategies in food analysis. In Data Fusion Methodology and Applications; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 271–310. ISBN 9788578110796. [Google Scholar]
- Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Intelligent evaluation of total volatile basic nitrogen (TVB-N) content in chicken meat by an improved multiple level data fusion model. Sens. Actuators B Chem. 2017, 238, 337–345. [Google Scholar] [CrossRef]
- Chanet, M.; Rivière, C.; Eynard, P. Electric impedance spectrometry for the control of manufacturing process of comminuted meat products. J. Food Eng. 1999, 42, 153–159. [Google Scholar] [CrossRef]
- Guerrero, L.; Gobantes, I.; Oliver, M.À.; Arnau, J.; Guàrdia, M.D.; Elvira, J.; Riu, P.; Grèbol, N.; Monfort, J.M. Green hams electrical impedance spectroscopy (EIS) measures and pastiness prediction of dry cured hams. Meat Sci. 2004, 66, 289–294. [Google Scholar] [CrossRef]
- Masot, R.; Alcañiz, M.; Fuentes, A.; Schmidt, F.C.; Barat, J.M.; Gil, L.; Baigts, D.; Martínez-Máñez, R.; Soto, J. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sens. Actuators A Phys. 2010, 158, 217–223. [Google Scholar] [CrossRef]
- Campos, M.I.; Debán, L.; Antolín, G.; Pardo, R. Evaluation by NIRS technology of curing process of ham with low sodium content. Meat Sci. 2020, 163, 108075. [Google Scholar] [CrossRef]
- Svensson, V.T.; Nielsen, H.H.; Bro, R. Determination of the protein content in brine from salted herring using near-infrared spectroscopy. LWT Food Sci. Technol. 2004, 37, 803–809. [Google Scholar] [CrossRef]
- Svensson, V.T.; Andersen, C.M. EEM fluorescence spectroscopy as a fast method to assess the brine composition of salted herring. LWT Food Sci. Technol. 2014, 57, 775–781. [Google Scholar] [CrossRef]
- Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Anal. Chim. Acta 2012, 712, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; García-González, D.L.; Callejón, R.M.; Amigo, J.M. NIR spectroscopy and chemometrics for the typification of Spanish wine vinegars with a protected designation of origin. Food Control 2018, 89, 108–116. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Bagnasco, L.; Simonetti, R.; Casolino, M.C.; Nizzi Grifi, F.; Casale, M. Artificial nose, NIR and UV-visible spectroscopy for the characterisation of the PDO Chianti Classico olive oil. Talanta 2015, 144, 1070–1078. [Google Scholar] [CrossRef]
- Biancolillo, A.; De Luca, S.; Bassi, S.; Roudier, L.; Bucci, R.; Magrì, A.D.; Marini, F. Authentication of an Italian PDO hazelnut (“Nocciola Romana”) by NIR spectroscopy. Environ. Sci. Pollut. Res. 2018, 25, 28780–28786. [Google Scholar] [CrossRef] [PubMed]
- De la Haba, M.J.; Arias, M.; Ramírez, P.; López, M.I.; Sánchez, M.T. Characterizing and authenticating montilla-moriles PDO vinegars using near infrared reflectance spectroscopy (nirs) technology. Sensors 2014, 14, 3528–3542. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Callejón, R.M.; Savorani, F.; Amigo, J.M.; Cocchi, M. Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars. Talanta 2019, 198, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Nardecchia, A.; Presutto, R.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of the Geographical Origin of “Vallerano” Chestnut by Near Infrared Spectroscopy Coupled with Chemometrics. Food Anal. Methods 2020, 1782–1790. [Google Scholar] [CrossRef]
- Power, A.; Cozzolino, D. How Fishy Is Your Fish? Authentication, Provenance and Traceability in Fish and Seafood by Means of Vibrational Spectroscopy. Appl. Sci. 2020, 10, 4150. [Google Scholar] [CrossRef]
