Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition
Abstract
:1. Introduction
2. Technological Features of Chocolate Production
3. Composition of Traditional Types of Chocolate
4. Advancing Technologies in Functional Chocolate Development
4.1. Encapsulation of Bioactive Components
4.2. Technology of the 3D Printing of Chocolate
4.3. Sugar-Free Chocolate
4.4. Low-Fat Chocolate
4.5. High Protein Chocolates
5. Bioactive Components in Functional Chocolate
5.1. Alternative Types of Milk
5.2. Polyphenols
5.3. Probiotics
Probiotic Strains | Delivery System | Chocolate Type | Survival of Probotics | References |
---|---|---|---|---|
Lactobacillus plantarum 564 | Spray Drying Encapsulation | Dark Chocolate | 1 × 108 CFU/g in the first 60 days of storage 1 × 106 CFU/g after 180 days | [143] |
Lactobacillus rhamnosus LGG | Encapsulation via Freeze-Drying | Dark Chocolate | 1 × 107 CFU/g after 120/180 days of storage | [144] |
Lactobacillus delbrueckii subsp. bulgaricus | Encapsulation Using the Emulsion Freeze-Drying Method | Dark Chocolate | 1 × 107 CFU/g after 120 days of storage | [145] |
Lactobacillus plantarum HM47 | Spray Drying Encapsulation | Milk Chocolate | 1 × 108 CFU/g after 180 days of storage | [146] |
Lactobacillus acidophilus LH5/Streptococcus thermophilus ST3/Bifidobacterium breve BR2 | Microencapsulation | Milk Chocolate/Semisweet Chocolate/Dark Chocolate | 1 × 108 CFU/g/1 × 109 CFU/g after 360 days of storage | [147] |
Lactobacillus acidophilus NCFM/Bifidobacterium lactis HN019 | Freeze-Dried Powders | Dark Chocolate/Milk Chocolate | 2 × 109 CFU/g | [148] |
Lactobacillus paracasei | Freeze-Dried Powders | Milk Chocolate | 1 × 108 CFU/g after 180 days of storage | [149] |
Lactobacillus helveticus MTCC 5463 | Freeze-Dried Powders/Frozen Concentrates | Milk Chocolate | 2.42 × 108 CFU/g after 15 days of storage | [150] |
Lactobacillus acidophilus LDMB-01 | Freeze-Dried Powders | Milk Chocolate | 1 × 106 CFU/g after 90 days of storage | [151] |
Bifidobacterium breve NCIM5671 | Freeze-Dried Powders | Dark Chocolate | 1 × 109 CFU/g after 90 days of storage | [152] |
Bifidobacterium animalis subsp. lactis BB-12® Akkermansia muciniphila DSM 22959 | Freeze-Dried Powders | Dark Chocolate/ Milk Chocolate | 1 × 108 CFU/g/1 × 106 CFU/g after 28 days of storage | [153] |
Lactobacillus paracasei/Lactobacillus acidophilus | Freeze-Dried Powders | White Chocolate | 1 × 107 CFU/g after 90 days of storage | [154] |
5.4. Dietary Fiber and Prebiotics
5.5. Polyunsaturated Fatty Acids
5.6. Plant Extracts
6. The Health Benefits of Chocolate
6.1. Antioxidant and Anti-Inflammatory Properties
6.2. Impact on the Cardiovascular System
6.3. Effect on Cognitive Function
6.4. Impact on Gut Health
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization of the United Nations |
FOS | Fructooligosaccharides |
HPMC | Hydroxypropyl methylcellulose |
BOPP | Biaxially oriented polypropylene |
GOS | Galactoligosaccharides |
SFA | Saturated fatty acids |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acids |
AI | Adequate Intake |
HDL | High-density lipoprotein |
LDL | Low density lipoprotein |
BBB | Blood–brain barrier |
SCFAs | Short-chain fatty acids |
BCFAs | Branched-chain fatty acids |
References
- Sandri, E.; Cerdá Olmedo, G.; Piredda, M.; Werner, L.U.; Dentamaro, V. Explanatory AI Predicts the Diet Adopted Based on Nutritional and Lifestyle Habits in the Spanish Population. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 11. [Google Scholar] [CrossRef]
- Behnassi, M.; Baig, A.; Baig, M.B. Transforming Agri-Food Systems Through Climate-Smart Practices: Ending Hidden Costs, Maximizing Benefits. In Climate-Smart and Resilient Food Systems and Security; Springer Nature: Cham, Switzerland, 2024; pp. 15–35. [Google Scholar] [CrossRef]
- Kikut, J.; Jasińska, A.; Pobłocki, J.; Brodowski, J.; Małgorzata, S. Assessment and state of nutrition of patients with gastroenteropancreatic neuroendocrine neoplasms. Nutrients 2020, 12, 1961. [Google Scholar] [CrossRef] [PubMed]
- Katsimpris, A.; Brahim, A.; Rathmann, W.; Peters, A.; Strauch, K.; Flaquer, A. Prediction of type 2 diabetes mellitus based on nutrition data. J. Nutr. Sci. 2021, 10, e46. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, H.; Tanaka, K.; Kimura, H.; Saito, H.; Shimabukuro, M.; Asahi, K.; Watanabe, T.; Kaza, J.J. Predictive values of four nutritional indices for adverse outcomes in patients with hypertension. Clin. Exp. Nephrol. 2025, 29, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, H.; Chen, S.; Cai, S.; Zhou, S.; Wang, C.; Ni, X. Prognostic nutritional index and prognosis of patients with coronary artery disease: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1114053. [Google Scholar] [CrossRef]
- Yegen, B.C. Lifestyle and peptic ulcer disease. Curr. Pharm. Des. 2018, 18, 2034–2040. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.H.; Lee, B.J. Association of peptic ulcer disease with obesity, nutritional components, and blood parameters in the Korean population. PLoS ONE 2017, 12, e0183777. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Masri, O.A.; Chalhoub, J.M.; Sharara, A.I. Role of vitamins in gastrointestinal diseases. World J. Gastroenterol. WJG 2015, 21, 5191. [Google Scholar] [CrossRef]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main nutritional deficiencies. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E93–E101. [Google Scholar] [CrossRef]
- Voelkle, M.; Gregoriano, C.; Neyer, P.; Koch, D.; Kutz, A.; Bernasconi, L.; Conen, A.; Mueller, B.; Schuetz, P. Prevalence of micronutrient deficiencies in patients hospitalized with COVID-19: An observational cohort study. Nutrients 2022, 14, 1862. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.M.; Stratton, S. Advancing functional food regulation. Bioact. Compd. Health Dis. 2023, 6, 166–171. [Google Scholar] [CrossRef]
- Sato, K.; Kodama, K.; Sengoku, S. Optimizing the relationship between regulation and innovation in dietary supplements: A case study of food with function claims in Japan. Nutrients 2023, 15, 476. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Lie-Piang, A.; Möller, A.C.; Köllmann, N.; Garre, A.; Boom, R.; van der Padt, A. Functionality-driven food product formulation–An illustration on selecting sustainable ingredients building viscosity. Food Res. Int. 2022, 152, 110889. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. International J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Ramalhosa, E.C.D.; Paula Valente, L. New foods, new consumers: Innovation in food product development. Curr. Nutr. Food Sci. 2016, 12, 175–189. [Google Scholar] [CrossRef]
- Montagna, M.T.; Diella, G.; Triggiano, F.; Caponio, G.R.; Giglio, O.D.; Caggiano, G.; Di Ciaula, A.; Portincasa, P. Chocolate, “food of the gods”: History, science, and human health. Int. J. Environ. Res. Public Health 2019, 16, 4960. [Google Scholar] [CrossRef]
- Samanta, S.; Sarkar, T.; Chakraborty, R.; Rebezov, M.; Shariati, M.A.; Thiruvengadam, M.; Rengasamy, K.R. Dark chocolate: An overview of its biological activity, processing, and fortification approaches. Curr. Res. Food Sci. 2022, 5, 1916–1943. [Google Scholar] [CrossRef]
- Shahanas, E.; Panjikkaran, S.T.; Aneena, E.R.; Sharon, C.L.; Remya, P.R. Health benefits of bioactive compounds from cocoa (Theobroma cacao). Agric. Rev. 2019, 40, 143–149. [Google Scholar] [CrossRef]
