Chemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of a New Fresh Cheese Added with Guabiroba Pulp
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.3. Physicochemical Analysis
2.4. Texture Analysis
2.5. Total Phenolic Compounds
2.6. Carotenoid Content
2.7. Sugar Analysis
2.8. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.9. Antioxidant Activity
2.10. Multielement Profile
2.11. Antimicrobial Activity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Physical Analysis
3.2. Total Phenolic Compounds
3.3. Carotenoid Content
3.4. Sugar Analysis
3.5. Hydrophilic and Lipophilic Compound Determination
3.6. Antioxidant Activity
3.7. Multielement Profile
3.8. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- Silva, T.C.M.; Ramos, G.L.P.A.; Prudêncio, E.S.; Pimentel, T.C.; Martins, C.C.; Corassin, C.H.; Freitas, M.Q.; Mársico, E.T.; Esmerino, E.A.; Barros, C.P.; et al. Functional Minas Frescal cheese with spore-forming Wezmannia coagulans GBI-30. Int. Dairy J. 2024, 156, 105993. [Google Scholar] [CrossRef]
- Muñoz-Bas, C.; Muñoz-Tebar, N.; Viuda-Martos, M.; Sayas-Barberá, E.; Pérez-Alvarez, J.A.; Fernández-López, J. Application of date-coproducts for the fortification of fresh goat cheese: Effect on their nutritional, technological, physicochemical, microstructural, microbiological and sensory properties. Appl. Food Res. 2024, 4, 100619. [Google Scholar] [CrossRef]
- Amorim, I.S.; Amorim, D.S.; Godoy, H.T.; Mariutti, L.R.B.; Chisté, R.C.; Pena, R.S.; Bogusz Junior, S.; Chim, J.F. Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon 2024, 10, e24054. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; Souza, P.H.M.; Arriaga, Â.M.C.; Prado, G.M.; Magalhães, C.E.C.; Maia, G.A.; Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Silva, V.R.F.; Kempka, A.P. Campomanesia xanthocarpa (Mart.) O. Berg: Therapeutic potential through a comprehensive review of biological activities and phenolic compound interactions. Biocatal. Agric. Biotechnol. 2023, 54, 1878–8181. [Google Scholar] [CrossRef]
- Prestes, A.A.; Helm, C.V.; Esmerino, E.A.; Silva, R.; Cruz, A.G.; Prudencio, E.S. Potential properties of guabiroba (Campomanesia xanthocarpa O. Berg) processing: A native Brazilian fruit. Adv. Food Technol. Nutr. Sci. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Prestes, A.A.; Silveira, M.F.; Canella, M.H.M.; Helm, C.V.; Andrade, D.R.M.; Ferreira, A.L.A.; Amboni, R.D.M.C.; Fedrigo, I.M.T.; Hernández, E.; Prudencio, E.S. Whey block freeze concentration aiming a functional fermented lactic beverage with the addition of probiotic and guabiroba pulp (Campomanesia xanthocarpa O. Berg), a native Brazilian fruit. Food Sci. Technol. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Prestes, A.A.; Verruck, S.; Vargas, M.O.; Canella, M.H.M.; Silva, C.C.; Barros, E.L.S.; Dantas, A.; Oliveira, L.V.A.; Maran, B.M.; Matos, M.; et al. Influence of guabiroba pulp (Campomanesia xanthocarpa O. Berg) added to fermented milk on probiotic survival under in vitro simulated gastrointestinal conditions. Food Res. Int. 2021, 141, 110135. [Google Scholar] [CrossRef]
- Messias, C.R.; Quast, L.B.; Alves, V.; Bitencourt, T.B.; Quast, E. Development of petit suisse cheese with native fruits: Blackberry (Morus nigra L cv. Tupy) and guabiroba (Campomanesia xanthocarpa O. Berg). J. Food Nutr. Sci. 2021, 9, 89–98. [Google Scholar] [CrossRef]
