Active Packaging Incorporating Cryogels Loaded with Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) for Strawberry Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Encapsulation of Pink Pepper Essential Oil in Cryogels
2.2. Application of Cryogels Loaded with Pink Pepper Oil in Strawberry Packaging
2.2.1. Weight Loss
2.2.2. Soluble Solids, pH, and Titratable Acidity
2.2.3. Color
2.2.4. Anthocyanin Content
2.2.5. Firmness
2.3. GC-FID and GC-MS Analysis
Release of Volatile Compounds
2.4. Microbiological Analyses
2.5. Statistical Analyses
3. Results and Discussion
3.1. Weight Loss and Physicochemical Properties
3.2. Color Parameters of Stored Strawberries
3.3. Anthocyanin Content
3.4. Firmness Analysis
3.5. Identification and Release of Volatile Compounds from Pink Pepper Oil
3.6. Release of Volatile Compounds
3.7. Microbiological Analysis
3.7.1. Mesophilic Aerobic Bacteria
3.7.2. Yeasts and Molds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Fruit and Vegetables—Your Dietary Essentials. The International Year of Fruits and Vegetables, 2021; FAO: Rome, Italy, 2020. [Google Scholar]
- Chen, Y.; Martynenko, A. Combination of Hydrothermodynamic (HTD) Processing and Different Drying Methods for Natural Blueberry Leather. LWT 2018, 87, 470–477. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Jayakumar, A.; de Souza, C.K.; Rhim, J.W.; Kim, J.T. Advances in Strawberry Postharvest Preservation and Packaging: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13417. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Jiang, X.; He, F.; Bai, W. Qualitative and Quantitative Methods to Evaluate Anthocyanins. eFood 2020, 1, 339–346. [Google Scholar] [CrossRef]
- Wang, D.; Shao, S.; Wang, B.; Guo, D.; Tan, L.; Chen, Q. Fabrication of Chitosan/Guar Gum/Polyvinyl Alcohol Films Incorporated with Polymethoxyflavone-Rich Citrus Extracts: Postharvest Shelf-Life Extension of Strawberry Fruits. Prog. Org. Coat. 2024, 194, 108611. [Google Scholar] [CrossRef]
- Priyadarshi, R.; El-Araby, A.; Rhim, J.W. Chitosan-Based Sustainable Packaging and Coating Technologies for Strawberry Preservation: A Review. Int. J. Biol. Macromol. 2024, 278, 134859. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.G.; Ferreira, R.R.; Paula, L.C.; Mitra, S.K.; Rosa, D.S. Starch-Based Films Enriched with Nanocellulose-Stabilized Pickering Emulsions Containing Different Essential Oils for Possible Applications in Food Packaging. Food Packag. Shelf Life 2021, 27, 100615. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.A.; Tanaka, F.; Tanaka, F. Strawberry Preservation Using Combination of Yam Bean Starch, Agarwood Aetoxylon Bouya Essential Oil, and Calcium Propionate Edible Coating during Cold Storage Evaluated by TOPSIS-Shannon Entropy. Prog. Org. Coat. 2023, 175, 107347. [Google Scholar] [CrossRef]
- Bodbodak, S.; Rafiee, Z. Recent Trends in Active Packaging in Fruits and Vegetables. In Eco-Friendly Technology for Postharvest Produce Quality; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 77–125. ISBN 9780128043844. [Google Scholar]
- Aguado, R.J.; Saguer, E.; Tarrés, Q.; Fiol, N.; Delgado-Aguilar, M. Antioxidant and Antimicrobial Emulsions with Amphiphilic Olive Extract, Nanocellulose-Stabilized Thyme Oil and Common Salts for Active Paper-Based Packaging. Int. J. Biol. Macromol. 2024, 279, 135110. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Hussain, M.; Ali, H.; Haider, A.; Ali, S.; Hussain, A.; Javed, M.A.; Jawaid, M. Preparation and Application of Hydroxypropyl Methylcellulose Blended with Beeswax and Essential Oil Edible Coating to Enhance the Shelf Life of Sweet Cherries. Int. J. Biol. Macromol. 2024, 272, 132532. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.A.; Jothi, J.S.; Leonard, S.; Van, T.T.; Yan, X.; Tanaka, F.; Tanaka, F. Biochemical and Color Stability Preservation of Strawberry Using Edible Coatings Based on Jicama Starch/Calcium Propionate/Agarwood Bouya Essential Oil during Cold Storage. J. Stored Prod. Res. 2024, 107, 102324. [Google Scholar] [CrossRef]
- Frazão, G.G.S.; Blank, A.F.; de Aquino Santana, L.C.L. Optimisation of Edible Chitosan Coatings Formulations Incorporating Myrcia Ovata Cambessedes Essential Oil with Antimicrobial Potential against Foodborne Bacteria and Natural Microflora of Mangaba Fruits. LWT 2017, 79, 1–10. [Google Scholar] [CrossRef]
