Powdered Kombucha Flavored with Fruit By-Products: A Sustainable Functional Innovation
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Fruit Residue Extract Preparation
2.3. Kombucha Fermentation and Flavoring
2.4. Production of Kombucha Powder by Spray Drying
2.5. Physico-Chemical Analysis of Kombucha and Powder Properties
2.5.1. pH, Total Soluble Solids, and Titratable Acidity
2.5.2. Water Activity and Humidity
2.5.3. Total Phenolic Compounds (TPC)
2.5.4. Powder Flowability
2.5.5. Scanning Electron Microscopy (SEM)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Kombucha Physicochemical Parameters
3.2. Selection of Drying Temperature
3.3. Properties of Kombucha Powders
3.3.1. Water Activity (aw) and Moisture
3.3.2. Morphology of Kombucha Powders
3.3.3. Flowability of Flavored Kombucha Powders
3.4. Retention of Total Phenolic Compounds (TPCs)
Comparison with Liquid Kombucha
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KP | Traditional kombucha powder |
GPK | Grape-flavored kombucha powder |
MKP | Mango-flavored kombucha |
References
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Coelho, R.M.D.; de Almeida, A.L.; do Amaral, R.Q.G.; da Mota, R.N.; de Sousa, P.H.M. Kombucha: Review. Int. J. Gastron. Food Sci. 2020, 22, 100272. [Google Scholar] [CrossRef]
- de Fátima, D.; Linhares, M.; Fonteles, T.V.; Andrea de Oliveira, F.; Rodrigues, S. Influence of Sugar Addition in Kombucha Production Regarding the Beverage Effect on Human Fecal Microbiota Composition and Metabolite Profile. Food Biosci. 2025, 68, 106519. [Google Scholar] [CrossRef]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Kombucha Obtained from Green, Oolongand Black Teas on Inhibition of Pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Tan, W.C.; Muhialdin, B.J.; Meor Hussin, A.S. Influence of Storage Conditions on the Quality, Metabolites, and Biological Activity of Soursop (Annona muricata L.) Kombucha. Front. Microbiol. 2020, 11, 603481. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, R.; Orsat, V. Spray Drying for the Production of Nutraceutical Ingredients—A Review. Food Bioproc. Technol. 2012, 5, 3–14. [Google Scholar] [CrossRef]
- Baldelli, A.; Pico, J.; Woo, M.W.; Castellarin, S.; Pratap-Singh, A. Spray Dried Powder of Common Fruit Juices: Enhancement of Main Properties. Powder Technol. 2024, 441, 119560. [Google Scholar] [CrossRef]
- Sharma, R.; Rashidinejad, A.; Jafari, S.M. Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. Food Bioprocess Technol. 2022, 15, 2135–2154. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Jing, Z.; Guo, Y.; Wang, Z. Enhancing Functional Metabolites and Antioxidant Activity of a Novel Alternative Kombucha-like Beverage: Tailor-Made Symbiotic Microbial Consortium for Apple Juice Fermentation. Food Biosci. 2025, 68, 106615. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Effects of Atmospheric Cold Plasma and Ozone on Prebiotic Orange Juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Carr, R.L. Evaluating flow properties of solids. Chem. Eng. 1965, 72, 163–168. [Google Scholar]
- Hausner, H. Friction Conditions in a Mass of Metal Powder. Powder Metall. 1967, 3, 7–13. [Google Scholar]
- Decker, B.L.A.; Miguel, E.D.C.; Fonteles, T.V.; Fernandes, F.A.N.; Rodrigues, S. Impact of Spray Drying on the Properties of Grape Pomace Extract Powder. Processes 2024, 12, 1390. [Google Scholar] [CrossRef]
- Momin, M.A.M.; Tucker, I.G.; Doyle, C.S.; Denman, J.A.; Das, S.C. Manipulation of Spray-Drying Conditions to Develop Dry Powder Particles with Surfaces Enriched in Hydrophobic Material to Achieve High Aerosolization of a Hygroscopic Drug. Int. J. Pharm. 2018, 543, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Leonarski, E.; Cesca, K.; Zanella, E.; Stambuk, B.U.; de Oliveira, D.; Poletto, P. Production of Kombucha-like Beverage and Bacterial Cellulose by Acerola Byproduct as Raw Material. LWT 2021, 135, 110075. [Google Scholar] [CrossRef]
