# Distributed Optimization for Active Distribution Network Considering the Balance of Multi-Stakeholder

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Considering the Benefits of Multi-Stakeholder Dispatching Strategy of ADN

#### 2.1. Electric System and Virtual Micro-Grid

#### 2.2. Dispatching Overall Framework of Active Distribution Networks

## 3. Active Dispatching Distribution Network Bi-Level Optimization Dispatching Model

#### 3.1. The Upper-Level Model

#### 3.1.1. The Objective Function of Upper-Level Model

#### 3.1.2. The Constraints of Upper-Level Model

#### 3.2. The Lower-Level Model

#### 3.2.1. The Objective Function of Upper-Level Model

#### 3.2.2. The Constraints of Lower-Level Model

## 4. Distributed Solution Strategy of ADN Bi-Level Dispatching Model

#### 4.1. Method Based on ADMM

#### 4.2. The Distributed Solution Process for Active Distribution Network Bi-Level Dispatching Model

## 5. Discussion

#### 5.1. Introduction to the System

#### 5.2. Dispatching Results and Analysis

#### 5.3. Analysis of Bi-Level Distributed Dispatching Optimization Results

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

Branch Number | Starting Bus | Arrival Bus | R/pu | X/pu | Branch Bumber | Starting Bus | Arrival Bus | R/pu | X/pu |
---|---|---|---|---|---|---|---|---|---|

