A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Osmotic Dehydration and Development of Edible Coating
2.2.2. Weight Loss
2.2.3. Color Change
2.2.4. Total Soluble Solids (TSS)
2.2.5. Total Acidity (TA)
2.2.6. Total Phenolic Content (TPC)
2.2.7. Antioxidant Activity (DPPH)
2.2.8. HPLC-DAD Analysis
2.2.9. Microbial Analysis
2.2.10. Optical Characterization
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss
3.2. Color Change
3.3. Total Soluble Solids
3.4. Total Acidity
3.5. Total Phenolic Content (TPC)
3.6. Antioxidant Activity (DPPH)
3.7. HPLC-DAD Analysis
3.8. Microbial Analysis
3.9. Optical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OD | Osmotic Dehydration |
EC | Edible Coating |
TTS | Total Soluble Solids |
TA | Total Acidity |
TPC | Total Phenolic Content |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
HPLC | High-Performance Liquid Chromatography |
CFU/mL | Colony-Forming Units per Milliliter |
RSA | Radical Scavenging Activity |
TC | Total Count |
YM | Yeasts and Molds |
OD/EC | Osmotic Dehydration and Edible Coating |
OD/EC/Bio | Osmotic Dehydration and Edible Coating with Bioactive Compounds |
ANOVA | Factorial analysis of variance |
References
- Gribova, N.A.; Perov, V.I.; Eliseeva, L.G.; Berketova, L.V.; Nikolayeva, M.A.; Soltaeva, N.L. Innovative Technology of Processing Berries by Osmotic Dehydration. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012119. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas-Ramella, M.; Franco, D.; Gomes da Cruz, A.; Zengin, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. The Role of Emerging Technologies in the Dehydration of Berries: Quality, Bioactive Compounds, and Shelf Life. Food Chem. X 2022, 16, 100465. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Santiesteban-Romero, B.; Flores-Contreras, E.A.; Scott-Ayala, S.; Araújo, R.G.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldívar, R. Sustainable Solutions for Postharvest Berry Protection: Natural Edible Coatings. Food Bioproc. Technol. 2024, 17, 3483–3505. [Google Scholar] [CrossRef]
- Shah, H.M.S.; Singh, Z.; Kaur, J.; Hasan, M.U.; Woodward, A.; Afrifa-Yamoah, E. Trends in Maintaining Postharvest Freshness and Quality of Rubus Berries. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4600–4643. [Google Scholar] [CrossRef] [PubMed]
- Sahraee, S.; Milani, J.M.; Regenstein, J.M.; Kafil, H.S. Protection of Foods against Oxidative Deterioration Using Edible Films and Coatings: A Review. Food Biosci. 2019, 32, 100451. [Google Scholar] [CrossRef]
- Mari, A.; Kekes, T.; Boukouvalas, C.; Drosou, C.; Krokida, M.; Tsartsaris, C. Evaluating the Environmental and Economic Benefits of New Technologies in Low-Salt Olive Fermentation. Agriculture 2024, 14, 2077. [Google Scholar] [CrossRef]
- Patil, V.; Shams, R.; Dash, K.K. Techno-Functional Characteristics, and Potential Applications of Edible Coatings: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100886. [Google Scholar] [CrossRef]
- Park, R.J.; Ryu, M.J. Antioxidant and Antimicrobial Effect of Rosemary, Parsley, Thyme, Chive, and Dill Extracts. Asian J. Beauty Cosmetol. 2022, 20, 305–314. [Google Scholar] [CrossRef]
- Laina, K.T.; Drosou, C.; Giannenas, I.; Krokida, M. Formulation of Novel Functional Extrudates Containing Natural Bioactive Compounds. Dry. Technol. 2024, 42, 1778–1790. [Google Scholar] [CrossRef]
- Dumitrașcu, L.; Banu, I.; Patraşcu, L.; Vasilean, I.; Aprodu, I. The Influence of Processing on the Bioactive Compounds of Small Berries. Appl. Sci. 2024, 14, 8713. [Google Scholar] [CrossRef]
- Ding, J.; Liu, C.; Huang, P.; Li, H.; Liu, Y.; Sameen, D.E.; Zhang, Y.; Liu, Y.; Qin, W. Effects of Konjac Glucan-Nan/Low-Acyl Gellan Edible Coatings Loaded Thymol-β-Cyclodextrin Microcapsules on Postharvest Blueberry. Food Chem. 2024, 430, 137080. [Google Scholar] [CrossRef]
- Sharma, N.; Kaur, H.; Kaur, G.; Singh, A.; Sharma, S. Appraisal of Cutting-Edge Techniques for Prolonging Fresh Berries Shelf Life: Innovations in Essential Oil Nanoemulsion-Based Edible Coatings. Sci. Hortic. 2024, 337, 113564. [Google Scholar] [CrossRef]