- Andreson, M.; Kazantseva, J.; Kuldjärv, R.; Malv, E.; Vaikma, H.; Kaleda, A.; Kütt, M.L.; Vilu, R. Characterisation of Chemical, Microbial and Sensory Profiles of Commercial Kombuchas. Int. J. Food Microbiol. 2022, 373, 109715. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A Review of Substrates, Regulations, Composition, and Biological Properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Correâ-Filho, L.C.; Lourenço, M.M.; Moldaõ-Martins, M.; Alves, V.D. Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci. 2019, 2019, 8914852. [Google Scholar] [CrossRef]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray Drying-Microencapsulation of Cinnamon Infusions (Cinnamomum zeylanicum) with Maltodextrin. LWT 2015, 64, 571–577. [Google Scholar] [CrossRef]
- Lima, A.C.d.S.; Afonso, M.R.A.; Rodrigues, S.; de Aquino, A.C. Flowability of Spray-Dried Sapodilla Pulp Powder. J. Food Process Eng. 2022, 45, e14092. [Google Scholar] [CrossRef]
- Averardi, A.; Cola, C.; Zeltmann, S.E.; Gupta, N. Effect of Particle Size Distribution on the Packing of Powder Beds: A Critical Discussion Relevant to Additive Manufacturing. Mater. Today Commun. 2020, 24, 100964. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of Phenolic Compounds from Olive Pomace Using Spray Drying: A Study of Operative Parameters. LWT 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Datta, N.; Howes, T. Problems Associated with Spray Drying of Sugar-Rich Foods. Dry. Technol. 1997, 15, 671–684. [Google Scholar] [CrossRef]
- Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Prog. 1991, 7, 49–53. [Google Scholar] [CrossRef]
- Palzer, S. The Effect of Glass Transition on the Desired and Undesired Agglomeration of Amorphous Food Powders. Chem. Eng. Sci. 2005, 60, 3959–3968. [Google Scholar] [CrossRef]
- Adhikari, B.; Howes, T.; Bhandari, B.R.; Troung, V. Characterization of the Surface Stickiness of Fructose-Maltodextrin Solutions during Drying. Dry. Technol. 2003, 21, 17–34. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Valle, J.M.; Karel, M. Caking Phenomena in Amorphous Food Powders. Trends Food Sci. Technol. 1995, 6, 149–155. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-Drying of Fruit and Vegetable Juices: Effect of Drying Conditions on the Product Yield and Physical Properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Vardanega, R.; Muzio, A.F.V.; Silva, E.K.; Prata, A.S.; Meireles, M.A.A. Obtaining Functional Powder Tea from Brazilian Ginseng Roots: Effects of Freeze and Spray Drying Processes on Chemical and Nutritional Quality, Morphological and Redispersion Properties. Food Res. Int. 2019, 116, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Suhag, R.; Kellil, A.; Razem, M. Factors Influencing Food Powder Flowability. Powders 2024, 3, 65–76. [Google Scholar] [CrossRef]
- Shamaei, S.; Seiiedlou, S.S.; Aghbashlo, M.; Tsotsas, E.; Kharaghani, A. Microencapsulation of Walnut Oil by Spray Drying: Effects of Wall Material and Drying Conditions on Physicochemical Properties of Microcapsules. Innov. Food Sci. Emerg. Technol. 2017, 39, 101–112. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z.; Artik, N. Microencapsulation of Grape Polyphenols Using Maltodextrin and Gum Arabic as Two Alternative Coating Materials: Development and Characterization. J. Biotechnol. 2016, 239, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Schlick-Hasper, E.; Bethke, J.; Vogler, N.; Goedecke, T. Flow Properties of Powdery or Granular Filling Substances of Dangerous Goods Packagings—Comparison of the Measurement of the Angle of Repose and the Determination of the Hausner Ratio. Packag. Technol. Sci. 2022, 35, 765–782. [Google Scholar] [CrossRef]