- IAL (Instituto Adolfo Lutz). Métodos Físico-Químicos Para Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, SP, Brazil, 2008. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Gan, Z.; Sun, H.; Wang, R.; Feng, B. A novel solid-phase extraction for the concentration of sweeteners in water and analysis by ion-pair liquid chromatography triple quadrupole mass spectrometry. J. Chromatogr. A 2013, 1274, 87–96. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001. [Google Scholar]
- Neri, L.; Di Biase, L.; Sacchetti, G.; Di Mattia, C.; Santarelli, V.; Mastrocola, D.; Pittia, P. Use of vacuum impregnation for the production of high quality fresh-like apple products. J. Food Eng. 2016, 179, 98–108. [Google Scholar] [CrossRef]
- Lima, A.S.; Maia, D.V.; Haubert, L.; Oliveira, T.L.; Fiorentini, Â.M.; Rombaldi, C.V.; Silva, W.P. Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus. LWT 2020, 119, 108884. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.M.; Ferreira, F.N.; Luna, A.S.; Langone, M.A.P.; Gois, J.S. Optimized eco-friendly sample preparation methods for determining major and minor elements in cheeses by ICP OES. Food Anal. Methods 2024, 17, 1402–1410. [Google Scholar] [CrossRef]
- De Bona, E.A.M.; Pinto, F.G.S.; Fruet, T.K.; Jorge, T.C.M.; Moura, A.C. Comparação de métodos para avaliação da atividade antimicrobiana e determinação da concentração inibitória mínima (CIM) de extratos vegetais aquosos e etanólicos. Arq. Inst. Biol. 2014, 81, 218–225. [Google Scholar] [CrossRef]
- Quintanilla, P.; Beltrán, M.C.; Molina, A.; Escriche, I.; Molina, M.P. Characteristics of ripened Tronchón cheese from raw goat milk containing legally admissible amounts of antibiotics. J. Dairy Sci. 2019, 102, 2941–2953. [Google Scholar] [CrossRef]
- Lima, R.C.; Carvalho, A.P.A.; Silva, B.D.; Torres Neto, L.; Figueiredo, M.R.S.; Chaves, P.H.T.; Almeida, A.E.C.C.; Conte-Junior, C.A. Green ultrasound-assisted extraction of bioactive compounds of babassu (Attalea speciosa) mesocarp: Effects of solid-liquid ratio extraction, antioxidant capacity, and antimicrobial activity. Appl. Food Res. 2023, 3, 100331. [Google Scholar] [CrossRef]
- Tura, M.; Gagliano, M.A.; Soglia, F.; Bendini, A.; Patrignani, F.; Petracci, M.; Toschi, T.G.; Valli, E. Consumer perception and liking of parmigiano reggiano protected designation of origin (PDO) cheese produced with milk from cows fed fresh forage vs. dry hay. Foods 2024, 13, 309. [Google Scholar] [CrossRef]
- El-Loly, M.M.; Farahat, E.S.A.; Mohamed, A.G. Nutritional and functional evaluation of innovative processed cheese using papaya pulp. Clin. Nutr. Open Sci. 2024, 57, 218–230. [Google Scholar] [CrossRef]
- Hueso, D.; Gómez-Guillén, M.C.; Fontecha, J.; Gómez-Cortés, P. Rheological characterization of commercial Burgos-type ultrafiltered fresh cheeses. LWT 2023, 190, 115525. [Google Scholar] [CrossRef]
- Costa, M.P.; Frasão, B.S.; Silva, A.C.O.; Freitas, M.Q.; Franco, R.M.; Conte-Junior, C.A. Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. J. Dairy Sci. 2015, 98, 5995–6003. [Google Scholar] [CrossRef]
- Krentz, A.; García-Cano, I.; Jiménez-Flores, R. Functional, textural, and rheological properties of mixed casein micelle and pea protein isolate co-dispersions. JDS Commun. 2022, 3, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.B.; Murtaza, M.S.; Shahbaz, M.; Sameen, A.; Rafique, S.; Arshad, R.; Raza, N.; Akbar, Z.; Kausar, G.; Amjad, A. Functional, textural, physicochemical and sensorial evaluation of cottage cheese standardized with food grade coagulants. Food Sci. Technol. 2022, 42, e33420. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, H.; Xu, P.; Yao, Y.; Ma, Y.; Wei, Z.; Niu, X.; Shang, Y.; Zhao, D. Effect of grape seed proanthocyanidin on the structural and physicochemical properties of bread during bread fermentation stage. Curr. Res. Food Sci. 2023, 7, 100559. [Google Scholar] [CrossRef]