- Oracz, J.; Nebesny, E.; Zyzelewicz, D.; Budryn, G.; Luzak, B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1947–1985. [Google Scholar] [CrossRef] [PubMed]
- Goya, L.; Kongor, J.E.; de Pascual-Teresa, S. From cocoa to chocolate: Effect of processing on flavanols and methylxanthines and their mechanisms of action. Int. J. Mol. Sci. 2022, 23, 14365. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.; Ismail, A.; Ghani, N.A.; Adenan, I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007, 100, 1523–1530. [Google Scholar] [CrossRef]
- Wollgast, J.; Anklam, E. Polyphenols in chocolate: Is there a contribution to human health? Food Res. Int. 2000, 33, 449–459. [Google Scholar] [CrossRef]
- Sies, H.; Schewe, T.; Heiss, C.; Kelm, M. Cocoa polyphenols and inflammatory mediators. Am. J. Clin. Nutr. 2005, 81, 304S–312S. [Google Scholar] [CrossRef]
- Magrone, T.; Russo, M.A.; Jirillo, E. Cocoa and dark chocolate polyphenols: From biology to clinical applications. Front. Immunol. 2017, 8, 271757. [Google Scholar] [CrossRef]
- Mellor, D.D.; Amund, D.; Georgousopoulou, E.; Naumovski, N. Sugar and cocoa: Sweet synergy or bitter antagonisms. Formulating cocoa and chocolate products for health: A narrative review. Int. J. Food Sci. Technol. 2018, 53, 33–42. [Google Scholar] [CrossRef]
- Gutiérrez, T.J. State-of-the-art chocolate manufacture: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1313–1344. [Google Scholar] [CrossRef]
- Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. The chemistry behind chocolate production. Molecules 2019, 24, 3163. [Google Scholar] [CrossRef]
- Fang, Y.; Li, R.; Chu, Z.; Zhu, K.; Gu, F.; Zhang, Y. Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci. Nutr. 2020, 8, 4121–4133. [Google Scholar] [CrossRef]
- Guillen-Guerrero, K.M.; de la Rosa-Millan, J. Effects of Fermentation Temperature on the Physicochemical Properties, Bioactive Compounds, and In Vitro Digestive Profile of Cacao (Theobroma cacao) Seeds. Fermentation 2025, 11, 167. [Google Scholar] [CrossRef]
- Calvo, A.M.; Botina, B.L.; García, M.C.; Cardona, W.A.; Montenegro, A.C.; Criollo, J. Dynamics of cocoa fermentation and its effect on quality. Sci. Rep. 2021, 11, 16746. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.J.; Almeida, M.H.; Nout, M.R.; Zwietering, M.H. Theobroma cacao L., “The food of the Gods”: Quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food Sci. Nutr. 2011, 51, 731–761. [Google Scholar] [CrossRef] [PubMed]
- Mougang, N.N.; Tene, S.T.; Zokou, R.; Kohole, H.A.F.; Solefack, E.N.; Mboukap, A.N.; Abaoabo, A.A.F.; Womeni, H.M. Influence of fermentation time, drying time and temperature on cocoa pods (Theobroma cacao L.) marketability. Appl. Food Res. 2024, 4, 100460. [Google Scholar] [CrossRef]
- De Vuyst, L.; Weckx, S. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016, 121, 5–17. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.H.; Landines-Vera, E.F.; Urresto-Villegas, J.C.; Caicedo-Jaramillo, C.F. Microorganisms during cocoa fermentation: Systematic review. Foods Raw Mater. 2020, 8, 155–162. [Google Scholar] [CrossRef]
- Wan Daud, W.R.; Meor Talib, M.Z.; Kyi, T.M. Drying with chemical reaction in cocoa beans. Dry. Technol. 2007, 25, 867–875. [Google Scholar] [CrossRef]
- Dzelagha, B.F.; Ngwa, N.M.; Nde Bup, D. A review of cocoa drying technologies and the effect on bean quality parameters. Int. J. Food Sci. 2020, 2020, 8830127. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Krysiak, W.; Oracz, J.; Sosnowska, D.; Budryn, G.; Nebesny, E. The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Res. Int. 2016, 89, 918–929. [Google Scholar] [CrossRef]
- Bolenz, S.; Langer, M. Feasibility of a coarse conching process for dark chocolate. Eur. Food Res. Technol. 2020, 246, 125–138. [Google Scholar] [CrossRef]
- Toker, O.S.; Palabiyik, I.; Konar, N. Chocolate quality and conching. Trends Food Sci. Technol. 2019, 91, 446–453. [Google Scholar] [CrossRef]
- Fibrianto, K.; Azhar, L.O.M.F.; Widyotomo, S.; Harijono, H. Effect of cocoa bean origin and conching time on the physicochemical and microstructural properties of Indonesian dark chocolate. Braz. J. Food Technol. 2021, 24, e2019249. [Google Scholar] [CrossRef]
- Toker, O.S.; Pirouzian, H.R.; Palabiyik, I.; Konar, N. Chocolate flow behavior: Composition and process effects. Crit. Rev. Food Sci. Nutr. 2023, 63, 3788–3802. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Res. Int. 2014, 63, 367–372. [Google Scholar] [CrossRef]
- Feichtinger, A.; Scholten, E.; Sala, G. Effect of particle size distribution on rheological properties of chocolate. Food Funct. 2020, 11, 9547–9559. [Google Scholar] [CrossRef]
- Augusto, P.P.C.; Bolini, H.M. The role of conching in chocolate flavor development: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3274–3296. [Google Scholar] [CrossRef]
- Chen, J.; Ghazani, S.M.; Stobbs, J.A.; Marangoni, A.G. Tempering of cocoa butter and chocolate using minor lipidic components. Nat. Commun. 2021, 12, 5018. [Google Scholar] [CrossRef]
- Stortz, T.A.; Marangoni, A.G. Heat resistant chocolate. Trends Food Sci. Technol. 2011, 22, 201–214. [Google Scholar] [CrossRef]
- Nopens, I.; Foubert, I.; De Graef, V.; Van Laere, D.; Dewettinck, K.; Vanrolleghem, P. Automated image analysis tool for migration fat bloom evaluation of chocolate coated food products. LWT 2008, 41, 1884–1891. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M. Factors influencing rheological and textural qualities in chocolate—A review. Trends Food Sci. Technol. 2007, 18, 290–298. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, G. Development and storage study of reduced sugar soy containing compound chocolate. J. Food Sci. Technol. 2011, 48, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.; Rosochacki, M.; Wyrostek, J.; Islam, M.T. Evaluating the Quality of Raw Chocolate as an Alternative to Commercial Products. Appl. Sci. 2023, 13, 1274. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Selvasekaran, P.; Chidambaram, R. Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends Food Sci. Technol. 2021, 113, 315–334. [Google Scholar] [CrossRef]
- Sesso, H.D.; Manson, J.E.; Aragaki, A.K.; Rist, P.M.; Johnson, L.G.; Friedenberg, G.; Copeland, T.; Clar, A.; Mora, S.; Moorthy, M.V.; et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: The COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am. J. Clin. Nutr. 2022, 115, 1490–1500. [Google Scholar] [CrossRef]
- Cinquanta, L.; Di Cesare, C.; Manoni, R.; Piano, A.; Roberti, P.; Salvatori, G. Mineral essential elements for nutrition in different chocolate products. Int. J. Food Sci. Nutr. 2016, 67, 773–778. [Google Scholar] [CrossRef]
- Jaćimović, S.; Popović-Djordjević, J.; Sarić, B.; Krstić, A.; Mickovski-Stefanović, V.; Pantelić, N.Đ. Antioxidant activity and multi-elemental analysis of dark chocolate. Foods 2022, 11, 1445. [Google Scholar] [CrossRef]
- Paz-Yépez, C.; Peinado, I.; Heredia, A.; Andrés, A. Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. J. Funct. Foods 2019, 52, 196–203. [Google Scholar] [CrossRef]
- Meng, C.C.; Jalil, A.M.M.; Ismail, A. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 2009, 14, 200–209. [Google Scholar] [CrossRef]