- Mari, A.; Fafalis, C.; Krokida, M. Extension of Blueberry Shelf-Life with Edible Coatings from Chlorella vulgaris. Chem. Eng. Trans. 2024, 110, 79. [Google Scholar]
- Mehmood, M.K.; Maqbool, D.; Rizwan, H.; Bibi, S.; Nawaz, M.A.; Hussain, M.Z.; Sultan, M.M.; Sajjad, Z.U. Enhancing Freshness: A Comparative Study of Innovative Preservation Methods for Berries and Leafy Greens. Asian J. Res. Crop Sci. 2024, 9, 57–67. [Google Scholar] [CrossRef]
- Brányiková, I.; Maršálková, B.; Doucha, J.; Brányik, T.; Bišová, K.; Zachleder, V.; Vítová, M. Microalgae-Novel Highly Efficient Starch Producers. Biotechnol. Bioeng. 2011, 108, 766–776. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb Cell Fact 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Byantara, P.; Dianursanti. Utilization of Spirulina Platensis Microalgae as Edible Coating to Maintain Quality of Fresh Strawberry (Fragaria sp.). AIP Conf. Proc. 2021, 2344, 020016. [Google Scholar]
- Mari, A.; Fafalis, C.; Krokida, M. Evaluation of Edible Coatings from Components from Chlorella vulgaris and Comparison with Conventional Coatings. Coatings 2024, 14, 621. [Google Scholar] [CrossRef]
- Mari, A.; Andriotis, P.; Drosou, C.; Laina, K.; Panagiotou, N.; Krokida, M. Enhancing Shelf-life Stability of Refrigerated Potatoes through Osmotic Dehydration and Ohmic Heating Optimization: A Strategy to Mitigate Enzymatic Browning. Potato Res. 2024. [Google Scholar] [CrossRef]
- Laina, K.T.; Drosou, C.; Krokida, M. Comparative Assessment of Encapsulated Essential Oils through the Innovative Electrohydrodynamic Processing and the Conventional Spray Drying, and Freeze-Drying Techniques. Innov. Food Sci. Emerg. Technol. 2024, 95, 103720. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P.A. PH and Titratable Acidity. Food Anal. 2010, 4, 219–238. [Google Scholar]
- AOAC International. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ayele, D.T.; Akele, M.L.; Melese, A.T. Analysis of Total Phenolic Contents, Flavonoids, Antioxidant and Antibacterial Activities of Croton Macrostachyus Root Extracts. BMC Chem. 2022, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.-M.; Moutounet, M.; Cheynier, V. Accumulation and Extractability of Grape Skin Tannins and Anthocyanins at Different Advanced Physiological Stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Liquid Chromatographic Method for the Separation and Quantification of Prominent Flavonoid Aglycones. J. Chromatogr. A 2000, 897, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.; Nikhanj, P. Evaluation of Edible Coatings for Microbiological and Physicochemical Quality Maintenance of Fresh Cut Papaya. J. Food Process Preserv. 2022, 46, e16790. [Google Scholar] [CrossRef]
- European Commission. Working Document on Microbial Contaminant Limits for Microbial Pest Control Products; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Paniagua, A.C.; East, A.R.; Hindmarsh, J.P.; Heyes, J.A. Moisture Loss Is the Major Cause of Firmness Change during Postharvest Storage of Blueberry. Postharvest Biol. Technol. 2013, 79, 13–19. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Quintero-Pimiento, C.; Gómez-Hoyos, C.; Zuluaga-Gallego, R.; López-Córdoba, A. Alginate-Edible Coatings for Application on Wild Andean Blueberries (Vaccinium meridionale Swartz): Effect of the Addition of Nanofibrils Isolated from Cocoa By-Products. Polymers 2020, 12, 824. [Google Scholar] [CrossRef]
- Ghellam, M.; Zannou, O.; Pashazadeh, H.; Galanakis, C.M.; Aldawoud, T.M.S.; Ibrahim, S.A.; Koca, I. Optimization of Osmotic Dehydration of Autumn Olive Berries Using Response Surface Methodology. Foods 2021, 10, 1075. [Google Scholar] [CrossRef]
- Gu, X.; Li, J.; Yang, L.; Liu, L.; Li, T.; Zhang, H.; Gao, Y.; Xiao, L. Comparative Study on the Different Edible Coatings Loaded with Fennel Essential Oil/β-Cyclodextrin Microcapsules for Blueberry Preservation. J. Hortic. Sci. Biotechnol. 2024, 99, 584–596. [Google Scholar] [CrossRef]