- Shah, D.S.; Moravkar, K.K.; Jha, D.K.; Lonkar, V.; Amin, P.D.; Chalikwar, S.S. A Concise Summary of Powder Processing Methodologies for Flow Enhancement. Heliyon 2023, 9, e16498. [Google Scholar] [CrossRef]
- Şahin-Nadeem, H.; Dinçer, C.; Torun, M.; Topuz, A.; Özdemir, F. Influence of Inlet Air Temperature and Carrier Material on the Production of Instant Soluble Sage (Salvia fruticosa Miller) by Spray Drying. LWT Food Sci. Technol. 2013, 52, 31–38. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; Barringer, S.A.; Iqbal, T. Flow Property Measurement of Food Powders and Sensitivity of Jenike’s Hopper Design Methodology to the Measured Values. J. Food Eng. 2004, 61, 399–405. [Google Scholar] [CrossRef]
- Peleg, M. Flowability of Food Powders and Methods for Its Evaluation. J. Food Process Eng. 1977, 1, 303–328. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Ortega-Rivas, E.; Juliano, P.; Yan, H. Food Powders: Physical Properties, Processing, and Functionality; Food Engineering Series; Springer: New York, NY, USA, 2005. [Google Scholar]
- Teunou, E.; Fitzpatrick, J.J. Effect of Relative Humidity and Temperature on Food Powder Flowability. J. Food Eng. 1999, 42, 109–116. [Google Scholar] [CrossRef]
- Jouppila, K.; Roos, Y.H. Glass Transitions and Crystallization in Milk Powders. J. Dairy Sci. 1994, 77, 2907–2915. [Google Scholar] [CrossRef]
- Labuza, T.P.; Hyman, C.R. Moisture Migration and Control in Multi-Domain Foods. Trends Food Sci. Technol. 1998, 9, 47–55. [Google Scholar] [CrossRef]
- Roos, Y.H.; Karel, M. Applying State Diagrams to Food Processing and Development. Food Technol. 1991, 45, 66, 68–71, 107. [Google Scholar]
- White, G.W.; Cakebread, S.H. The Glassy State in Certain Sugar-Containing Food Products. J. Food Technol. 1966, 1, 73–82. [Google Scholar] [CrossRef]
- Brennan, J.G.; Herrera, J.; Jowitt, R. A Study of Some of the Factors Affecting the Spray Drying of Concentrated Orange Juice, on a Laboratory Scale. Int. J. Food Sci. Technol. 1971, 6, 295–307. [Google Scholar] [CrossRef]
- Estupiñan-Amaya, M.; Fuenmayor, C.A.; López-Córdoba, A. Evaluation of Mixtures of Maltodextrin and Gum Arabic for the Encapsulation of Andean Blueberry (Vaccinium meridionale) Juice by Freeze-drying. Int. J. Food Sci. Technol. 2022, 57, 4821–4832. [Google Scholar] [CrossRef]
- Santhalakshmy, S.; Don Bosco, S.J.; Francis, S.; Sabeena, M. Effect of Inlet Temperature on Physicochemical Properties of Spray-Dried Jamun Fruit Juice Powder. Powder Technol. 2021, 274, 37–43. [Google Scholar] [CrossRef]
- Shelke, G.; Kad, V.; Pandiselvam, R.; Yenge, G.; Kakade, S.; Desai, S.; Kukde, R.; Singh, P. Physical and Functional Stability of Spray-Dried Jamun (Syzygium cumini L.) Juice Powder Produced with Different Carrier Agents. J. Texture Stud. 2023, 54, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Dec, B.; Kiełczewska, K.; Smoczyński, M.; Baranowska, M.; Kowalik, J. Properties and Fractal Analysis of High-Protein Milk Powders. Appl. Sci. 2023, 13, 3573. [Google Scholar] [CrossRef]
- Abdul Rahman, M.N.; Masawal, V.V.; Qing Yii, R.Y.; Narudin, N.; Kobun, R.; Muhammad, N.H.; Chen Ng, E.Y.; Artasasta, M.A. Innovative Development of Instant Kombucha Drink and Kombucha Ice Cream Using Spray Drying Techniques. Int. J. Adv. Res. Food Sci. Agric. Technol. 2025, 3, 1–23. [Google Scholar] [CrossRef]