- Zarić, D.B.; Rakin, M.B.; Bulatović, M.L.; Dimitrijević, I.D.; Ostojin, V.D.; Lončarević, I.S.; Stožinić, M.V. Rheological, Thermal, and Textural Characteristics of White, Milk, Dark, and Ruby Chocolate. Processes 2024, 12, 2810. [Google Scholar] [CrossRef]
- Borchers, A.T.; Keen, C.L.; Hannum, S.M.; Gershwin, M.E. Cocoa and chocolate: Composition, bioavailability, and health implications. J. Med. Food 2000, 3, 77–105. [Google Scholar] [CrossRef]
- Mazukabzova, E.V. Targeted change in the chemical composition of milk chocolate. Food Syst. 2021, 4, 188–192. [Google Scholar] [CrossRef]
- Lončarević, I.; Pajin, B.; Petrović, J.; Nikolić, I.; Maravić, N.; Ačkar, Đ.; Šubarić, D.; Zarić, D.; Miličević, B. White chocolate with resistant starch: Impact on physical properties, dietary fiber content and sensory characteristics. Molecules 2021, 26, 5908. [Google Scholar] [CrossRef]
- Laughter, J.A.; Brown, B.D.; Anantheswaran, R.C. Effect of curing conditions on heat resistance in white chocolate. Food Sci. Nutr. 2024, 12, 6735–6741. [Google Scholar] [CrossRef]
- Caponio, G.R.; Lorusso, M.P.; Sorrenti, G.T.; Marcotrigiano, V.; Difonzo, G.; De Angelis, E.; Guagnano, R.; Di Ciaula, A.; Diella, G.; Logrieco, A.F.; et al. Chemical characterization, gastrointestinal motility and sensory evaluation of dark chocolate: A nutraceutical boosting consumers’ health. Nutrients 2020, 12, 939. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of beverages, chocolates, nuts, and seeds. Int. J. Food Prop. 2014, 17, 86–92. [Google Scholar] [CrossRef]
- Gomes, S.M.; Miranda, R.; Santos, L. Enhancing the Biological Properties of White Chocolate: Moringa oleifera Leaf Extract as a Natural Functional Ingredient. Foods 2025, 14, 359. [Google Scholar] [CrossRef]
- Glicerina, V.; Balestra, F.; Dalla Rosa, M.; Romani, S. Effect of manufacturing process on the microstructural and rheological properties of milk chocolate. J. Food Eng. 2015, 145, 45–50. [Google Scholar] [CrossRef]
- Urbańska, B.; Szafrański, T.; Kowalska, H.; Kowalska, J. Study of polyphenol content and antioxidant properties of various mix of chocolate milk masses with different protein content. Antioxidants 2020, 9, 299. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Castro-Alayo, E.M.; Muñoz-Astecker, L.D.; Cayo-Colca, I.S.; Velayarce-Vallejos, F. Food Technology forecasting: A based bibliometric update in functional chocolates. Heliyon 2023, 9, e19578. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Duman, H.; Pekdemir, B.; Rocha, J.M.; Oz, F.; Karav, S. Functional chocolate: Exploring advances in production and health benefits. Int. J. Food Sci. Technol. 2024, 59, 5303–5325. [Google Scholar] [CrossRef]
- Pickford, E.F.; Jardine, N.J. Functional confectionery. In Functional Foods, Concept to Product; Gibson, G.R., Williams, C.M., Eds.; CRC Press: Cambridge, UK, 2000; pp. 259–286. [Google Scholar] [CrossRef]
- Damián, M.R.; Cortes-Perez, N.G.; Quintana, E.T.; Ortiz-Moreno, A.; Garfias Noguez, C.; Cruceño-Casarrubias, C.E.; Sánchez Pardo, M.E.; Bermúdez-Humarán, L.G. Functional foods, nutraceuticals and probiotics: A focus on human health. Microorganisms 2022, 10, 1065. [Google Scholar] [CrossRef] [PubMed]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Santacruz, A.; Jacobo-Velázquez, D.A. Chocolate as carrier to deliver bioactive ingredients: Current advances and future perspectives. Foods 2021, 10, 2065. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, B.; Derewiaka, D.; Lenart, A.; Kowalska, J. Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. Eur. Food Res. Technol. 2019, 245, 2101–2112. [Google Scholar] [CrossRef]
- Johns, P.W.; Das, A.; Kuil, E.M.; Jacobs, W.A.; Schimpf, K.J.; Schmitz, D.J. Cocoa polyphenols accelerate vitamin B 12 degradation in heated chocolate milk. Int. J. Food Sci. Technol. 2015, 50, 421–430. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. J. Food Sci. 2021, 86, 1629–1641. [Google Scholar] [CrossRef]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of bioactive compounds for food and agricultural applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Gültekin-Özgüven, M.; Karadağ, A.; Duman, Ş.; Özkal, B.; Özçelik, B. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chem. 2016, 201, 205–212. [Google Scholar] [CrossRef]
- Zohreh, D. Properties of dark chocolate enriched with free and encapsulated chlorogenic acids extracted from green coffee. Braz. J. Food Technol. 2020, 23, e2019118. [Google Scholar] [CrossRef]
- Barrientos, M.A.E.; Peralta, J.; Tulini, F.L.; de Sá, S.H.G.; Chalella Mazzocato, M.; Trindade, M.A.; Luccas, V.; Favaro-Trindade, C.S. Encapsulation of chasteberry (Vitex agnus castus L.) extract by spray-drying followed by spray-chilling for its application in dark chocolate. Foods 2024, 13, 3742. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, H.; Sedaghati, S. Nutraceutical dark chocolate: A delivery system for double-encapsulated extracts of Crocus sativus L., Rosa damascena, Melissa officinalis L., and Echium amoenum. LWT 2024, 198, 116036. [Google Scholar] [CrossRef]
- Hadnađev, M.; Kalić, M.; Krstonošić, V.; Jovanović-Lješković, N.; Erceg, T.; Škrobot, D.; Dapčević-Hadnađev, T. Fortification of chocolate with microencapsulated fish oil: Effect of protein wall material on physicochemical properties of microcapsules and chocolate matrix. Food Chem. X 2023, 17, 100583. [Google Scholar] [CrossRef]
- Drosou, C.; Krokida, M. Enrichment of White Chocolate with Microencapsulated β-Carotene: Impact on Quality Characteristics and β-Carotene Stability during Storage. Foods 2024, 13, 2699. [Google Scholar] [CrossRef]
- Lončarević, I.; Pajin, B.; Tumbas Šaponjac, V.; Petrović, J.; Vulić, J.; Fišteš, A.; Jovanović, P. Physical, sensorial and bioactive characteristics of white chocolate with encapsulated green tea extract. J. Sci. Food Agric. 2019, 99, 5834–5841. [Google Scholar] [CrossRef]
- Barro, N.P.R.; da Silva, L.M.; Fischer, B.; Cansian, R.L.; Junges, A.; Mignoni, M.; Valduga, E. Survival of encapsulated and free probiotic cells Lactobacillus helveticus under different simulated conditions and in white chocolate. J. Food Meas. Charact. 2024, 18, 4807–4819. [Google Scholar] [CrossRef]
- Mandal, S.; Hati, S.; Puniya, A.K.; Singh, R.; Singh, K. Development of synbiotic milk chocolate using encapsulated Lactobacillus casei NCDC 298. J. Food Process. Preserv. 2013, 37, 1031–1037. [Google Scholar] [CrossRef]
- Razavizadeh, B.M.; Tabrizi, P. Characterization of fortified compound milk chocolate with microcapsulated chia seed oil. LWT 2021, 150, 111993. [Google Scholar] [CrossRef]
- Grassia, M.; Messia, M.C.; Marconi, E.; Demirkol, Ȫ.Ş.; Erdoğdu, F.; Sarghini, F.; Cinquanta, L.; Corona, O.; Planeta, D. Microencapsulation of phenolic extracts from cocoa shells to enrich chocolate bars. Plant Foods Hum. Nutr. 2021, 76, 449–457. [Google Scholar] [CrossRef]
- Kaltsa, O.; Alibade, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Encapsulation of Moringa oleifera Extract in Ca-Alginate Chocolate Beads: Physical and Antioxidant Properties. J. Food Qual. 2021, 2021, 5549873. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Encapsulation for improving in vitro gastrointestinal digestion of plant polyphenols and their applications in food products. Food Rev. Int. 2022, 38, 335–353. [Google Scholar] [CrossRef]