- Gidado, M.J.; Gunny, A.A.N.; Gopinath, S.C.B.; Ali, A.; Wongs-Aree, C.; Salleh, N.H.M. Challenges of Postharvest Water Loss in Fruits: Mechanisms, Influencing Factors, and Effective Control Strategies—A Comprehensive Review. J. Agric. Food Res. 2024, 17, 101249. [Google Scholar] [CrossRef]
- Priya, K.; Thirunavookarasu, N.; Chidanand, D.V. Recent Advances in Edible Coating of Food Products and Its Legislations: A Review. J. Agric. Food Res. 2023, 12, 100623. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Edible Coatings and Films for Shelf-Life Extension of Fruit and Vegetables. Biomater. Adv. 2023, 154, 213632. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Nguyen, L.L.P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Pellegrino, M.; Elechi, J.O.G.; Plastina, P.; Loizzo, M.R. Application of Natural Edible Coating to Enhance the Shelf Life of Red Fruits and Their Bioactive Content. Appl. Sci. 2024, 14, 4552. [Google Scholar] [CrossRef]
- Totad, M.G.; Sharma, R.R.; Sethi, S.; Verma, M.K. Effect of Edible Coatings on Quality of Blueberry Fruits under Supermarket Storage Conditions. Indian J. Agric. Sci. 2020, 90, 780–783. [Google Scholar] [CrossRef]
- César de Albuquerque Sousa, T.; de Lima Costa, I.H.; Gandra, E.A.; Meinhart, A.D. Use of Edible Coatings as a New Sustainable Alternative to Extend the Shelf Life of Strawberries (Fragaria ananassa): A Review. J. Stored Prod. Res. 2024, 108, 102375. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. Raspberry Fresh Fruit Quality as Affected by Pectin- and Alginate-Based Edible Coatings Enriched with Essential Oils. Sci. Hortic. 2015, 194, 138–146. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of Edible Coatings on the Shelf-Life of Fresh Strawberries: A Comparative Study Using TOPSIS-Shannon Entropy Method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Bapary, M.S.; Islam, M.N.; Kumer, N.; Tahery, M.H.; Al Noman, M.A.; Mohi-Ud-Din, M. Postharvest Physicochemical and Nutritional Properties of Tomato Fruit at Different Maturity Stages Affected by Physical Impact. Appl. Food Res. 2024, 4, 100636. [Google Scholar] [CrossRef]
- Fukudome, C.; Takisawa, R.; Nakano, R.; Kusano, M.; Kobayashi, M.; Motoki, K.; Nishimura, K.; Nakazaki, T. Analysis of Mechanism Regulating High Total Soluble Solid Content in the Parthenocarpic Tomato Fruit Induced by Pat-k Gene. Sci. Hortic. 2022, 301, 111070. [Google Scholar] [CrossRef]
- Šuput, D.; Lazarević, J.; Filipović, V.; Nićetin, M.; Knežević, V.; Lončar, B.; Pezo, L. The Effect of Osmotic Dehydration and Starch Coating on the Microbiological Stability of Apples. J. Process. Energy Agric. 2020, 24, 35–38. [Google Scholar] [CrossRef]
- Lerici, C.R.; Pinnavaia, G.; Rosa, M.D.; Bartolucci, L. Osmotic Dehydration of Fruit: Influence of Osmotic Agents on Drying Behavior and Product Quality. J. Food Sci. 1985, 50, 1217–1219. [Google Scholar] [CrossRef]
- Huynh, N.K.; Wilson, M.D.; Stanley, R.A. Extending the Shelf Life of Raspberries in Commercial Settings by Modified Atmosphere/Modified Humidity Packaging. Food Packag. Shelf Life 2023, 37, 101069. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alkhamis, B.; Alnemr, T.M.; Mohammed, M. Combined Influences of Edible Coating and Storage Conditions on the Quality of Fresh Dates: An Investigation and Predictive Analysis Using Artificial Neural Networks. Heliyon 2025, 11, e42373. [Google Scholar] [CrossRef] [PubMed]
- Anthon, G.E.; LeStrange, M.; Barrett, D.M. Changes in PH, Acids, Sugars and Other Quality Parameters during Extended Vine Holding of Ripe Processing Tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, Y.; Zhang, Z. The Role of Different Natural Organic Acids in Postharvest Fruit Quality Management and Its Mechanism. Food Front. 2023, 4, 1127–1143. [Google Scholar] [CrossRef]