- Acevedo-Correa, D.; Rodriguez-Meza, J.; Molinares-Brito, C.; Montero-Castillo, P.; Alcázar-Orozco, H. Evaluation of the effect of sesame (Sesamum indicum L.) protein isolates on the bromatological, textural, and microstructural properties of fresh cheese. Appl. Food Res. 2025, 5, 100691. [Google Scholar] [CrossRef]
- Salehi, F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci. Nutr. 2021, 9, 4666–4686. [Google Scholar] [CrossRef]
- Feiden, T.; Fernandes, I.A.; Valduga, E.; Zeni, J.; Steffens, J. Ultrasound-assisted extraction of enzymes and bioactive compounds from secondary artichoke flowers: A sustainable alternative for cheese production. Food Humanit. 2025, 4, 100495. [Google Scholar] [CrossRef]
- Hernández, H.; Le Romancer, R.; Nunes, M.C.; Prista, C.; Raymundo, A. Effects of addition of algae biomass on the structure, bioactivity and nutritional properties of Halloumi-like cheese. Algal Res. 2025, 85, 103874. [Google Scholar] [CrossRef]
- Chotyakul, N.; Pateiro-Moure, M.; Saraiva, J.A.; Torres, J.A.; Pérez-Lamela, C. Simultaneous HPLC–DAD quantification of vitamins A and E content in raw, pasteurized, and UHT cow’s milk and their changes during storage. Eur. Food Res. Technol. 2014, 238, 535–547. [Google Scholar] [CrossRef]
- Habtegebriel, H.; Tazart, Z.; Farrugia, C.; Gatt, R.; Valdramidis, V. Storage stability and antioxidant activity of astaxanthin and beta-carotene as affected by the architecture of O/W emulsions of milk proteins. LWT 2024, 209, 116733. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Rodríguez-Rodríguez, E.; Beltrán-De-Miguel, B.; Estévez-Santiago, R. Dietary β-cryptoxanthin and α-carotene have greater apparent bioavailability than β-carotene in subjects from countries with different dietary patterns. Nutrients 2020, 12, 2639. [Google Scholar] [CrossRef] [PubMed]
- Rybicka, I.; Gliszczyńska-Świgło, A. Sugars in dairy products of different flavours. Int. Dairy J. 2021, 114, 104933. [Google Scholar] [CrossRef]
- Suri, S.; Kumar, V.; Prasad, R.; Tanwar, B.; Goyal, A.; Kaur, S.; Gat, Y.; Kumar, A.; Kaur, J.; Singh, D. Considerations for development of lactose-free food. J. Nutr. Intermed. Metab. 2019, 15, 27–34. [Google Scholar] [CrossRef]
- Nimgampalle, M.; Chakravarthy, H.; Devanathan, V. Glucose metabolism in the brain: An update. In Recent Developments in Applied Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 77–88. [Google Scholar]
- Park, S.; Fadhul, T.I.; Kahn, C.R.; Softic, S. 292-OR: High-fat diets containing sucrose and fructose, but not glucose, induce obesity and hepatic insulin resistance via accumulation of diacylglycerols. Diabetes 2023, 72, 292. [Google Scholar] [CrossRef]
- Prestes, A.A.; Andrade, D.R.M.; Canella, M.H.M.; Haas, I.S.; Helm, C.V.; Gois, J.S.; Block, J.M.; Wanderley, B.R.S.M.; Amboni, R.D.M.C.; Cruz, A.G.; et al. The addition of concentrated cold-pressed guabiroba juice to yogurts: Effects on the physicochemical analyses, antioxidant activity, carotenoid content, total phenolic compounds, and mineral profile. Processes 2024, 12, 1915. [Google Scholar] [CrossRef]
- Garde, S.; Ávila, M.; Gaya, P.; Arias, R.; Nuñez, M. Sugars and organic acids in raw and pasteurized milk Manchego cheeses with different degrees of late blowing defect. Int. Dairy J. 2012, 25, 87–91. [Google Scholar] [CrossRef]
- Jia, D.; Xu, Z.; Chen, L.; Huang, Q.; Huang, C.; Tao, J.; Qu, X.; Xu, X. Analysis of organic acid metabolism reveals citric acid and malic acid play major roles in determining acid quality during the development of kiwifruit (Actinidia eriantha). J. Sci. Food Agric. 2023, 103, 6055–6069. [Google Scholar] [CrossRef]