- Athira, V.A.; Udayarajan, C.T.; Goksen, G.; Brennan, C.S.; Nisha, P. A brief review on 3D printing of chocolate. International J. Food Sci. Technol. 2023, 58, 2811–2828. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Huang, D.; Fuh, J.Y.; Hong, G.S. An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol. 2015, 8, 1605–1615. [Google Scholar] [CrossRef]
- Mantihal, S.; Prakash, S.; Bhandari, B. Texture-modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. J. Texture Stud. 2019, 50, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Parid, D.M.; Talib, A.T.; Baharuddin, A.S.; Rahman, N.A.A.; Mohammed, M.A.P.; Wakisaka, M. Mechanics of 3D printing process of white chocolate. J. Food Eng. 2025, 391, 112429. [Google Scholar] [CrossRef]
- Khemacheevakul, K.; Wolodko, J.; Nguyen, H.; Wismer, W. Temporal sensory perceptions of sugar-reduced 3D printed chocolates. Foods 2021, 10, 2082. [Google Scholar] [CrossRef]
- Erunsal, S.C.; Basturk, Z.S.; Canturkoglu, I.; Ozturk, H.I. Development of 3D printed dark chocolate sweetened with carob extract. Int. J. Gastron. Food Sci. 2023, 34, 100794. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Rheological properties, melting behaviours and physical quality characteristics of sugar-free chocolates processed using inulin/polydextrose bulking mixtures sweetened with stevia and thaumatin extracts. LWT-Food Sci. Technol. 2015, 62, 592–597. [Google Scholar] [CrossRef]
- Sandrou, D.K.; Arvanitoyannis, I.S. Low-fat/calorie foods: Current state and perspectives. Crit. Rev. Food Sci. Nutr. 2000, 40, 427–447. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Depypere, F.; Afoakwa, E.O.; Dewettinck, K. Industrial manufacture of sugar-free chocolates–Applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci. Technol. 2013, 32, 84–96. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture–Rheological, microstructure and physical quality characteristics. J. Food Eng. 2014, 126, 35–42. [Google Scholar] [CrossRef]
- Homayouni Rad, A.; Rasouli Pirouzian, H. Optimization of prebiotic sucrose-free milk chocolate formulation by mixture design. J. Food Sci. Technol. 2021, 58, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.A.; Anandharamakrishnan, C. Production of Low Glycemic Index Chocolates with Natural Sugar Substitutes. J. Culin. Sci. Technol. 2023, 21, 620. [Google Scholar] [CrossRef]
- Pollon, M.; Torregrossa, F.; Marconi, E.; Cinquanta, C.; Messia, C.; Malvano, F.; Mazza, F.; Planeta, D.; Corona, O. Vegan and sugar-substituted chocolates: Assessing fatty acids, methylxanthines, minerals, volatiles and sensory profiles. Eur. Food Res. Technol. 2024, 50, 2387–2403. [Google Scholar] [CrossRef]
- Loghmani, S.V.; Hojjatoleslamy, M.; Molavi, H.; Fazel, M. Investigating the rheological properties of molten sugar-free dark chocolates. J. Food Process Eng. 2022, 45, e14018. [Google Scholar] [CrossRef]
- Rasouli-Pirouzian, H.; Peighambardoust, S.H.; Azadmard-Damirchi, S. Rheological properties of sugar-free milk chocolate: Comparative Study and optimisation. Czech J. Food Sci. 2017, 35, 440–448. [Google Scholar] [CrossRef]
- Norton, J.E.; Fryer, P.J.; Parkinson, J.A. The effect of reduced-fat labelling on chocolate expectations. Food Qual. Prefer. 2013, 28, 101–105. [Google Scholar] [CrossRef]
- Haque Akanda, M.J.; Norazlina, M.R.; Azzatul, F.S.; Shaarani, S.; Mamat, H.; Lee, J.S.; Norliza, J.; Mansoor, A.H.; Selamat, J.; Khan, F.; et al. Hard Fats Improve the Physicochemical and Thermal Properties of Seed Fats for Applications in Confectionery Products. Food Rev. Int. 2019, 36, 601–625. [Google Scholar] [CrossRef]
- Joseph, C.; Batra, R.; Selvasekaran, P.; Chidambaram, R. Low calorie cocoa-based products: A short review. J. Food Sci. Technol. 2022, 59, 2931–2939. [Google Scholar] [CrossRef]
- El-Kalyoubi, M.; Khallaf, M.F.; Abdelrashid, A.; Mostafa, E.M. Quality characteristics of chocolate–Containing some fat replacer. Ann. Agric. Sci. 2011, 56, 89–96. [Google Scholar] [CrossRef]
- Do, T.A.L.; Vieira, J.; Hargreaves, J.M.; Wolf, B.; Mitchell, J.R. Impact of limonene on the physical properties of reduced fat chocolate. J. Am. Oil Chem. Soc. 2008, 85, 911–920. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I.T. Development of fat-reduced chocolate by using water-in-cocoa butter emulsions. J. Food Eng. 2019, 261, 165–170. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Cofrades, S.; Espert, M.; Sanz, T.; Salvador, A. Development of chocolates with improved lipid profile by replacing cocoa butter with an oleogel. Gels 2021, 7, 220. [Google Scholar] [CrossRef] [PubMed]
- Pușcaș, A.; Tanislav, A.E.; Mureșan, A.E.; Fărcaș, A.C.; Mureșan, V. Walnut oil oleogels as milk fat replacing system for commercially available chocolate butter. Gels 2022, 8, 613. [Google Scholar] [CrossRef]
- Orazov, A.; Abbasbeigi, S.; Koishiyeva, Z.; Nadtochii, L. Assessment of milk-based high protein products as ingredients of low-fat ice creams. Appl. Food Biotechnol. 2024, 11, e34. [Google Scholar] [CrossRef]
- Małecki, J.; Muszyński, S.; Sołowiej, B.G. Proteins in food systems—Bionanomaterials, conventional and unconventional sources, functional properties, and development opportunities. Polymers 2021, 13, 2506. [Google Scholar] [CrossRef]
- Keogh, J.B.; McInerney, J.; Clifton, P.M. The effect of milk protein on the bioavailability of cocoa polyphenols. J. Food Sci. 2007, 72, S230–S233. [Google Scholar] [CrossRef]
- Tkeshelashvili, M.; Bobozhonova, G. Development of a Technology for Chocolate Mass with a Complex of Functional Ingredients. J. Food Chem. Nanotechnol. 2023, 9, 94–99. [Google Scholar] [CrossRef]
- Aaltonen, T.; Kytö, E.; Ylisjunttila-Huusko, S.; Outinen, M. Effect of the milk-based ash-protein ratio on the quality and acceptance of chocolate with a reduced sugar content. Int. Dairy J. 2020, 105, 104663. [Google Scholar] [CrossRef]
- Nastaj, M.; Sołowiej, B.G.; Stasiak, D.M.; Mleko, S.; Terpiłowski, K.; Łyszczek, R.J.; Tomasevic, I.B.; Tomczyńska-Mleko, M. Development and physicochemical properties of reformulated, high-protein, untempered sugar-free dark chocolates with addition of whey protein isolate and erythritol. Int. Dairy J. 2022, 134, 105450. [Google Scholar] [CrossRef]
- Ares, G.; Besio, M.; Giménez, A.; Deliza, R. Relationship between involvement and functional milk desserts intention to purchase. Influence on attitude towards packaging characteristics. Appetite 2010, 55, 298–304. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Silva, G.; Gonçalves, B.H.R.F.; Conceição, D.G.; de Jesus, J.C.; Vidigal, M.C.T.R.; Simiqueli, A.A.; Bonomo, R.C.F.; Ferrao, S.P.B. Microstructural and rheological behavior of buffalo milk chocolates. J. Food Sci. Technol. 2021, 59, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of thermal properties of goat milk fat and goat milk chocolate by using DSC, PDSC and TGA methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- Smagul, G.; Tuigunov, D.; Sinyavskiy, Y.; Savenkova, T.; Barmak, S. Physico-chemical properties and micronutrient profile of functional chocolate with mare’s milk powder and resveratrol. Scifood 2025, 19, 44–60. [Google Scholar] [CrossRef]