- Li, Q.; Rudolph, V.; Weigl, B.; Earl, A. Interparticle van Der Waals Force in Powder Flowability and Compactibility. Int. J. Pharm. 2004, 280, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.J.; Barry, K.; Cerqueira, P.S.M.; Iqbal, T.; O’Neill, J.; Roos, Y.H. Effect of Composition and Storage Conditions on the Flowability of Dairy Powders. Int. Dairy J. 2007, 17, 383–392. [Google Scholar] [CrossRef]
- Moreno, T.; Cocero, M.J.; Rodríguez-Rojo, S. Storage Stability and Simulated Gastrointestinal Release of Spray Dried Grape Marc Phenolics. Food Bioprod. Process. 2018, 112, 96–107. [Google Scholar] [CrossRef]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Rao, U.J.S.P. Bioactive Compounds and Antioxidant Potential of Mango Peel Extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- de Medeiros, R.A.B.; da Silva Júnior, E.V.; Barros, Z.M.P.; da Silva, J.H.F.; Brandão, S.C.R.; Azoubel, P.M. Convective Drying of Mango Enriched with Phenolic Compounds from Grape Residue Flour under Different Impregnation Methods. Food Res. Int. 2022, 158, 111539. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of Polyphenols—A Review. Trends Food Sci. Technol. 2020, 21, 510–523. [Google Scholar] [CrossRef]
- Comunian, T.A.; Favaro-Trindade, C.S. Microencapsulation Using Biopolymers as an Alternative to Produce Food Enhanced with Phytosterols and Omega-3 Fatty Acids: A Review. Food Hydrocoll. 2021, 61, 442–457. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the Production of Probiotic Fruit Juices. Beverages 2021, 1, 95–103. [Google Scholar] [CrossRef]
Flowability | Carr Index (%) | Hausner Ratio |
---|---|---|
Excellent | <10 | 1.00–1.11 |
Good | 11–15 | 1.12–1.18 |
Adequate | 16–20 | 1.19–1.25 |
Acceptable | 21–25 | 1.26–1.34 |
Difficult | 26–31 | 1.35–1.45 |
Very difficult | 32–37 | 1.46–1.59 |
Excessively difficult | >38 | >1.60 |
Kombucha | Grape Kombucha | Mango Kombucha | |
---|---|---|---|
pH | 3.70 ± 0.05 a | 3.50 ± 0.05 b | 3.30 ± 0.05 c |
°Brix | 0.20 ± 0.05 a | 0.20 ± 0.01 a | 0.30 ± 0.01 a |
Acidity (%) | 0.22 ± 0.01 a | 0.23 ± 0.05 a | 0.23 ± 0.05 a |
TPC | 143.94 ± 2.62 a | 227.34 ± 2.11 b | 165.77 ± 2.14 c |
KP | GKP | MKP | |
---|---|---|---|
Bulk density (kg/m3) | 275.25 ± 0.57 c | 413.35 ± 0.52 a | 390.45 ± 0.52 b |
Tapped density (kg/m3) | 717.30 ± 0.4 c | 930.30 ± 0.51 a | 879.80 ± 0.55 b |
Carr’s index (%) | 45.71 ± 0.42 a | 40.55 ± 0.22 b | 38.80 ± 0.12 c |
Hausner ratio | 1.84 ± 0.01 a | 1.68 ± 0.01 b | 1.63 ± 0.01 b |
Flow index (If) | 1.64 ± 0.02 b | 1.71 ± 0.02 b | 2.55 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linhares, M.d.F.D.; Fonteles, T.V.; de Oliveira, L.S.; de Souza, S.B.; de Castro Miguel, E.; Fernandes, F.A.N.; Rodrigues, S. Powdered Kombucha Flavored with Fruit By-Products: A Sustainable Functional Innovation. Processes 2025, 13, 3020. https://doi.org/10.3390/pr13093020
Linhares MdFD, Fonteles TV, de Oliveira LS, de Souza SB, de Castro Miguel E, Fernandes FAN, Rodrigues S. Powdered Kombucha Flavored with Fruit By-Products: A Sustainable Functional Innovation. Processes. 2025; 13(9):3020. https://doi.org/10.3390/pr13093020
Chicago/Turabian StyleLinhares, Maria de Fátima Dantas, Thatyane Vidal Fonteles, Lorena Silva de Oliveira, Samira Barros de Souza, Emilio de Castro Miguel, Fabiano André Narciso Fernandes, and Sueli Rodrigues. 2025. "Powdered Kombucha Flavored with Fruit By-Products: A Sustainable Functional Innovation" Processes 13, no. 9: 3020. https://doi.org/10.3390/pr13093020
APA StyleLinhares, M. d. F. D., Fonteles, T. V., de Oliveira, L. S., de Souza, S. B., de Castro Miguel, E., Fernandes, F. A. N., & Rodrigues, S. (2025). Powdered Kombucha Flavored with Fruit By-Products: A Sustainable Functional Innovation. Processes, 13(9), 3020. https://doi.org/10.3390/pr13093020