- Antonowski, T.; Osowski, A.; Lahuta, L.; Górecki, R.; Rynkiewicz, A.; Wojtkiewicz, J. Health-promoting properties of selected cyclitols for metabolic syndrome and diabetes. Nutrients 2019, 11, 2314. [Google Scholar] [CrossRef]
- Wu, G. Functional amino acids in nutrition and health. Amino Acids 2013, 45, 407–411. [Google Scholar] [CrossRef]
- Mehtiö, T.; Toivari, M.; Wiebe, M.G.; Harlin, A.; Penttilä, M.; Koivula, A. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit. Rev. Biotechnol. 2016, 36, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Morah, A.C.; Ene, A.C.; Ukairo, D.I.; Morah, F.C.; Ibeh, S.C.; Osuagwu, L.O. Identification of compounds and functional groups of n-hexane seed extracts of Citrullus lanatus and Elaeis guineensis using GC-MS and FT-IR. GSC Biol. Pharm. Sci. 2023, 23, 107–119. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Pereira, E.S.; Camargo, T.M.; Ribeiro, J.A.; Pereira, M.C.; Vinholes, J.; Dalmazo, G.O.; Vizzotto, M.; Nora, L. Biological activity and chemical composition of fruits, seeds and leaves of guabirobeira (Campomanesia xanthocarpa O. Berg-Myrtaceae): A review. Food Biosci 2021, 40, 100899. [Google Scholar]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Cordoba, B. Cheese whey fermentation by its native microbiota: Proteolysis and bioactive peptides release with ACE-inhibitory activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortí, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral composition in delactosed dairy products: Quality and safety status. Foods 2022, 11, 139. [Google Scholar] [CrossRef]
- Griboff, J.; Wunderlin, D.A.; Monferrán, M.V. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem. J. 2017, 130, 236–244. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Đokić, M.; Varenina, I.; Kolanović, B.S.; Luburić, Đ.B.; Varga, I.; Hruškar, M. Dietary exposure of the adult Croatian population to meat, liver and meat products from the Croatian market: Health risk assessment. J. Food Compos. Anal. 2021, 95, 103672. [Google Scholar] [CrossRef]
- Almášiová, S.; Toman, R.; Pšenková, M.; Tančin, V.; Jančo, I. Toxic elements in sheep milk, whey, and cheese from the environmentally burdened area in eastern Slovakia and health risk assessment with different scenarios of their consumption. Toxics 2024, 12, 467. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. Determination of minerals in soft and hard cheese varieties by ICP-OES: A comparison of digestion methods. Molecules 2023, 28, 3988. [Google Scholar] [CrossRef] [PubMed]
- Herman-Lara, E.; Bolívar-Moreno, D.; Toledo-López, V.M.; Cuevas-Glory, L.F.; Lope-Navarrete, M.C.; Barron-Zambrano, J.A.; Díaz-Rivera, P.; Ramírez-Rivera, E.J. Minerals multielement analysis and its relationship with geographical origin of artisanal Mexican goat cheeses. Food Sci. Technol. 2019, 39, 517–525. [Google Scholar] [CrossRef]
- Falcão, R.L.; Pinheiro, V.; Ribeiro, C.; Sousa, I.; Raymundo, A.; Nunes, M.C. Nutritional improvement of fresh cheese with microalga Chlorella vulgaris: Impact on composition, structure and sensory acceptance. Food Technol. Biotechnol. 2023, 61, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Tidona, F.; Zago, M.; Carminati, D.; Giraffa, G. The reduction of salt in different cheese categories: Recent advances and future challenges. Front. Nutr. 2022, 9, 859694. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Sodium Reduction. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 20 January 2025).