- Taghizadeh, G.; Jahadi, M.; Abbasi, H. Physicochemical properties of probiotic soy milk chocolate mousse during refrigerated storage. Appl. Food Biotechnol. 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Aidoo, H.; Sakyi-Dawson, E.; Abbey, L.; Tano-Debrah, K.; Saalia, F.K. Optimisation of chocolate formulation using dehydrated peanut–cowpea milk to replace dairy milk. J. Sci. Food Agric. 2012, 92, 224–231. [Google Scholar] [CrossRef]
- Indiarto, R.; Al-Amin, R.W.; Djali, M.; Subroto, E.; Muhammad, D.R.A.; Wiguna, B. Improving the properties and sensory acceptability of vegan chocolate formulated with oat milk and soy protein isolate by incorporating encapsulated strawberry extract. Appl. Food Res. 2025, 5, 100674. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An overview on nutritional aspects of plant-based beverages used as substitutes for cow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Abedini, A.; Dakhili, S.; Bazzaz, S.; Kamaladdin Moghaddam, S.; Mahmoudzadeh, M.; Andishmand, H. Fortification of chocolates with high-value-added plant-based substances: Recent trends, current challenges, and future prospects. Food Sci. Nutr. 2023, 11, 3686–3705. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Comprehensive evaluation of phenolic profile in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. Food Res. Int. 2018, 112, 1–16. [Google Scholar] [CrossRef]
- Dean, L.L.; Klevorn, C.M.; Hess, B.J. Minimizing the negative flavor attributes and evaluating consumer acceptance of chocolate fortified with peanut skin extracts. J. Food Sci. 2016, 81, S2824–S2830. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4865–4881. [Google Scholar] [CrossRef] [PubMed]
- Bolenz, S.; Glöde, L. Technological and nutritional aspects of milk chocolate enriched with grape pomace products. Eur. Food Res. Technol. 2021, 247, 623–636. [Google Scholar] [CrossRef]
- Jovanović, P.; Pajin, B.; Lončarić, A.; Jozinović, A.; Petrović, J.; Fišteš, A.; Zarić, D.; Šaponjac, V.T.; Ačkar, D.; Lončarević, I. Whey as a carrier material for blueberry bioactive components: Incorporation in white chocolate. Sustainability 2022, 14, 14172. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of freeze-dried phenolic-rich plant powders on the bioactive compounds profile, antioxidant activity and aroma of different types of chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef]
- Huaman-Rojas, D.; Maicelo-Quintana, J.L.; Mori-Mestanza, D.; Auquiñivin-Silva, E.A.; Medina-Mendoza, M.; Cayo-Colca, I.S.; Maldonado-Ramirez, I.; Castro-Alayo, E.M.; Balcázar-Zumaeta, C.R. Enriching white chocolates with native Amazonian blackberries improves its physicochemical properties. Appl. Food Res. 2024, 4, 100433. [Google Scholar] [CrossRef]
- Konar, N.; Toker, O.S.; Oba, S.; Sagdic, O. Improving functionality of chocolate: A review on probiotic, prebiotic, and/or synbiotic characteristics. Trends Food Sci. Technol. 2016, 49, 35–44. [Google Scholar] [CrossRef]
- Pierezan, M.D.; Camelo-Silva, C.; Ambrosi, A.; Di Luccio, M.; Verruck, S. Probiotic and Synbiotic Chocolate. In Probiotic Foods and Beverages; Gomes da Cruz, A., Silva, M.C., Colombo Pimentel, T., Esmerino, E.A., Verruck, S., Eds.; Methods and Protocols in Food Science; Humana: New York, NY, USA, 2023; pp. 179–197. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Liang, D.; Wu, F.; Zhou, D.; Tan, B.; Chen, T. Commercial probiotic products in public health: Current status and potential limitations. Crit. Rev. Food Sci. Nutr. 2024, 64, 6455–6476. [Google Scholar] [CrossRef]
- Mirković, M.; Seratlić, S.; Kilcawley, K.; Mannion, D.; Mirković, N.; Radulović, Z. The sensory quality and volatile profile of dark chocolate enriched with encapsulated probiotic Lactobacillus plantarum bacteria. Sensors 2018, 18, 2570. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Hutchinson, G.; Ajlouni, S. Protecting the viability of encapsulated Lactobacillus rhamnosus LGG using chocolate as a carrier. Emir. J. Food Agric. (EJFA) 2021, 33, 647–656. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Masum, A.K.M.; Ajlouni, S. Viability of Lactobacillus delbrueckii in chocolates during storage and in-vitro bioaccessibility of polyphenols and SCFAs. Curr. Res. Food Sci. 2022, 5, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, R.B.; Sellamuthu, P.S.; Perumal, A.B. Development of milk chocolate supplemented with microencapsulated Lactobacillus plantarum HM47 and to determine the safety in a Swiss albino mice model. Food Control 2018, 94, 300–306. [Google Scholar] [CrossRef]
- Laličić-Petronijević, J.; Popov-Raljić, J.; Lazić, V.; Pezo, L.; Nedović, V. Synergistic effect of three encapsulated strains of probiotic bacteria on quality parameters of chocolates with different composition. J. Funct. Foods 2017, 38, 329–337. [Google Scholar] [CrossRef]
- Klindt-Toldam, S.; Larsen, S.K.; Saaby, L.; Olsen, L.R.; Svenstrup, G.; Müllertz, A.; Knøchel, S.; Heimdal, H.; Nielsen, D.S.; Zielińska, D. Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 encapsulated in chocolate during in vitro simulated passage of the upper gastrointestinal tract. LWT 2016, 74, 404–410. [Google Scholar] [CrossRef]
- Rad, A.H.; Azizi, A.; Darghahi, R.; Bakhtiari, O.; Javadi, M.; Moghaddam, M.J.; Rad, H.H.; Mirtajeddini, S.B.; Asl, N.B.; Tayebali, M.; et al. Development of synbiotic milk chocolate enriched with Lactobacillus paracasei, D-tagatose and galactooligosaccharide. Appl. Food Biotechnol. 2018, 5, 59–68. [Google Scholar] [CrossRef]
- Gadhiya, D.; Shah, N.P.; Patel, A.R.; Prajapati, J.B. Preparation and shelf life study of probiotic chocolate manufactured using Lactobacillus helveticus MTCC 5463. Acta Aliment. 2018, 47, 350–358. [Google Scholar] [CrossRef]
- Islam, M.Z.; Masum, A.K.M.; Harun-ur-Rashid, M.D. Milk chocolate matrix as a carrier of novel Lactobacillus acidophilus LDMB-01: Physicochemical analysis, probiotic storage stability and in vitro gastrointestinal digestion. J. Agric. Food Res. 2022, 7, 100263. [Google Scholar] [CrossRef]
- Achi, S.C.; Chetana, R.; Asha, M.R.; Raphel, S.; Halami, P.M. Dark chocolate: Delivery medium for probiotic Bifidobacterium breve NCIM 5671. J. Food Sci. Technol. 2024, 61, 1411–1415. [Google Scholar] [CrossRef]
- Vedor, R.; Machado, D.; Barbosa, J.C.; Almeida, D.; Gomes, A.M. Incorporation of Bifidobacterium animalis subspecies lactis BB-12® and Akkermansia muciniphila in chocolate matrices. LWT 2023, 187, 115361. [Google Scholar] [CrossRef]
- Konar, N.; Palabiyik, I.; Toker, O.S.; Polat, D.G.; Kelleci, E.; Pirouzian, H.R.; Akcicek, A.; Sagdic, O. Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. J. Funct. Foods 2018, 43, 206–213. [Google Scholar] [CrossRef]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Orozco-Sánchez, N.E.; Pérez-Carrillo, E.; Marín-Obispo, L.M.; Hernández-Brenes, C.; Santacruz, A.; Jacobo-Velázquez, D.A. Physicochemical properties and sensory acceptability of a next-generation functional chocolate added with omega-3 polyunsaturated fatty acids and probiotics. Foods 2021, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Interaction between chocolate polyphenols and encapsulated probiotics during in vitro digestion and colonic fermentation. Fermentation 2022, 8, 253. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Kolida, S.; Tuohy, K.; Gibson, G.R. Prebiotic effects of inulin and oligofructose. Br. J. Nutr. 2002, 87, S193–S197. [Google Scholar] [CrossRef]
