Mathematical Modelling of Blanch-Assisted Drying of Pomegranate (Punica granatum) Arils in a Hot-Air Drier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Processing
2.2. Oven Drying Procedure
2.3. Mathematical Modelling
2.4. Drying Rate (DR)
2.5. Effective Moisture Diffusivity Determination
2.6. Statistical Analysis of the Models
3. Results and Discussion
3.1. Effect of Blanching Conditions on Drying Kinetics of Dried Pomegranate Aril
3.1.1. Moisture Ratio
3.1.2. Drying Rate
3.1.3. Moisture Diffusion
3.2. Fitting of Drying Curve
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caleb, O.J.; Opara, U.L.; Witthuhn, C.R. Modified atmosphere packaging of pomegranate fruit and arils: A review. Food Bioprocess Technol. 2012, 5, 15–30. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Effects of maturity status on biochemical concentration, polyphenol composition and antioxidant capacity of pomegranate fruit arils (cv. Bhagwa). S. Afr. J. Bot. 2013, 85, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Mphahlele, R.R.; Fawole, O.A.; Stander, M.A.; Opara, U.L. Effect of fruit maturity and growing location on the postharvest concentrations of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Sci. Hortic. 2014, 179, 36–45. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G.J. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally processed pomegranate arils (cvs. “Acco” and “Herskawitz”). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Ashtiani, S.H.M.; Salarikia, A.; Golzarian, M.R. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inf. Process. Agric. 2017, 4, 128–139. [Google Scholar]
- Sharma, A.; Thakur, N.S. Influence of active packaging on quality attributes of dried wild pomegranate (Punica granatum L.) arils during storage. J. Nat. Appl. Sci. 2016, 8, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Ertekin, C.; Yaldiz, O. Thin layer drying of sliced quash by forced convection. In Proceedings of the 17th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), Qubec, QC, Canada, 13–17 June 2010. [Google Scholar]
- Minaei, S.; Motevali, A.; Ahmadi, E.; Azizi, M.H. Mathematical models of drying pomegranate arils in vacuum and microwave dryers. J. Agric. Sci. Technol. 2012, 14, 311–325. [Google Scholar]
- Doymaz, I. Drying of pomegranate seeds using infrared radiation. Food Sci. Biotechnol. 2012, 21, 1269–1275. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Hernández, F.; Melgarejo, P.; Lech, K.; Carbonell-Barrachina, Á.A. Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food Bioprocess Technol. 2013, 6, 1644–1654. [Google Scholar] [CrossRef]
- Minaei, S.; Motevali, A.; Najafi, G.; Mousavi Seyedi, S.R. Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils (‘Punica granatum’). Aust. J. Crop Sci. 2012, 6, 584. [Google Scholar]