1 | 0 | 1 | 0.0922 | 0.047 | 17 | 23 | 24 | 0.786 | 0.564 |

2 | 1 | 13 | 0.493 | 0.2511 | 18 | 5 | 6 | 1.509 | 0.9337 |

3 | 13 | 14 | 0.164 | 0.1565 | 19 | 6 | 7 | 1.03 | 0.74 |

4 | 14 | 15 | 0.4521 | 0.3083 | 20 | 7 | 8 | 0.8042 | 0.7006 |

5 | 15 | 16 | 0.366 | 0.1864 | 21 | 8 | 9 | 1.044 | 0.74 |

6 | 16 | 17 | 1.504 | 1.3554 | 22 | 9 | 10 | 0.5075 | 0.2585 |

7 | 17 | 18 | 0.3811 | 0.1941 | 23 | 10 | 11 | 0.1966 | 0.065 |

8 | 18 | 19 | 0.4095 | 0.4784 | 24 | 11 | 12 | 0.9744 | 0.963 |

9 | 1 | 2 | 0.896 | 0.7011 | 25 | 5 | 25 | 0.3744 | 0.1238 |

10 | 2 | 3 | 0.819 | 0.707 | 26 | 25 | 26 | 0.3105 | 0.3619 |

11 | 3 | 4 | 0.7089 | 0.9373 | 27 | 26 | 27 | 1.468 | 1.115 |

12 | 4 | 5 | 0.203 | 0.1034 | 28 | 25 | 28 | 0.341 | 0.5320 |

13 | 2 | 20 | 0.1872 | 0.6188 | 29 | 28 | 29 | 0.5412 | 0.7129 |

14 | 20 | 21 | 0.2842 | 0.1477 | 30 | 28 | 30 | 0.591 | 0.526 |

15 | 21 | 22 | 0.7144 | 0.2351 | 31 | 30 | 31 | 0.7463 | 0.545 |

16 | 22 | 23 | 0.732 | 0.574 | 32 | 31 | 32 | 1.289 | 1.721 |

## References

- Ochoa, L.F.; Dent, C.J.; Harrison, G.P. Distribution network capacity assessment: Variable DG and active networks. IEEE Trans. Power Syst.
**2010**, 25, 87–95. [Google Scholar] [CrossRef] [Green Version] - Yang, T.; Zhai, F.; Zhao, Y.; Pen, H. Explanation and Prospect of Ubiquitous Electric Power Internet of Things. Autom. Electr. Power Syst.
**2019**, 43, 9–20, In Chinese. [Google Scholar] - Venkatesh, B.; Chandramohan, S.; Kayalvizhi, N.; Kumudini-Devi, R.P. Optimal reconfiguration of radial distribution systems using artificial intelligence methods. In Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009; pp. 660–665. [Google Scholar]
- Juang, C.; Hsiao, C.; Hsu, C. Hierarchical cluster based multispecies particle swarm optimization for fuzzy system optimization. IEEE Trans. Fuzzy Syst.
**2010**, 18, 14–26. [Google Scholar] [CrossRef] - Shaaban, M.F.; Atwa, Y.M.; El-Saadany, E.F. DG allocation for benefit maximization in distribution networks. IEEE Trans. Power Syst.
**2013**, 28, 639–649. [Google Scholar] [CrossRef] - El-Khattam, W.; Bhattacharya, K.; Hegazy, Y.; Salama, M.M.A. Optimal investment planning for distributed generation in a competitive electricity market. IEEE Trans. Power Syst.
**2004**, 19, 1674–1684. [Google Scholar] [CrossRef] - Zia, M.F.; Benbouzid, M.; Elbouchikhi, E.; Muyeen, S.M.; Techato, K.; Guerrero, J.M. Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access
**2020**, 8, 19410–19432. [Google Scholar] [CrossRef] - Du, P.; Chen, Z.; Chen, Y.; Ma, Z.; Ding, H. Bi-level linearized dispatching model of active distribution network with multi-stakeholder participation based on analytical target cascading. IEEE Access
**2019**, 7, 154844–154858. [Google Scholar] [CrossRef] - Farrokhifar, M.; Aghdam, F.H.; Alahyari, A.; Monavari, A.; Safari, A. Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model. Electr. Power Syst. Res.
**2020**, 187, 106483. [Google Scholar] [CrossRef] - Lu, J.; Chu, W.; Ren, H.; He, T.; Wang, F. Coordinated optimal dispatch of multi-stakeholder game based on demand response for active distribution network. IET Renew. Power Gener.
**2019**, 13, 898–904. [Google Scholar] [CrossRef] - Ma, W.-J.; Wang, J.; Gupta, V.; Chen, C. Distributed energy management for networked microgrids using online ADMM with regret. IEEE Trans. Smart Grid
**2018**, 9, 847–856. [Google Scholar] [CrossRef] - Zheng, W.; Wu, W.; Zhang, B.; Sun, H.; Liu, Y. A fully distributed reactive power optimization and control method for active distribution net-works. IEEE Trans. Smart Grid
**2016**, 7, 1021–1033. [Google Scholar] - Nie, Y.; Farrokhifar, M.; Pozo, D. Electricity and Gas Network Expansion Planning: An ADMM-based Decomposition Approach. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, J.; Ban, M. Privacy-Preserving Economic Dispatch for An Active Distribution Network with Multiple Networked Microgrids. IEEE Access
**2018**, 6, 38802–38819. [Google Scholar] [CrossRef] - Yang, X.; Chen, W.; Wu, L. Voltage Quality Control Method for Microgrid. Proc. CSU-EPSA
**2018**, 30, 63–69. [Google Scholar] - Farag, H.E.Z.; El-Saadany, E.F. A novel cooperative protocol for distributed voltage control in active distribution systems. IEEE Trans. Power Syst.
**2013**, 28, 1645–1656. [Google Scholar] [CrossRef] - Hossain, M.A.; Pota, H.R.; Squartini, S.; Zaman, F.; Guerrero, J.M. Energy scheduling of community microgrid with battery cost using particle swarm optimization. Appl. Energy
**2019**, 254, 113723. [Google Scholar] [CrossRef] - Hossain, M.A.; Pota, H.R.; Squartini, S.; Zaman, F.; Muttaqi, K.M. Energy management of community microgrids considering degradation cost of battery. J. Energy Storage
**2019**, 22, 257–269. [Google Scholar] [CrossRef] - Khodabakhsh, R.; Sirouspour, S. Optimal control of energy storage in a microgrid by minimizing conditional value-at-risk. IEEE Trans. Sustain. Energy
**2016**, 7, 1264–1273. [Google Scholar] [CrossRef] - Dallinger, D.; Krampe, D.; Wietschel, D. Vehicle-to-grid regulation reserves based on a dynamic simulation of mobility behavior. IEEE Trans. Smart Grid
**2011**, 2, 302–303. [Google Scholar] [CrossRef] - Vidoni, R.; Gasparetto, A.; Giovagnoni, M. A method for modeling three-dimensional flexible mechanisms based on an equivalent rigid-link system. J. Vib. Control
**2014**, 20, 483–500. [Google Scholar] [CrossRef] - Shi, L.; Luo, Y.; Tu, G.Y. Bidding strategy of microgrid with consideration of uncertainty for participating in power market. Elect. Power Energy Syst.
**2014**, 59, 1–13. [Google Scholar] [CrossRef] - Molzahn, D.K.; Dörfler, F.; Sandberg, H. A survey of distributed optimization and control algorithms for electric power systems. IEEE Trans. Smart Grid
**2017**, 8, 2941–2962. [Google Scholar] [CrossRef] - Chang, T.H.; Liao, W.C.; Hong, M.; Wang, X. Asynchronous distributed admm for large-scale optimizationLinear convergence analysis and numerical performance. IEEE Trans. Signal Process.
**2016**, 64, 3131–3144. [Google Scholar] [CrossRef] - Mota, J.; Xavier, J.; Aguiar, P.; Pschel, M. A proof of convergence for the alternating direction method of multipliers applied to polyhedral constrained functions. Mathematics
**2011**. [Google Scholar] - Boyd, S.; Parikh, N.; Chu, E. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.
**2011**, 3, 1–122. [Google Scholar] [CrossRef] - Real, A.J.D.; Arce, A.; Bordons, C. Combined environmental and economic dispatch of smart grids using distributed model predictive control. Int. J. Electr. Power Energy Syst.
**2014**, 54, 65–76. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of active distribution system framework considering the benefits of multi-stakeholder.