- Verde, A.B.; Alvim, I.D.; Luccas, V.; Alves, R.M.V. Stability of milk chocolate with hygroscopic fibers during storage. LWT 2021, 137, 110477. [Google Scholar] [CrossRef]
- Konar, N.; Özhan, B.; Artık, N.; Poyrazoglu, E.S. Using polydextrose as a prebiotic substance in milk chocolate: Effects of process parameters on physical and rheological properties. CyTA-J. Food 2014, 12, 150–159. [Google Scholar] [CrossRef]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol. Res. Pract. 2011, 2011, 364040. [Google Scholar] [CrossRef]
- Institute of Medicine (U.S.); Panel on Macronutrients, Institute of Medicine (U.S.). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; p. 1331. [Google Scholar]
- Rahimi, V.; Tavanai, E.; Falahzadeh, S.; Ranjbar, A.R.; Farahani, S. Omega-3 fatty acids and health of auditory and vestibular systems: A comprehensive review. Eur. J. Nutr. 2024, 63, 1453–1469. [Google Scholar] [CrossRef]
- Bakry, A.M.; Chen, Y.Q.; Liang, L. Developing a mint yogurt enriched with omega-3 oil: Physiochemical, microbiological, rheological, and sensorial characteristics. J. Food Process. Preserv. 2019, 43, e14287. [Google Scholar] [CrossRef]
- Correa, L.G.; Kato, T.; Giuliangeli, V.C.; Torquato, A.S.; Shirai, M.A. Fruit juice fortification with omega-3 by adding chia and linseed oil microcapsules. Food Chem. Adv. 2024, 4, 100649. [Google Scholar] [CrossRef]
- Razavizadeh, B.M.; Yeganehzad, S. Alginate/soy protein isolate microspheres for fortifying dark chocolate: An innovative approach for enriching with omega-3. J. Food Meas. Charact. 2024, 18, 5339–5349. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Developing functional white chocolate by incorporating different forms of EPA and DHA-Effects on product quality. LWT 2018, 87, 177–185. [Google Scholar] [CrossRef]
- Morato, P.N.; Rodrigues, J.B.; Moura, C.S.; e Silva, F.G.D.; Esmerino, E.A.; Cruz, A.G.; Bolini, H.M.A.; Amaya-Farfan, J.; Lollo, P.C.B. Omega-3 enriched chocolate milk: A functional drink to improve health during exhaustive exercise. J. Funct. Foods 2015, 14, 676–683. [Google Scholar] [CrossRef]
- Konar, N.; Toker, O.S.; Rasouli Pirouzian, H.; Oba, S.; Genc Polat, D.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Enrichment of milk chocolate by using EPA and DHA originated from various origins: Effects on product quality. Sugar Tech 2018, 20, 745–755. [Google Scholar] [CrossRef]
- Marsanasco, M.; Calabró, V.; Piotrkowski, B.; Chiaramoni, N.S.; del, V. Alonso, S. Fortification of chocolate milk with omega-3, omega-6, and vitamins E and C by using liposomes. Eur. J. Lipid Sci. Technol. 2016, 118, 1271–1281. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2018, 6, 42. [Google Scholar] [CrossRef]
- Poliński, S.; Kowalska, S.; Topka, P.; Szydłowska-Czerniak, A. Physicochemical, antioxidant, microstructural properties and bioaccessibility of dark chocolate with plant extracts. Molecules 2021, 26, 5523. [Google Scholar] [CrossRef]
- Kotzekidou, P.; Giannakidis, P.; Boulamatsis, A. Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT-Food Sci. Technol. 2008, 41, 119–127. [Google Scholar] [CrossRef]
- Kumar, Y.; Tarafdar, A.; Badgujar, P.C. Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. J. Food Qual. 2021, 2021, 5753391. [Google Scholar] [CrossRef]
- De Oliveira, T.T.B.; dos Reis, I.M.; de Souza, M.B.; da Silva Bispo, E.; Maciel, L.F.; Druzian, J.I.; Guimarães Tavares, P.P.L.; de Oliveira Cerqueira, A.; dos Santos Boa Morte, E.; Glória, M.B.A.; et al. Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT 2021, 148, 111674. [Google Scholar] [CrossRef]
- Salgado, A.; Moreira-Leite, B.; Afonso, A.; Infante, P.; Mata, P. Chocolates enriched with seaweed: Sensory profiling and consumer segmentation. Int. J. Gastron. Food Sci. 2023, 33, 100747. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Shirley, J.R.; Donovan, J.L. Antioxidants in chocolate. Lancet 1996, 348, 834. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.; Ali, A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal. 2011, 15, 2779–2811. [Google Scholar] [CrossRef]
- Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A. Plasma antioxidants from chocolate. Nature 2003, 424, 1013. [Google Scholar] [CrossRef]
- Mohamed, H.R.H. Alleviation of cadmium chloride–induced acute genotoxicity, mitochondrial DNA disruption, and ros generation by chocolate coadministration in mice liver and kidney tissues. Biol. Trace Elem. Res. 2022, 200, 3750–3761. [Google Scholar] [CrossRef]
- Jalil, A.M.M.; Ismail, A. Polyphenols in cocoa and cocoa products: Is there a link between antioxidant properties and health? Molecules 2008, 13, 2190–2219. [Google Scholar] [CrossRef]
- Jafarirad, S.; Ayoobi, N.; Karandish, M.; Jalali, M.T.; Haghighizadeh, M.H.; Jahanshahi, A. Dark chocolate effect on serum adiponectin, biochemical and inflammatory parameters in diabetic patients: A randomized clinical trial. Int. J. Prev. Med. 2018, 9, 86. [Google Scholar] [CrossRef]
- Garcia-Yu, I.A.; Garcia-Ortiz, L.; Gomez-Marcos, M.A.; Rodriguez-Sanchez, E.; Lugones-Sanchez, C.; Maderuelo-Fernandez, J.A.; Recio-Rodriguez, J.I. Cocoa-rich chocolate and body composition in postmenopausal women: A randomised clinical trial. Br. J. Nutr. 2021, 125, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, E.; Rezaie, E.; Mirghafourvand, M.; Payahoo, L.; Naseri, E.; Ghanbari-Homaie, S. A clinical trial of the effects of cocoa rich chocolate on depression and sleep quality in menopausal women. Sci. Rep. 2024, 14, 23971. [Google Scholar] [CrossRef] [PubMed]
- Spadafranca, A.; Conesa, C.M.; Sirini, S.; Testolin, G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 2010, 103, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Mursu, J.; Voutilainen, S.; Nurmi, T.; Rissanen, T.H.; Virtanen, J.K.; Kaikkonen, J.; Nyyssönen, K.; Salonen, J.T. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free. Radic. Biol. Med. 2004, 37, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Kawai, E.; Watanabe, K.; Yamano, E.; Oba, C.; Nakamura, K.; Natsume, M.; Mizuno, K.; Watanabe, Y. Cacao polyphenol-rich dark chocolate intake contributes to efficient brain activity during cognitive tasks: A randomized, single-blinded, crossover, and dose-comparison fMRI study. Nutrients 2023, 16, 41. [Google Scholar] [CrossRef]
- Nocella, C.; Cavarretta, E.; Fossati, C.; Pigozzi, F.; Quaranta, F.; Peruzzi, M.; De Grandis, F.; Costa, F.; Sharp, C.; Manara, M.; et al. Dark chocolate intake positively modulates gut permeability in elite football athletes: A randomized controlled study. Nutrients 2023, 15, 4203. [Google Scholar] [CrossRef]
- Pannunzio, A.; Baratta, F.; Maggio, E.; Palumbo, I.M.; Magna, A.; Trivigno, C.; Carnevale, R.; Simona, B.; Cammisoto, V.; Vidili, G.; et al. Dark chocolate’s impact on low-grade endotoxemia in metabolic dysfunction-associated steatohepatitis. Nutrition 2025, 131, 112643. [Google Scholar] [CrossRef]
- Oliveira, D.; Nilsson, A. Effects of dark-chocolate on appetite variables and glucose tolerance: A 4 week randomised crossover intervention in healthy middle aged subjects. J. Funct. Foods 2017, 37, 390–399. [Google Scholar] [CrossRef]