- Cruz, A.C.; Guiné, R.P.; Gonçalves, J.C. Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). Int. J. Fruit Sci. 2015, 15, 54–78. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krokida, M.K.; Maroulis, Z.B. Structural properties of dehydrated products during rehydration. Int. J. Food Sci. Technol. 2001, 36, 529–538. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Chiralt, A.; Fito, P. Food dehydration and product structure. Trends Food Sci. Technol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Doymaz, I. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod. Process. 2010, 88, 124–132. [Google Scholar] [CrossRef]
- Kingsly, A.R.P.; Singh, R.; Goyal, R.K.; Singh, D.B. Thin-layer drying behaviour of organically produced tomato. Am. J. Food Technol. 2007, 2, 71–78. [Google Scholar]
- Adetoro, A.O.; Fawole, O.A.; Opara, U.L. Effects of pre-treatment and drying on the quality attributes of fruit. In Proceedings of the VII International Conference on Managing Quality in Chains (MQUIC2017) and II International Symposium on Ornamentals in 1201, Stellenbosch University, Stellenbosch, South Africa, 4–7 September 2017; pp. 1–6. [Google Scholar]
- Sabır, A.; Sabır, F.K.; Kara, Z. Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage. Int. J. Food Sci. Technol. 2011, 48, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Préstamo, G.; Fuster, C.; Risueno, M.C. Effects of blanching and freezing on the structure of carrots cells and their implications for food processing. J. Sci. Food Agric. 1998, 77, 223–229. [Google Scholar] [CrossRef]
- Neves, F.I.; Vieira, M.C.; Silva, C.L. Inactivation kinetics of peroxidase in zucchini (Cucurbita pepo L.) by heat and UV-C radiation. Innov. Food Sci. Emerg Technol. 2012, 13, 158–162. [Google Scholar] [CrossRef]
- Maghoumi, M.; Gόmez, P.A.; Mostofi, Y.; Zamani, Z.; Artés-Hernández, F.; Artés, F. Combined effect of heat treatment, UV-C and super atmospheric oxygen packing on phenolics and browning related enzymes of fresh-cut pomegranate arils. Int. J. Food Sci. Technol. 2013, 54, 389–396. [Google Scholar]
- Deylami, M.Z.; Rahman, R.A.; Tan, C.P.; Bakar, J.; Olusegun, L. Effect of blanching on enzyme activity, color change, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. J. Food Eng. 2016, 178, 12–19. [Google Scholar] [CrossRef]
- Mwithiga, G.; Olwal, J.O. The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. J. Food Eng. 2005, 71, 373–378. [Google Scholar] [CrossRef]
- Dincer, I.; Hussain, M.M. Development of a new Biot number and lag factor correlation for drying applications. Int. J. Heat Mass Transf. 2004, 47, 653–658. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.J. Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. Int. J Food Sci. Technol. 2009, 42, 180–186. [Google Scholar] [CrossRef]
- Arevalo-Pinedo, A.; Fernanda, E.X. Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage. J. Food Eng. 2007, 76, 562–567. [Google Scholar] [CrossRef]