- Abad, I.; Bailac, A.; Pérez, M.D.; Carramiñana, J.J.; Calvo, M.; Sánchez, L. Gastrointestinal digestion and technological treatments modify the antibacterial activity of lactoferrin supplemented dairy matrices against Staphylococcus aureus. Int. Dairy J. 2024, 153, 105899. [Google Scholar] [CrossRef]
- Abril, A.G.; Villa, T.G.; Barros-Velázquez, J.; Cañas, B.; Sanchez-Perez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Dubreil, J.D. Fruit extracts to control pathogenic Escherichia coli: A sweet solution. Heliyon 2020, 6, e03410. [Google Scholar] [CrossRef]
- Dias-Souza, M.V.; Santos, R.M.; Ceravolo, I.P.; Cosenza, G.; Marçal, P.H.F.; Figueiredo, F.B. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb. Pathog. 2018, 114, 29–35. [Google Scholar] [CrossRef]
- Fiebig, M.S.; Andrade, D.R.M.; Mindelo, L.J.O.; Gois, J.S.; Luna, A.S.; Provenzi, M.A.; Magalhães, W.L.E.; Miotto, M.; Helm, C.V.; Prudencio, E.S. Pinhão potential and their parts (failures, shells, and almonds) in the elaboration of yogurts containing açaí pulp: Physicochemical, nutritional, and functional properties, antimicrobial activity, and multi-elemental profile. Food Res. Int. 2024, 192, 114813. [Google Scholar] [CrossRef]
- Cahyani, E.D.; Munfarida, I.; Amrullah, A. Antibacterial activity of pineapple (Ananas comosus) fruit peel extract against Escherichia coli. Int. J. Life Sci. Agric. Res. 2024, 3, 432–438. [Google Scholar] [CrossRef]
- Banu, K.S.; Manda, K. Antibacterial activity of pomegranate (Punica granatum) fruit peel extracts against antibiotic resistant gram-negative pathogenic bacteria. Biosci. Biotechnol. Res. Commun. 2019, 12, 1141–1149. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Sganzerla, W.G.; Beling, P.C.; Ferrareze, J.P.; Komatsu, R.A.; Nunes, M.R.; Veeck, A.P.P. Nutritional, physicochemical and antimicrobial properties of uvaia pulp (Eugenia pyriformis Cambess). Commun. Plant Sci. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Gounari, Z.; Bonatsou, S.; Ferrocino, I.; Cocolin, L.; Papadopoulou, O.S.; Panagou, E.Z. Exploring yeast diversity of dry-salted naturally black olives from Greek retail outlets with culture dependent and independent molecular methods. Int. J. Food Microbiol. 2023, 398, e110225. [Google Scholar] [CrossRef]
- Gutiérrez, T.J. Active and intelligent films made from starchy sources/blackberry Pulp. J. Polym. Environ. 2018, 26, 2374–2391. [Google Scholar] [CrossRef]
Samples | ||||
---|---|---|---|---|
0 | 5 | 10 | 15 | |
Physicochemical parameters | ||||
Protein (g/100 g) | 20.18 ± 0.70 a | 20.00 ± 0.70 a | 19.84 ± 0.40 a | 20.94 ± 1.60 a |
Moisture (g/100 g) | 41.81 ± 0.70 ab | 40.77 ± 0.45 b | 40.77 ± 0.10 b | 42.69 ± 0.30 a |
Ash (g/100 g) | 2.94 ± 0.04 b | 3.91 ± 0.53 a | 3.50 ± 0.10 a | 3.38 ± 0.06 a |
Titratable acidity (g lactic acid/100 g) | 2.03 ± 0.70 a | 1.98 ± 0.10 a | 1.98 ± 0.03 a | 1.99 ± 0.03 a |
Aw | 0.886 ± 0.002 a | 0.875 ± 0.002 b | 0.864 ± 0.004 c | 0.865 ± 0.019 c |