- Rodriguez, A.; Soteras, M.; Campañone, L. Review: Effect of the Combined Application of Edible Coatings and Osmotic Dehydration on the Performance of the Process and the Quality of Pear Cubes. Int. J. Food Sci. Technol. 2021, 56, 6474–6483. [Google Scholar] [CrossRef]
- Rocha-Parra, D.F.; Lanari, M.C.; Zamora, M.C.; Chirife, J. Influence of Storage Conditions on Phenolic Compounds Stability, Antioxidant Capacity and Colour of Freeze-Dried Encapsulated Red Wine. LWT 2016, 70, 162–170. [Google Scholar] [CrossRef]
- de la Torre-Robles, A.; Monteagudo, C.; Mariscal-Arcas, M.; Lorenzo-Tovar, M.L.; Olea-Serrano, F.; Rivas, A. Effect of Light Exposure on the Quality and Phenol Content of Commercial Extra Virgin Olive Oil during 12-Month Storage. J. Am. Oil Chem. Soc. 2019, 96, 381–389. [Google Scholar] [CrossRef]
- Zdulski, J.A.; Rutkowski, K.P.; Konopacka, D. Strategies to Extend the Shelf Life of Fresh and Minimally Processed Fruit and Vegetables with Edible Coatings and Modified Atmosphere Packaging. Appl. Sci. 2024, 14, 11074. [Google Scholar] [CrossRef]
- Ladika, G.; Tsiaka, T.; Stavropoulou, N.A.; Strati, I.F.; Sinanoglou, V.J. Enhancing the Nutritional Value and Preservation Quality of Strawberries through an Optimized Osmotic Dehydration Process. Appl. Sci. 2024, 14, 9211. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, X. Effects of Bioactive Compounds and Pharmacological Activities in Medicinal Fruits and Vegetables by Thermal Processing. J. Future Foods 2023, 3, 252–262. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the Potential of Antioxidants from Fruits and Vegetables and Strategies for Their Recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar] [CrossRef]
- Toydemir, G.; Gultekin Subasi, B.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lin, C.; Zhao, Y. Enhancing Anthocyanin–Phenolic Copigmentation through Epicarp Layer Treatment and Edible Coatings to Retain Anthocyanins in Thermally Processed Whole Blueberries. J. Food Sci. 2022, 87, 3809–3821. [Google Scholar] [CrossRef]
- Yan, X.-M.; Dong, J.-Y.; Guo, N.; Zhu, G.-L. Application of Gellan Gum-Black Rice Anthocyanin-Titanium Dioxide Composite Film in the Coating Preservation of Blueberry. Sci. Technol. Cereals Oils Foods 2024, 32, 106–113. [Google Scholar]
- Rocha, R.; Pinela, J.; Abreu, R.M.V.; Añibarro-Ortega, M.; Pires, T.C.S.P.; Saldanha, A.L.; Alves, M.J.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L. Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes 2020, 8, 1447. [Google Scholar] [CrossRef]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Song, C.; Ma, X.; Li, Z.; Wu, T.; Raghavan, G.V.; Chen, H. Mass Transfer during Osmotic Dehydrationand Its Effect on Anthocyanin Retention of Microwave Vacuum-dried Blackberries. J. Sci. Food Agric. 2020, 100, 102–109. [Google Scholar] [CrossRef]
- Khalid, M.A.; Niaz, B.; Saeed, F.; Afzaal, M.; Islam, F.; Hussain, M.; Mahwish Khalid, H.M.S.; Siddeeg, A.; Al-Farga, A. Edible Coatings for Enhancing Safety and Quality Attributes of Fresh Produce: A Comprehensive Review. Int. J. Food Prop. 2022, 25, 1817–1847. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Kola, A.; Vigni, G.; Lamponi, S.; Valensin, D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants 2024, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive Compounds and Antioxidant Capacity of Strawberry Jams. Plant Foods Hum. Nutr. 2007, 62, 127–131. [Google Scholar] [CrossRef]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of Phenolic Compounds in Strawberry (Fragaria × Ananassa) Fruits by Different HPLC Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef]
- Cho, J.-S.; Lim, J.H.; Park, K.J.; Choi, J.H.; Ok, G.S. Prediction of Pelargonidin-3-Glucoside in Strawberries According to the Postharvest Distribution Period of Two Ripening Stages Using VIS-NIR and SWIR Hyperspectral Imaging Technology. LWT 2021, 141, 110875. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.V. Osmotic Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2014, 51, 1654–1673. [Google Scholar] [CrossRef]