- Goyal, R.K.; Mujjeb, O.; Bhargava, V.K. Mathematical modeling of thin layer drying kinetics of apple in tunnel dryer. Int. J. Food Eng. 2008, 4. [Google Scholar] [CrossRef]
- Karaaslan, M.; Yilmaz, F.M.; Cesur, O.; Vardin, H.; Ikinci, A.; Coskun Dalgic, A. Drying kinetics and thermal degradation of phenolic compounds and anthocyanins in pomegranate arils dried under vacuum conditions. Int. J. Food Sci. 2014, 49, 595–605. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Liao, X.; Chen, F.; Zhao, G.; Wu, J. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 2007, 40, 39–46. [Google Scholar] [CrossRef]
- Yagcioglu, A.; Degirmencioglu, A.; Cagatay, F. Drying characteristic of laurel leaves under different conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26–27 May 1999; Faculty of Agriculture, Cukurova University, 1999; pp. 565–569. [Google Scholar]
- Diamante, L.M.; Ihns, R.; Savage, G.P.; Vanhanen, L. A new mathematical model for thin layer drying of fruits. Int. J. Food Sci. Technol. 2010, 45, 1956–1962. [Google Scholar] [CrossRef]
- Kaleta, A.; Go´rnicki, K. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int. J. Food Sci. Technol. 2010, 45, 891–898. [Google Scholar] [CrossRef]
- Menges, H.O.; Ertekin, C. Mathematical modeling of thin layer drying of golden apples. J. Food Eng. 2005, 77, 119–125. [Google Scholar] [CrossRef]
- Doymaz, İ.; Karasu, S.; Baslar, M. Effects of infrared heating on drying kinetics, antioxidant activity, phenolic content, and colour of jujube fruit. J. Food Meas. Charact. 2016, 10, 283–291. [Google Scholar] [CrossRef]
- Sarpong, F.; Yu, X.; Zhou, C.; Hongpeng, Y.; Bernard, B.; Junwen, U. Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa ssp.) under relative humidity-convective air dryer. J. Food Meas. Charact. 2018, 12, 1229–1241. [Google Scholar] [CrossRef]
- Movagharnejad, K.; Nikzad, M. Modelling of tomato drying using artificial neural network. Comput. Electron. Agric. 2007, 59, 78–85. [Google Scholar] [CrossRef]
- Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P. Thin-layer drying behaviour of vegetable wastes from wholesale market. Dry. Technol. 2000, 18, 995–1006. [Google Scholar] [CrossRef]
- Dak, M.; Jaaffrey, S.N.A.; Gupta, R.B. Moisture-dependent physical properties of dried pomegranate arils. J. Food Meas. Charact. 2014, 8, 234–240. [Google Scholar] [CrossRef]
- Horuz, E.; Maskan, M. Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Int. J. Food Sci. Technol. 2015, 52, 285–293. [Google Scholar] [CrossRef]
- Kaya, A.; Aydin, O.; Demirtas, C. Drying kinetics of red delicious apple. Biosyst. Eng. 2007, 96, 517–524. [Google Scholar] [CrossRef]
- Andrés, A.; Bilbao, C.; Fito, P. Drying kinetics of apple cylinders under combined hot air–microwave dehydration. J. Food Eng. 2004, 63, 71–78. [Google Scholar] [CrossRef]