pH | 5.83 ± 0.02 a | 5.84 ± 0.03 a | 5.87 ± 0.05 a | 5.76 ± 0.02 b |
Colorimetric parameters | ||||
L* | 89.99 ± 0.50 a | 81.00 ± 0.80 b | 78.31 ± 0.30 c | 77.51 ± 1.60 c |
a* | 4.21 ± 0.20 d | 9.71 ± 0.10 c | 11.83 ± 0.10 b | 15.35 ± 0.30 a |
b* | 23.62 ± 0.40 d | 38.34± 0.40 c | 44.04 ± 0.30 b | 54.00 ± 1.10 a |
∆E* | - | 17.74 ± 0.50 c | 24.74 ± 0.10 b | 34.69 ± 1.30 a |
Texture parameters | ||||
Firmness (N) | 7.94 ± 0.90 a | 4.92 ± 0.11 b | 3.29 ± 0.20 c | 3.18 ± 0.30 c |
Elasticity (N.s) | 75.80 ± 0.19 a | 67.84 ± 0.17 b | 66.60 ± 0.41 b | 49.70 ± 0.30 c |
Cohesiveness | 0.46 ± 0.06 a | 0.28 ± 0.04 b | 0.30 ± 0.20 b | 0.27 ± 0.02 b |
Gumminess (N) | 3.65 ± 0.15 a | 1.37 ± 0.24 b | 1.02 ± 0.01 c | 0.89 ± 0.14 c |
Carotenoid Content | Samples | |||
---|---|---|---|---|
0 | 5 | 10 | 15 | |
β-carotene (µg/g) | 74.84 ± 0.01 d | 77.85 ± 0.47 c | 155.70 ± 0.93 b | 158.70 ± 1.40 a |
α-carotene (µg/g) | <0.001 | 27.51 ± 0.04 c | 55.03 ± 0.09 b | 82.54 ± 0.13 a |
β-cryptoxanthin (µg/g) | <0.001 | 31.88 ± 0.05 c | 63.75 ± 0.80 b | 95.63 ± 0.14 a |
λ-carotene (µg/g) | <0.001 | 20.50 ± 0.03 c | 40.99 ± 0.06 b | 61.49 ± 0.09 a |
Sugars Content | Samples | |||
---|---|---|---|---|
0 | 5 | 10 | 15 | |
Lactose (g/100 g) | 3.80 ± 0.20 a | 4.10 ± 0.10 a | 3.99± 0.10 a | 3.80 ± 0.10 a |
Galactose (g/100 g) | 1.31 ± 0.10 a | 1.29 ± 0.10 a | 1.28 ± 0.10 a | 1.02 ± 0.10 b |
Glucose (g/100 g) | 2.53 ± 0.90 a | 2.95 ± 0.40 a | 2.94 ± 0.40 a | 2.74 ± 0.40 a |
Sucrose (g/100 g) | 1.12 ± 0.30 b | 1.24 ± 0.40 ab | 1.44 ± 0.10 a | 1.64 ± 0.30 a |
Fructose (g/100 g) | 0.55 ± 0.01 b | 1.13 ± 0.40 a | 1.37 ± 0.11 a | 1.71 ± 0.47 a |
Class | Hydrophilic Compounds | Content (µg/g) | ||
---|---|---|---|---|
Sample 5 | Sample 10 | Sample 15 | ||
Amino acid | Glutamic acid | 0.45 ± 0.05 c | 0.91 ± 0.10 b | 1.35 ± 0.10 a |
4-amino-butanoic acid (GABA) | 1.40 ± 0.07 c | 2.80 ± 0.13 b | 4.20 ± 0.20 a | |
4-hydroxy-1-methyl-proline (dimer) | 19.10 ± 0.70 c | 38.00 ± 1.40 b | 57.15 ± 1.04 a | |
Cyclitol | Myo-inositol | 25.20 ± 2.25 c | 50.00 ± 2.30 b | 76.00 ± 2.79 a |
Organic acid | Citric acid | 44.70 ± 0.97 c | 90.01 ± 1.50 b | 135.01 ± 6.07 a |
Dehydroascorbic acid | 2.75 ± 0.01 c | 5.04 ± 1.00 b | 8.31 ± 1.45 a | |
Glycolic acid | 0.42 ± 0.02 c | 0.84 ± 0.03 b | 1.30 ± 0.05 a | |
Lactic acid | 0.40 ± 0.03 c | 0.78 ± 0.06 b | 1.17 ± 0.17 a | |
Malic acid | 6.29 ± 0.09 c | 12.60 ± 0.09 b | 19.00 ± 0.09 a | |
Quinic acid | 10.81 ± 0.06 c | 21.50 ± 0.06 b | 33.01 ± 0.07 a | |
Shikimic acid | 0.40 ± 0.01 c | 0.73 ± 0.03 b | 1.10 ± 0.05 a | |
Succinic acid | 0.33 ± 0.01 c | 0.70 ± 0.01 b | 2.50 ± 0.02 a | |
Organic nitrogen | 1-pyrroline-3-hydroxy-5-carbocylic-acid | 0.91 ± 0.01 c | 1.80 ± 0.01 b | 2.71 ± 0.06 a |
Sugar acid | Galacturonic acid | 1.35 ± 0.06 c | 2.69 ± 0.02 b | 4.03 ± 0.04 a |
Glyceric acid | 1.58 ± 0.01 c | 3.16 ± 0.01 b | 4.57 ± 0.01 a | |
Gluconic acid | 2.19 ± 0.01 c | 4.40 ± 0.01 b | 6.60 ± 0.08 a | |
Glucuronic acid | 5.58 ± 0.05 c | 12.01 ± 1.00 b | 16.75 ± 1.00 a | |