Aim of the Study | Analytical Technique | Chemometric Tool | Reference |
---|---|---|---|
Meat | |||
Evaluation of quality deterioration index in vacuum packaged dry-cured sausages | HSI (380–1000 nm) | DFA, PLSR | [47] |
Color of sausages in modified casings | HSI (380–1000 nm) | PLSR | [69] |
Monitoring Parma ham during processing | Fluorescence: Excitation from 270 to 550 nm; emission from 310 to 590 nm | PARAFAC; PLSR | [70] |
Quantification and spatial characterization of moisture and NaCl content of Iberian dry-cured ham slices | HSI (900–1700 nm) | PLSR | [71] |
Determining water distribution within beef during dehydration | HSI (380–1700 nm) | PLSR, MLR, LS-SVM | [72] |
Impact of crystal size on salt (NaCl) uptake and water activity (aw) of dry-cured pork | HSI (400–1000 nm) | PLSR, Si-PLS, CARS-PLSR | [73] |
Monitoring composition and digestibility of ripened bresaola | size exclusion HPLC, HPLC/MS, 1H NMR | ANOVA, LSD | [74] |
Fish | |||
NaCl concentration assessment during the herring marinating process | NIR | PCA, PLSR | [75] |
Monitoring secondary structural changes in salted and smoked salmon muscle myofiber proteins | FT-IR Microspectroscopy (4000–1000 cm−1) | PCA, PLSR | [76] |
Monitoring sodium chloride during cod fish desalting process | FT-IR spectroscopy | PLSR | [77] |
Fat distribution in salmon fillets | HSI (760–1040 nm) | PLSR | [78] |
Salting process monitoring on cold-smoked salmon | HSI (760–1040 nm); X-ray computed tomography | PLSR | [79] |
Assessment of mobility of water during storage of salted fish | 1H NMR | One-way analysis of variance, post-hoc tests with Bonferroni adjustment | [80] |
Effects of sodium tripolyphosphate on frozen shrimp | 1H NMR | Levene and Mauchly tests, one-way analysis of variance, Pearson correlations test, post-hoc tests with Bonferroni adjustment, Dunnett’s C test | [81] |
Water distribution in brine salted cod | 1H NMR technique | PCA | [82] |
Determine water profiles in fish exposed to different temperature, moisture, and water activity | Pulse 1H NMR technique | - | [83] |
Effects of phosphates and salt on water-holding capacity in ground raw and cooked farmed cod | 31P-NMR | ANOVA, Fischer’s pairwise comparison test | [84] |
Evaluation of the effects of salting and sugaring on water distribution and quality of grass carp during storing | LF-NMR | LSD | [46] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassoun, A.; Guðjónsdóttir, M.; Prieto, M.A.; Garcia-Oliveira, P.; Simal-Gandara, J.; Marini, F.; Di Donato, F.; D’Archivio, A.A.; Biancolillo, A. Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition. Processes 2020, 8, 988. https://doi.org/10.3390/pr8080988
Hassoun A, Guðjónsdóttir M, Prieto MA, Garcia-Oliveira P, Simal-Gandara J, Marini F, Di Donato F, D’Archivio AA, Biancolillo A. Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition. Processes. 2020; 8(8):988. https://doi.org/10.3390/pr8080988
Chicago/Turabian StyleHassoun, Abdo, María Guðjónsdóttir, Miguel A. Prieto, Paula Garcia-Oliveira, Jesus Simal-Gandara, Federico Marini, Francesca Di Donato, Angelo Antonio D’Archivio, and Alessandra Biancolillo. 2020. "Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition" Processes 8, no. 8: 988. https://doi.org/10.3390/pr8080988
APA StyleHassoun, A., Guðjónsdóttir, M., Prieto, M. A., Garcia-Oliveira, P., Simal-Gandara, J., Marini, F., Di Donato, F., D’Archivio, A. A., & Biancolillo, A. (2020). Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition. Processes, 8(8), 988. https://doi.org/10.3390/pr8080988