- Bilbao, C.; Albors, A.; Gras, M.; Andres, A.; Fito, P. Shrinkage during apple tissue air-drying: Macro and microstructural changes. In Proceedings of the 12th International Drying Symposium (IDS 2000); Elsevier Sciences: Noordwijkerhout, The Netherlands, 2000; ISBN 0-444-50422-2. [Google Scholar]
- Tunde-Akintunde, T.Y.; Ogunlakin, G.O. Mathematical modeling of drying of pretreated and untreated pumpkin. Int. J. Food Sci. Technol. 2013, 50, 705–713. [Google Scholar] [CrossRef] [Green Version]
Model | Name | Emperical Expression | References |
---|---|---|---|
1 | Lewis | MR = exp (−kt) | [30] |
2 | Henderson and Pabis | MR = a.exp (−kt) | [30] |
3 | Logarithmic | MR = a.exp (−kt) + c | [31] |
4 | Page | MR = exp (−kt n) | [32] |
5 | Wang and Singh | MR = 1 + at + bt2 | [33] |
6 | Modified Page | MR = exp (−kt) n | [30] |
7 | Midili | MR = a.exp (−kt n) + bt | [34] |
Cultivar/Classification | Blanching Condition | Moisture Diffusivity (m2/s) |
---|---|---|
Acco | Control | 4.81 × 10−9 |
90 °C 30 s | 1.24 × 10−8 | |
90 °C 60 s | 1.34 × 10−8 | |
100 °C 30 s | 1.11 × 10−8 | |
100 °C 60 s | 1.24 × 10−8 | |
Herskawitz | Control | 3.29 × 10−9 |
90 °C 30 s | 1.04 × 10−8 | |
90 °C 60 s | 1.19 × 10−8 | |
100 °C 30 s | 1.11 × 10−8 | |
100 °C 60 s | 1.01 × 10−8 | |
Wonderful | Control | 5.83 × 10−9 |
90 °C 30 s | 1.09 × 10−8 | |
90 °C 60 s | 1.14 × 10−8 | |
100 °C 30 s | 1.27 × 10−8 | |
100 °C 60 s | 1.29 × 10−8 |
Model Number | k | a | b | c | n | Determining Coefficient (R2) | Root Mean Square Error (RMSE) |
---|---|---|---|---|---|---|---|
90 °C 30 s | |||||||
1 | 1.01 × 10−4 | 0.9821 | 0.017932 | ||||
2 | 9.63 × 10−5 | 0.9550 | 0.9779 | 0.015464 | |||
3 | 1.49 × 10−4 | 0.8611 | 0.1365 | 0.9989 | 0.000686 | ||
4 | 1.02 × 10−3 | 0.7371 | 0.9949 | 0.02257 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9804 | 0.01557 | |||
6 | 1.08 × 10−5 | 9.3788 | 0.9821 | 0.017933 | |||
7 | 1.59 × 10−3 | 1.01107 | 9.30 × 10−7 | 0.7097 | 0.9949 | 0.003182 | |
90 °C 60 s | |||||||
1 | 0.00010 | 0.9880 | 0.011722 | ||||
2 | 9.91 × 10−5 | 0.9687 | 0.9857 | 0.010517 | |||
3 | 0.000138 | 0.8899 | 0.1101 | 0.9979 | 0.001314 | ||
4 | 0.00064 | 0.8036 | 0.9940 | 0.003859 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9877 | 0.010128 | |||
6 | 1.09 × 10−5 | 9.4298 | 0.9880 | 0.011722 | |||
7 | 0.00159 | 1.0111 | 9.3 × 10−7 | 0.7097 | 0.9905 | 0.007004 | |
100 °C 30 s | |||||||
1 | 0.00010 | 0.9682 | 0.031770 | ||||
2 | 9.3 × 10−5 | 0.9550 | 0.9628 | 0.027411 | |||
3 | 0.00015 | 0.8611 | 0.1365 | 0.9966 | 0.002839 | ||
4 | 0.00118 | 0.7371 | 0.9914 | 0.006068 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9691 | 0.024845 | |||
6 | 1.09 × 10−5 | 9.4298 | 0.9694 | 0.032035 | |||
7 | 0.00159 | 1.0111 | 9.3 × 10−7 | 0.7097 | 0.9947 | 0.003418 | |
100 °C 60 s | |||||||
1 | 0.00010 | 0.9753 | 0.022735 | ||||