Sugar alcohol | Arabitol | 0.41 ± 0.04 c | 0.80 ± 0.09 b | 1.25 ± 0.13 a |
Class | Lipophilic compounds | |||
Aromatic | Benzoic acid | 1.00 ± 0.03 c | 1.99 ± 0.09 b | 3.02 ± 0.09 a |
Fatty acid | n-9-(Z)-hexadecenoic acid | 7.27 ± 0.07 c | 15.00 ± 0.15 b | 22.00 ± 0.22 a |
Oleic acid | 0.14 ± 0.01 c | 0.27 ± 0.03 b | 0.45 ± 0.05 a | |
Eicosanoic acid | 0.45 ± 0.02 c | 1.00 ± 0.02 b | 1.40 ± 0.02 a | |
Hexadecanoic acid | 0.58 ± 0.02 c | 1.17 ± 0.02 b | 1.75 ± 0.03 a | |
Octadecenoic (C18:1) | 21.48 ± 0.01 c | 43.00 ± 0.05 b | 64.45 ± 1.62 a |
Elements (mg/g) | Samples | |||
---|---|---|---|---|
0 | 5 | 10 | 15 | |
Al | <LOD | <LOD | <LOD | <LOD |
As | <LOD | <LOD | <LOD | <LOD |
Ca | 5.85 ± 0.75 ac | 6.09 ± 0.11 a | 5.47 ± 0.40 abc | 4.92 ± 0.50 c |
Cd | <LOD | <LOD | <LOD | <LOD |
Co | <LOD | <LOD | <LOD | <LOD |
Cr | <LOD | <LOD | <LOD | <LOD |
Cu | <LOD | <LOD | <LOD | <LOD |
Fe | <LOD | <LOD | <LOD | <LOD |
K | 1.00 ± 0.12 bc | 1.20 ± 0.02 a | 1.16 ± 0.04 ab | 1.01 ± 0.06 c |
Mg | 0.22 ± 0.01 a | 0.30 ± 0.08 a | 0.24 ± 0.01 a | 0.23 ± 0.01 a |
Mn | <LOD | <LOD | <LOD | <LOD |
Na | 3.30 ± 0.52 d | 6.59 ± 0.11 b | 7.08 ± 0.38 a | 4.59 ± 0.25 c |
P | 4.39 ± 0.53 ab | 4.65 ± 0.25 a | 4.10 ± 0.29 ab | 3.86 ± 0.13 b |
Pb | <LOD | <LOD | <LOD | <LOD |
S | 1.89 ± 0.19 ab | 2.05 ± 0.10 a | 1.80 ± 0.15 b | 1.76 ± 0.02 b |
Se | <LOD | <LOD | <LOD | <LOD |
Sr | 0.003 ± 0.001 a | 0.004 ± 0.001 a | 0.003 ± 0.001 a | 0.003 ± 0.001 a |
Zn | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Mindelo, L.J.; Carvalho, A.C.F.; Prestes, A.A.; Marafon, K.; Mendes Andrade, D.R.; de Gois, J.S.; Provenzi, M.A.; Miotto, M.; de Souza, C.K.; Helm, C.V.; et al. Chemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of a New Fresh Cheese Added with Guabiroba Pulp. Processes 2025, 13, 2844. https://doi.org/10.3390/pr13092844
de Oliveira Mindelo LJ, Carvalho ACF, Prestes AA, Marafon K, Mendes Andrade DR, de Gois JS, Provenzi MA, Miotto M, de Souza CK, Helm CV, et al. Chemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of a New Fresh Cheese Added with Guabiroba Pulp. Processes. 2025; 13(9):2844. https://doi.org/10.3390/pr13092844
Chicago/Turabian Stylede Oliveira Mindelo, Leandro José, Ana Caroline Ferreira Carvalho, Amanda Alves Prestes, Karine Marafon, Dayanne Regina Mendes Andrade, Jefferson Santos de Gois, Marcel Afonso Provenzi, Marília Miotto, Carolina Krebs de Souza, Cristiane Vieira Helm, and et al. 2025. "Chemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of a New Fresh Cheese Added with Guabiroba Pulp" Processes 13, no. 9: 2844. https://doi.org/10.3390/pr13092844
APA Stylede Oliveira Mindelo, L. J., Carvalho, A. C. F., Prestes, A. A., Marafon, K., Mendes Andrade, D. R., de Gois, J. S., Provenzi, M. A., Miotto, M., de Souza, C. K., Helm, C. V., Pimentel, T. C., & Prudêncio, E. S. (2025). Chemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of a New Fresh Cheese Added with Guabiroba Pulp. Processes, 13(9), 2844. https://doi.org/10.3390/pr13092844