Period | Price/(kW·h) | ||
---|---|---|---|

Purchase Electricity | Sale of Electricity | ||

Peak time | 18:00–21:00 | 0.83 | 0.65 |

Usual time | 7:00–18:00 22:00–0:00 | 0.49 | 0.38 |

Valley time | 0:00–7:00 | 0.17 | 0.13 |

Type of Pollutant | $\mathit{S}{\mathit{O}}_{2}$ | $\mathit{N}{\mathit{O}}_{\mathit{x}}$ | $\mathit{C}{\mathit{O}}_{2}$ | $\mathit{C}\mathit{O}$ | Dust |
---|---|---|---|---|---|

Levy fee/USD·$K{g}^{-1}$ | 1 | 1.95 | 0.00975 | 0.16 | 0.125 |

Stakeholder | MT | WT | PV | ESS | EVS | FD |
---|---|---|---|---|---|---|

VMG1 | √ | √ | √ | √ | √ | √ |

VMG2 | √ | √ | √ | √ | × | √ |

DSO1 | √ | √ | √ | √ | × | × |

DSO2 | √ | × | √ | √ | × | × |

Stakeholder | Profit(Ten Thousand USD) |
---|---|

VMG1 | 0.9830 |

VMG2 | 1.2211 |

DSO1 | 1.1054 |

DSO2 | 1.0494 |

Region | Profit (Ten Thousand USD) | Acceptance |
---|---|---|

VMG1 | 0.9354 | 0.952 |

VMG2 | 1.1270 | 0.931 |

DSO1 | 0.9974 | 0.903 |

DSO2 | 0.9452 | 0.901 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.; Liu, S.; Niu, Z.
Distributed Optimization for Active Distribution Network Considering the Balance of Multi-Stakeholder. *Processes* **2020**, *8*, 987.
https://doi.org/10.3390/pr8080987

**AMA Style**

Liu Y, Liu S, Niu Z.
Distributed Optimization for Active Distribution Network Considering the Balance of Multi-Stakeholder. *Processes*. 2020; 8(8):987.
https://doi.org/10.3390/pr8080987

**Chicago/Turabian Style**

Liu, Yang, Sanming Liu, and Zhuangzhuang Niu.
2020. "Distributed Optimization for Active Distribution Network Considering the Balance of Multi-Stakeholder" *Processes* 8, no. 8: 987.
https://doi.org/10.3390/pr8080987