- Li, W.; Pang, X.; Xiao, J.; Wang, X.; He, R.; Zhao, X. Degradation Kinetics of Pelargonidin-3-(p-Coumaroyl)Diglucoside-5-(Malonyl)Glucoside and Pelargonidin-3-(Feruloyl)Diglucoside-5-(Malonyl)Glucoside in Red Radish during Air-Impingement Jet Drying. LWT 2020, 127, 109390. [Google Scholar] [CrossRef]
- Kalt, W.; Ryan, D.A.J.; Duy, J.C.; Prior, R.L.; Ehlenfeldt, M.K.; Vander Kloet, S.P. Interspecific Variation in Anthocyanins, Phenolics, and Antioxidant Capacity among Genotypes of Highbush and Lowbush Blueberries (Vaccinium Section Cyanococcus Spp.). J. Agric. Food Chem. 2001, 49, 4761–4767. [Google Scholar] [CrossRef]
- Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic Profile and Antioxidant Activity of Highbush Blueberry (Vaccinium corymbosum L.) during Fruit Maturation and Ripening. Food Chem. 2008, 109, 564–572. [Google Scholar] [CrossRef]
- You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.G. Comparison of Anthocyanins and Phenolics in Organically and Conventionally Grown Blueberries in Selected Cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.E.; Durst, R.W. Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). J. Food Sci. 2000, 65, 357–364. [Google Scholar] [CrossRef]
- Muñoz-Fariña, O.; López-Casanova, V.; García-Figueroa, O.; Roman-Benn, A.; Ah-Hen, K.; Bastias-Montes, J.M.; Quevedo-León, R.; Ravanal-Espinosa, M.C. Bioaccessibility of Phenolic Compounds in Fresh and Dehydrated Blueberries (Vaccinium corymbosum L.). Food Chem. Adv. 2023, 2, 100171. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Vercauteren, J.; de Freitas, V. Occurrence of Anthocyanin-Derived Pigments in Red Wines. J. Agric. Food Chem. 2001, 49, 4836–4840. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Forbes, A.; Guo, X.; He, L. Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy. Foods 2022, 11, 3436. [Google Scholar] [CrossRef]
- Qin, C.-G.; Li, Y.; Niu, W.; Ding, Y.; Shang, X.; Xu, C. Composition Analysis and Structural Identification of Anthocyanins in Fruit of Waxberry. Czech J. Food Sci. 2011, 29, 171–180. [Google Scholar] [CrossRef]
- Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of Anthocyanins in Grape Juices by Ion Trap Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Chen, F. Structure and Function of Blueberry Anthocyanins: A Review of Recent Advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
Sample | Blueberry Malvidin-3-O-glucoside (mg/g FW) | Raspberry Cyanidin-3-O-glucoside (mg/g FW) | Strawberry Pelargonidin-3-O-glucoside (mg/g FW) |
---|---|---|---|
Fresh | 0.248 ± 0.009 d | 0.586 ± 0.010 a | 0.177 ± 0.006 a |
OD * | 0.399 ± 0.010 c | 0.478 ± 0.011 c | 0.154 ± 0.005 b |
EC * | 0.437 ± 0.011 b | 0.457 ± 0.008 c | 0.155 ± 0.004 b |
OD/EC * | 0.580 ± 0.012 a | 0.510 ± 0.010 b | 0.160 ± 0.005 b |
OD/EC/Bio * | 0.458 ± 0.010 b | 0.575 ± 0.009 a | 0.166 ± 0.006 a,b |
Day | Fresh | OD/EC | OD/EC/Bio | |||
---|---|---|---|---|---|---|
0 | ||||||
7 | ||||||
14 | ||||||
21 |
Day | Fresh | OD/EC | OD/EC/Bio | |||
---|---|---|---|---|---|---|
0 | ||||||
7 | ||||||
14 |
Day | Fresh | OD/EC | OD/EC/Bio | |||
---|---|---|---|---|---|---|
0 | ||||||
7 | ||||||
14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mari, A.; Stergiopoulos, C.; Vasileiou, C.; Krokida, M. A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries. Processes 2025, 13, 2006. https://doi.org/10.3390/pr13072006
Mari A, Stergiopoulos C, Vasileiou C, Krokida M. A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries. Processes. 2025; 13(7):2006. https://doi.org/10.3390/pr13072006
Chicago/Turabian StyleMari, Alexandra, Chrysanthos Stergiopoulos, Christoforos Vasileiou, and Magdalini Krokida. 2025. "A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries" Processes 13, no. 7: 2006. https://doi.org/10.3390/pr13072006
APA StyleMari, A., Stergiopoulos, C., Vasileiou, C., & Krokida, M. (2025). A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries. Processes, 13(7), 2006. https://doi.org/10.3390/pr13072006