2 | 9.9 × 10−5 | 0.8987 | 0.9721 | 0.023406 | |||
3 | 0.00015 | 0.8611 | 0.1365 | 0.9977 | 0.002243 | ||
4 | 0.00118 | 0.7371 | 0.9938 | 0.004394 | |||
5 | −8.8 × 10−5 | 2.22 × 10−9 | 0.9749 | 0.021579 | |||
6 | 1.08 × 10−5 | 9.9287 | 0.9794 | 0.022169 | |||
7 | 0.00159 | 1.0111 | 9.30 × 10−7 | 0.7097 | 0.9958 | 0.003968 | |
Control | |||||||
1 | 3.97 × 10−5 | 0.9525 | 0.094019 | ||||
2 | 3.22 × 10−5 | 0.8519 | 0.9353 | 0.047809 | |||
3 | 2.68 × 10−5 | 0.7439 | 0.2561 | 0.9871 | 0.009322 | ||
4 | 0.00249 | 0.5933 | 0.9918 | 0.005697 | |||
5 | −3.50 × 10−5 | 3.90 × 10−10 | 0.9599 | 0.075367 | |||
6 | 9.98 × 10−6 | 3.99 | 0.9527 | 0.094028 | |||
7 | 0.00185 | 0.99412 | 4.33 × 10−7 | 0.6254 | 0.9920 | 0.005833 |
Model Number | k | a | b | c | n | Determining Coefficient (R2) | Root Mean Square Error (RMSE) |
---|---|---|---|---|---|---|---|
90 °C 30 s | |||||||
1 | 7.61 × 10−5 | 0.9821 | 0.017932 | ||||
2 | 7.27 × 10−5 | 0.9611 | 0.9779 | 0.015464 | |||
3 | 0.00011 | 0.8611 | 0.1365 | 0.9989 | 0.000686 | ||
4 | 0.001 | 0.7371 | 0.9949 | 0.02257 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9804 | 0.01557 | |||
6 | 9.17 × 10−6 | 8.2998 | 0.9821 | 0.017933 | |||
7 | 0.00129 | 1.0211 | 9.30 × 10−7 | 0.7097 | 0.9949 | 0.003182 | |
90 °C 60 s | |||||||
1 | 6.42 × 10−5 | 0.9880 | 0.011722 | ||||
2 | 6.33 × 10−5 | 0.9750 | 0.9857 | 0.010517 | |||
3 | 0.000109 | 0.8711 | 0.1765 | 0.9979 | 0.001314 | ||
4 | 0.00018 | 0.8916 | 0.9940 | 0.003859 | |||
5 | −8.35 × 10−5 | 2.22 × 10−9 | 0.9877 | 0.010128 | |||
6 | 8.43 × 10−6 | 7.6155 | 0.9880 | 0.011722 | |||
7 | 0.00109 | 1.0111 | 9.2 × 10−7 | 0.7097 | 0.9905 | 0.007004 | |
100 °C 30 s | |||||||
1 | 7.63 × 10−5 | 0.9682 | 0.031770 | ||||
2 | 7.33 × 10−5 | 0.9550 | 0.9628 | 0.027411 | |||
3 | 0.00011 | 0.8011 | 0.1565 | 0.9966 | 0.002839 | ||
4 | 0.0002 | 0.8991 | 0.9914 | 0.006068 | |||
5 | −8.40 × 10−5 | 2.22 × 10−9 | 0.9691 | 0.024845 | |||
6 | 9.19 × 10−6 | 8.3037 | 0.9694 | 0.032035 | |||
7 | 0.00119 | 1.0011 | 9.0 × 10−7 | 0.7097 | 0.9947 | 0.003418 | |
100 °C 60 s | |||||||
1 | 6.53 × 10−5 | 0.9753 | 0.022735 | ||||
2 | 6.53 × 10−5 | 0.9650 | 0.9721 | 0.023406 | |||
3 | 6.75 × 10−5 | 0.9482 | 0.0295 | 0.9977 | 0.002243 | ||
4 | 0.00016 | 0.9048 | 0.9938 | 0.004394 | |||
5 | −9.0 × 10−5 | 2.22 × 10−9 | 0.9749 | 0.021579 | |||
6 | 7.82 × 10−6 | 8.3567 | 0.9794 | 0.022169 | |||
7 | 0.00129 | 1.0011 | 2.21 × 10−6 | 0.7097 | 0.9958 | 0.003968 | |
Control | |||||||
1 | 2.96 × 10−5 | 0.9525 | 0.094019 | ||||
2 | 3.22 × 10−5 | 0.9819 | 0.9353 | 0.047809 | |||
3 | 1.29 × 10−4 | 0.9611 | 0.2665 | 0.9871 | 0.009322 | ||
4 | 0.00209 | 0.5933 | 0.9918 | 0.005697 | |||
5 | −3.50 × 10−5 | 3.90 × 10−10 | 0.9599 | 0.075367 | |||
6 | 9.98 × 10−6 | 2.99 | 0.9527 | 0.094028 | |||
7 | 0.00145 | 0.99412 | 5.33 × 10−7 | 0.6254 | 0.9920 | 0.005833 |
Model Number | k | a | b | c | n | Determining Coefficient (R2) | Root Mean Square Error (RMSE) |