- Lee, Y.; Berryman, C.E.; West, S.G.; Chen, C.Y.O.; Blumberg, J.B.; Lapsley, K.G.; Preston, A.G.; Fleming, J.A.; Kris-Etherton, P.M. Effects of dark chocolate and almonds on cardiovascular risk factors in overweight and obese individuals: A randomized controlled-feeding trial. J. Am. Heart Assoc. 2017, 6, e005162. [Google Scholar] [CrossRef]
- Netea, S.A.; Janssen, S.A.; Jaeger, M.; Jansen, T.; Jacobs, L.; Miller-Tomaszewska, G.; Plantinga, T.S.; Netea, M.G.; Joosten, L.A. Chocolate consumption modulates cytokine production in healthy individuals. Cytokine 2013, 62, 40–43. [Google Scholar] [CrossRef]
- Vinson, J.A.; Proch, J.; Bose, P.; Muchler, S.; Taffera, P.; Shuta, D.; Samman, N.; Agbor, G.A. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. J. Agric. Food Chem. 2006, 54, 8071–8076. [Google Scholar] [CrossRef] [PubMed]
- Madhavadas, S.; Kapgal, V.K.; Kutty, B.M.; Subramanian, S. The neuroprotective effect of dark chocolate in monosodium glutamate-induced nontransgenic Alzheimer disease model rats: Biochemical, behavioral, and histological studies. J. Diet. Suppl. 2016, 13, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cano, F.J.; Massot-Cladera, M.; Franch, À.; Castellote, C.; Castell, M. The effects of cocoa on the immune system. Front. Pharmacol. 2013, 4, 71. [Google Scholar] [CrossRef]
- Ramiro-Puig, E.; Castell, M. Cocoa: Antioxidant and immunomodulator. Br. J. Nutr. 2009, 101, 931–940. [Google Scholar] [CrossRef]
- Engler, M.B.; Engler, M.M. The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr. Rev. 2006, 64, 109–118. [Google Scholar] [CrossRef]
- Garcia, J.P.; Santana, A.; Baruqui, D.L.; Suraci, N. The Cardiovascular effects of chocolate. Rev. Cardiovasc. Med. 2018, 19, 123–127. [Google Scholar] [CrossRef]
- Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: A systematic review. Nutr. Metab. 2006, 3, 2. [Google Scholar] [CrossRef]
- Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef]
- Steinberg, F.M.; Bearden, M.M.; Keen, C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M.; Romero-Pérez, A.I.; Andrés-Lacueva, C.; Tornero, A. Health effects of cocoa flavonoids. Food Sci. Technol. Int. 2005, 11, 159–176. [Google Scholar] [CrossRef]
- Galleano, M.; Oteiza, P.I.; Fraga, C.G. Cocoa, chocolate, and cardiovascular disease. J. Cardiovasc. Pharmacol. 2009, 54, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.; Kelm, M. Chocolate consumption, blood pressure, and cardiovascular risk. Eur. Heart J. 2010, 31, 1554–1556. [Google Scholar] [CrossRef] [PubMed]
- Flammer, A.J.; Sudano, I.; Wolfrum, M.; Thomas, R.; Enseleit, F.; Périat, D.; Kaiser, P.; Hirt, A.; Hermann, M.; Serafini, M.; et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur. Heart J. 2012, 33, 2172–2180. [Google Scholar] [CrossRef]
- Leyva-Soto, A.; Chavez-Santoscoy, R.A.; Lara-Jacobo, L.R.; Chavez-Santoscoy, A.V.; Gonzalez-Cobian, L.N. Daily consumption of chocolate rich in flavonoids decreases cellular genotoxicity and improves biochemical parameters of lipid and glucose metabolism. Molecules 2018, 23, 2220. [Google Scholar] [CrossRef] [PubMed]
- McShea, A.; Ramiro-Puig, E.; Munro, S.B.; Casadesus, G.; Castell, M.; Smith, M.A. Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutr. Rev. 2008, 66, 630–641. [Google Scholar] [CrossRef]
- Andres-Lacueva, C.; Monagas, M.; Khan, N.; Izquierdo-Pulido, M.; Urpi-Sarda, M.; Permanyer, J.; Lamuela-Raventós, R.M. Flavanol and flavonol contents of cocoa powder products: Influence of the manufacturing process. J. Agric. Food Chem. 2008, 56, 3111–3117. [Google Scholar] [CrossRef]
- Nehlig, A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br. J. Clin. Pharmacol. 2013, 75, 716–727. [Google Scholar] [CrossRef]
- Field, D.T.; Williams, C.M.; Butler, L.T. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol. Behav. 2011, 103, 255–260. [Google Scholar] [CrossRef]
- Shateri, Z.; Kooshki, A.; Hormoznejad, R.; Hosseini, S.A.; Mousavi, R.; Foroumandi, E. Effects of chocolate on cognitive function in healthy adults: A systematic review and meta-analysis on clinical trials. Phytother. Res. 2023, 37, 3688–3697. [Google Scholar] [CrossRef]
- Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of cocoa and cocoa products on cognitive performance in young adults. Nutrients 2020, 12, 3691. [Google Scholar] [CrossRef]
- Faria, A.; Pestana, D.; Teixeira, D.; Couraud, P.O.; Romero, I.; Weksler, B.; de Freitas, V.; Mateus, N.; Calhau, C. Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct. 2011, 2, 39–44. [Google Scholar] [CrossRef]
- Zeli, C.; Lombardo, M.; Storz, M.A.; Ottaviani, M.; Rizzo, G. Chocolate and cocoa-derived biomolecules for brain cognition during ageing. Antioxidants 2022, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, C.S.; Cha, J.; Kim, S.; Lee, S.; Chae, S.; Chun, W.Y.; Shin, D.M. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: A randomized controlled trial. J. Nutr. Biochem. 2022, 99, 108854. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Shimonaka, A.; Natsume, M.; Yonekura, K.; Fukasawa, T.; Ito, S.; Sawazaki, A.; Tamura, K.; Kimura, I.; Koga, J. Ingestion of dark chocolate improves constipation and alters the intestinal microbiota in Japanese women. Biosci. Microbiota Food Health 2025, 2024-049. [Google Scholar] [CrossRef]
- Martin, F.P.J.; Collino, S.; Rezzi, S.; Kochhar, S. The Effect of Chocolate on Human and Gut Microbial Metabolic Interactions: Emphasis on Human Health and Nutritional Status. Choc. Health Nutr. 2013, 7, 189–200. [Google Scholar] [CrossRef]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Hayek, N. Chocolate, gut microbiota, and human health. Front. Pharmacol. 2013, 4, 11. [Google Scholar] [CrossRef]
- Jang, S.; Sun, J.; Chen, P.; Lakshman, S.; Molokin, A.; Harnly, J.M.; Vinyard, B.T.; Urban, J.F.; Davis, C.D.; Solano-Aguilar, G. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234. J. Nutr. 2016, 146, 673–680. [Google Scholar] [CrossRef]
- Peña-Correa, R.F.; Wang, Z.; Mesa, V.; Mogol, B.A.; Martínez-Galán, J.P.; Fogliano, V. Digestion and gut-microbiota fermentation of cocoa melanoidins: An in vitro study. J. Funct. Foods 2023, 109, 105814. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Camps-Bossacoma, M.; Massot-Cladera, M.; Rigo-Adrover, M.; Franch, À.; Pérez-Cano, F.J.; Castell, M. Effect of cocoa’s theobromine on intestinal microbiota of rats. Mol. Nutr. Food Res. 2017, 61, 1700238. [Google Scholar] [CrossRef]
Compounds | Value | ||
---|---|---|---|
Dark Chocolate | Milk Chocolate | White Chocolate | |
Protein, % | 8.5–10.4 | 5.0–8.4 | 5.3–6.0 |
Fat, % | 40.0–42.0 | 28.0–41.0 | 31.0–32.5 |
Carbohydrate, % | 31.0–35.0 | 43.0–58.0 | 55.5–60.0 |
Ash, % | 1.2–1.5 | 1.3–2.6 | 1.2–1.6 |
Moisture, % | 0.4–0.9 | 1.0–1.2 | 0.7–1.1 |
Energy, kcal | 518–560 | 539–575 | 522–539 |
TPC *, mg CAE **/100 g | 573.6–583.7 | 153.9–167.2 | 118.5–134.3 |
References | [59,60,61] | [52,59,60,61,62,63] | [59,60,64,65] |
Bioactive Substance | Polymers | Encapsulation Method | Chocolate Type | Objective | References |
---|---|---|---|---|---|
Morus nigra extract | Liposomes | Spray drying | Dark chocolate | Enhancement of antioxidant activity | [81] |
Chlorogenic acids | Pectin/Gelatin | Coacervation | Dark chocolate | Improvement of sensory and functional properties | [82] |
Vitex agnus castus L. extract | Vegetable fat | Spray drying | Dark chocolate | Alleviation of premenstrual syndrome (PMS) symptoms | [83] |
Herbal extracts Crocus sativus L., Rosa damascena, Melissa officinalis L., Echium amoenum | Gum arabic/Chitosan | Complex formation followed by spray drying | Dark chocolate | Improvement of preventive effects | [84] |
Fish oil | Soy/Whey/Potato Protein | Emulsification followed by spray drying | Dark chocolate | Increase in omega-3 fatty acid content | [85] |
β-Carotene | Whey protein isolate/Pullulan | Spray drying, freeze-drying/coaxial electrospinning | White chocolate | Shelf-life extension | [86] |
Green tea extract | Maltodextrin | Spray drying | White chocolate | Increase in polyphenol content | [87] |
Probiotics | Dry milk/Maltodextrin/Trehalose/Fructooligosaccharide/Starch | Spray drying | White chocolate | Formulation of probiotic chocolate | [88] |
Probiotics and inulin | Sodium alginate | Microencapsulation | Milk chocolate | Formulation of synbiotic chocolate | [89] |
Chia seed oil | Soy protein isolate/Maltodextrin/Inulin | Spray drying | Milk chocolate | Enrichment of chocolate with a plant-based source of Omega-3 fatty acids | [90] |
Polyphenols | Maltodextrin | Spray drying | Chocolate bar | Enhancement of antioxidant activity | [91] |
Moringa oleifera Leaf extract | Sodium alginate | Microencapsulation | Chocolate beads | Enhancement of antioxidant activity | [92] |
Type of Evidence | Chocolate Type | Duration of Intake | Recommended Amount or Frequency of Intake | Health Benefits | Mechanism of Action | References |
---|---|---|---|---|---|---|
Clinical trials | Dark chocolate (containing 84% cocoa) | 8 weeks | 30 g per day, in combination with Therapeutic Lifestyle Changes (TLC) recommendations | Regulation of metabolism | Reduction in glycemic parameters (glucose, HbA1c), improvement in lipid profile (LDL, triglycerides), and attenuation of systemic inflammation (TNF-α, IL-6, hs-CRP) are mediated by the effects of flavonoids on glucose metabolism, oxidative stress, and endothelial function. | [184] |
Clinical trials | Dark chocolate (containing 99% cocoa) | 6 months | 10 g per day (Polyphenol content: 65.4 mg) | Fat-lowering effect | The reduction in both absolute fat mass and relative body fat percentage in postmenopausal women is attributed to the modulation of lipid metabolism. | [185] |
Clinical trials | Dark chocolate (containing 78% cocoa) | 8 weeks | 12 g per day | Mood modulation | The anxiolytic effect is mediated through the modulation of serotonergic neurotransmission, without significant effects on sleep parameters or anthropometric measures. | [186] |
Clinical trials | Dark chocolate | 2 weeks | 45 g per day | Antioxidant effect | The antioxidant effect was associated with a transient increase in plasma epicatechin concentration and a concurrent reduction in oxidative DNA damage in peripheral blood mononuclear cells, without any significant changes in total antioxidant capacity. | [187] |
Clinical trials | Dark chocolate | 3 weeks | 75 g per day | Lipoprotein-protective effect | An increase in HDL cholesterol levels induced by components of cocoa mass, along with a potential modification of LDL lipid composition by chocolate-derived fatty acids, may contribute to a reduction in lipid peroxidation in vivo. | [188] |
Clinical trials | Dark chocolate | Single dose | 25 g of dark chocolate with high and low polyphenol content | Improvement of cognitive functions | Improved cognitive performance associated with reduced activity in brain regions responsible for executive functions suggests a more efficient use of neural resources during prolonged task performance. | [189] |
Clinical trials | Dark chocolate (containing more than 85% cocoa) | 1 months | 40 g per day (administered as 20 g every 12 h) | Gut health maintenance | Reduced intestinal barrier permeability achieved through the restoration of tight junction protein expression (occludin), decreased levels of zonulin and lipopolysaccharides (LPS), and suppression of LPS-induced oxidative stress in epithelial cells. | [190] |
Clinical trials | Dark chocolate (containing more than 85% cocoa) | 2 weeks | 40 g per day | Gut health maintenance | “Reduced levels of lipopolysaccharides and zonulin, reflecting improved intestinal epithelial integrity and decreased gut barrier permeability, mediated by the interaction of cocoa bioactive compounds with regulators of intercellular junctions.” | [191] |
Clinical trials | Dark chocolate (containing 70% cocoa) | 4 weeks | 60 g per day | Gut health maintenance | Decreased subjective hunger associated with elevated plasma levels of short-chain fatty acids, which influence appetite regulation through modulation of gut–brain axis activity. | [192] |
Clinical trials | Dark chocolate combined with cocoa powder | 4 weeks | 43 g of dark chocolate plus 18 g of cocoa powder per day | Cardioprotective effect | A reduction in total cholesterol, LDL cholesterol, and apolipoprotein B levels, including atherogenic small dense LDL fractions, attributed to the synergistic effects of flavanols, monounsaturated fatty acids, and dietary fiber on lipid metabolism and lipoprotein structural modification. | [193] |
In vitro and In vivo studies | Milk chocolate (containing 30% cocoa solids) | 4 days | 50 g per day | Immunomodulatory anti-inflammatory effect | Enhanced production of the pro-inflammatory cytokines IL-1β and TNF-α in response to P. acnes stimulation, along with increased secretion of the immunomodulatory cytokine IL-10 following exposure to S. aureus. | [194] |
Ex Vivo and In Vivo studies | Milk chocolate/dark chocolate/cocoa powder/chocolate milk/chocolate syrup/cocoa butter | Acute (1-day) and chronic intervention (10 weeks) | For short-term effects: 22 g of cocoa powder/16 g of dark chocolate/For preventive effects (10 weeks): an equivalent of 2–40 g of dark chocolate per day | Antioxidant effect | Manifestation of antioxidant and anti-atherogenic effects mediated by the binding of polyphenols to low-density lipoproteins, enhancing their resistance to oxidation, without increasing oxidative stress or lipid load. | [195] |
In vivo study in male Sprague–Dawley rats | Dark chocolate | 3 months | Daily oral administration at a dose of 500 mg per kg of body weight | Improvement of cognitive functions | Reduction of hyperglycemia and oxidative stress, inhibition of acetylcholinesterase activity, and restoration of neuronal integrity in the hippocampus, collectively contributing to improved cognitive function in animals. | [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuigunov, D.; Smagul, G.; Sinyavskiy, Y.; Omarov, Y.; Barmak, S. Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition. Processes 2025, 13, 1431. https://doi.org/10.3390/pr13051431
Tuigunov D, Smagul G, Sinyavskiy Y, Omarov Y, Barmak S. Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition. Processes. 2025; 13(5):1431. https://doi.org/10.3390/pr13051431
Chicago/Turabian StyleTuigunov, Dilyar, Galiya Smagul, Yuriy Sinyavskiy, Yerzhan Omarov, and Sabyrkhan Barmak. 2025. "Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition" Processes 13, no. 5: 1431. https://doi.org/10.3390/pr13051431
APA StyleTuigunov, D., Smagul, G., Sinyavskiy, Y., Omarov, Y., & Barmak, S. (2025). Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition. Processes, 13(5), 1431. https://doi.org/10.3390/pr13051431