---|---|---|---|---|---|---|---|
90 °C 30 s | |||||||
1 | 1.02 × 10−4 | 0.9821 | 0.017932 | ||||
2 | 9.33 × 10−5 | 0.9880 | 0.9779 | 0.015464 | |||
3 | 1.19 × 10−4 | 0.8611 | 0.1365 | 0.9989 | 0.000686 | ||
4 | 1.07 × 10−3 | 0.7371 | 0.9949 | 0.02257 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9804 | 0.01557 | |||
6 | 1.01 × 10−5 | 9.1787 | 0.9821 | 0.017933 | |||
7 | 1.39 × 10−3 | 1.01107 | 9.30 × 10−7 | 0.7097 | 0.9949 | 0.003182 | |
90 °C 60 s | |||||||
1 | 1.01 × 10−4 | 0.9880 | 0.011722 | ||||
2 | 9.95 × 10−5 | 0.9999 | 0.9857 | 0.010517 | |||
3 | 1.18 × 10−4 | 0.8899 | 0.1101 | 0.9979 | 0.001314 | ||
4 | 5.2 × 10−4 | 0.8046 | 0.9940 | 0.003859 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9877 | 0.010128 | |||
6 | 1.00 × 10−5 | 9.0898 | 0.9880 | 0.011722 | |||
7 | 0.00139 | 1.0011 | 9.3 × 10−7 | 0.7097 | 0.9905 | 0.007004 | |
100 °C 30 s | |||||||
1 | 0.00010 | 0.9682 | 0.031770 | ||||
2 | 9.97 × 10−5 | 0.9850 | 0.9628 | 0.027411 | |||
3 | 1.49 × 10−4 | 0.8611 | 0.1365 | 0.9966 | 0.002839 | ||
4 | 0.00118 | 0.7371 | 0.9914 | 0.006068 | |||
5 | −8.75 × 10−5 | 2.22 × 10−9 | 0.9691 | 0.024845 | |||
6 | 1.08 × 10−5 | 9.5787 | 0.9694 | 0.032035 | |||
7 | 0.00159 | 1.0111 | 9.3 × 10−7 | 0.7097 | 0.9947 | 0.003418 | |
100 °C 60 s | |||||||
1 | 1.01 × 10−4 | 0.9753 | 0.022735 | ||||
2 | 9.96 × 10−5 | 0.9720 | 0.9721 | 0.023406 | |||
3 | 1.49 × 10−4 | 0.8611 | 0.1265 | 0.9977 | 0.002243 | ||
4 | 0.00138 | 0.7271 | 0.9938 | 0.004394 | |||
5 | −8.85 × 10−5 | 2.22 × 10−9 | 0.9749 | 0.021579 | |||
6 | 1.08 × 10−5 | 9.7987 | 0.9794 | 0.022169 | |||
7 | 0.00169 | 1.0111 | 9.30 × 10−7 | 0.7097 | 0.9958 | 0.003968 | |
Control | |||||||
1 | 4.97 × 10−5 | 0.9525 | 0.094019 | ||||
2 | 3.52 × 10−5 | 0.7506 | 0.9353 | 0.047809 | |||
3 | 9.99 × 10−5 | 0.7439 | 0.2561 | 0.9871 | 0.009322 | ||
4 | 0.00279 | 0.5933 | 0.9918 | 0.005833 | |||
5 | −3.50 × 10−5 | 3.90 × 10−10 | 0.9599 | 0.075367 | |||
6 | 9.98 × 10−6 | 4.99 | 0.9527 | 0.094028 | |||
7 | 0.00185 | 0.94412 | 4.33 × 10−7 | 0.6254 | 0.9920 | 0.005697 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetoro, A.O.; Tsige, A.A.; Opara, U.L.; Fawole, O.A. Mathematical Modelling of Blanch-Assisted Drying of Pomegranate (Punica granatum) Arils in a Hot-Air Drier. Processes 2020, 8, 611. https://doi.org/10.3390/pr8050611
Adetoro AO, Tsige AA, Opara UL, Fawole OA. Mathematical Modelling of Blanch-Assisted Drying of Pomegranate (Punica granatum) Arils in a Hot-Air Drier. Processes. 2020; 8(5):611. https://doi.org/10.3390/pr8050611
Chicago/Turabian StyleAdetoro, Adegoke Olusesan, Alemayehu Ambaw Tsige, Umezuruike Linus Opara, and Olaniyi Amos Fawole. 2020. "Mathematical Modelling of Blanch-Assisted Drying of Pomegranate (Punica granatum) Arils in a Hot-Air Drier" Processes 8, no. 5: 611. https://doi.org/10.3390/pr8050611