- Lakshan, N.D.; Senanayake, C.M.; Liyanage, T.; Lankanayaka, A. Clove Essential Oil Emulsions-Loaded Arrowroot Starch-Beeswax-Based Edible Coating Extends the Shelf Life and Preserves the Postharvest Quality of Fresh Tomatoes (Solanum lycopersicum L.) Stored at Room Temperature. Sustain. Food Technol. 2024, 2, 1052–1068. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Lopes, N.A.; Menis-Henrique, M.E.C.; Janzantti, N.S.; Nicoletti, V.R. Modulation of Volatile Release and Antimicrobial Properties of Pink Pepper Essential Oil by Microencapsulation in Single- and Double-Layer Structured Matrices. Int. J. Food Microbiol. 2020, 335, 108890. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, A.; Ros-Chumillas, M.; Buendía-Moreno, L.; Navarro-Segura, L.; Martínez-Hernández, G.B. Active Cardboard Box with Smart Internal Lining Based on Encapsulated Essential Oils for Enhancing the Shelf Life of Fresh Mandarins. Foods 2020, 9, 590. [Google Scholar] [CrossRef]
- Owolabi, I.O.; Songsamoe, S.; Matan, N. Combined Impact of Peppermint Oil and Lime Oil on Mangosteen (Garcinia mangostana) Fruit Ripening and Mold Growth Using Closed System. Postharvest Biol. Technol. 2021, 175, 111488. [Google Scholar] [CrossRef]
- Pinto, L.; Cefola, M.; Bonifacio, M.A.; Cometa, S.; Bocchino, C.; Pace, B.; De Giglio, E.; Palumbo, M.; Sada, A.; Logrieco, A.F.; et al. Effect of Red Thyme Oil (Thymus vulgaris L.) Vapours on Fungal Decay, Quality Parameters and Shelf-Life of Oranges during Cold Storage. Food Chem. 2021, 336, 127590. [Google Scholar] [CrossRef]
- Oliveira, K.C.; Franciscato, L.M.S.S.; Mendes, S.S.; Barizon, F.M.A.; Gonçalves, D.D.; Barbosa, L.N.; Faria, M.G.I.; Valle, J.S.; Casalvara, R.F.A.; Gonçalves, J.E.; et al. Essential Oil from the Leaves, Fruits and Twigs of Schinus Terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules 2024, 29, 469. [Google Scholar] [CrossRef]
- Dannenberg, S.; Funck, G.D.; Padilha, W.; Fiorentini, Â.M. Essential Oil from Pink Pepper (Schinus terebinthifolius Raddi): Chemical Composition, Antibacterial Activity and Mechanism of Action. Food Control 2019, 95, 115–120. [Google Scholar] [CrossRef]
- Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Cattelan, M.G.; Nicoletti, V.R.; Moura, M.R. de Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels. Processes 2024, 12, 1681. [Google Scholar] [CrossRef]
- Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Granda-Restrepo, D.M.; Mauro, M.A. Cryogels from Albumin and Low Methoxyl Amidated Pectin as a Matrix for Betalain Encapsulation. J Food Process Preserv 2020, 44, 1–10. [Google Scholar] [CrossRef]
- Volić, M.; Pajić-Lijaković, I.; Djordjević, V.; Knežević-Jugović, Z.; Pećinar, I.; Stevanović-Dajić, Z.; Veljović, Đ.; Hadnadjev, M.; Bugarski, B. Alginate/Soy Protein System for Essential Oil Encapsulation with Intestinal Delivery. Carbohydr. Polym. 2018, 200, 15–24. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods of Analysis, 16th ed.; Chemists, Association of Official Agricultural: Washington, DC, USA, 1995.
- Martynenko, A.; Chen, Y. Degradation Kinetics of Total Anthocyanins and Formation of Polymeric Color in Blueberry Hydrothermodynamic (HTD) Processing. J. Food Eng. 2016, 171, 44–51. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Scarpin Guazi, J.; Conti-Silva, A.C.; Nicoletti, V.R. Active Packaging for Postharvest Storage of Cherry Tomatoes: Different Strategies for Application of Microencapsulated Essential Oil. Food Packag. Shelf Life 2021, 29, 100723. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, D. A Generalization Of The Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Acree, T.E.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/flavornet.html (accessed on 7 March 2025).
- PubChem PubChem Identifier. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 March 2025).
- Ryser, E.T.; Schuman, J.D. Mesophilic Aerobic Plate Count. In Compendium of Methods for the Microbiological Examination of Foods; Salfinger, Y., Tortorello, M.L., Eds.; American Public Health Association (APHA): Washington, DC, USA, 2015; pp. 95–101. [Google Scholar]
- de Siqueira, R.S. Manual de Microbiologia de Alimentos; EMBRAPA: Rio de Janeiro, Brazil, 1995. [Google Scholar]
- de Oliveira Filho, J.G.; Albiero, B.R.; Calisto, Í.H.; Bertolo, M.R.V.; Oldoni, F.C.A.; Egea, M.B.; Bogusz Junior, S.; de Azeredo, H.M.C.; Ferreira, M.D. Bio-Nanocomposite Edible Coatings Based on Arrowroot Starch/Cellulose Nanocrystals/Carnauba Wax Nanoemulsion Containing Essential Oils to Preserve Quality and Improve Shelf Life of Strawberry. Int. J. Biol. Macromol. 2022, 219, 812–823. [Google Scholar] [CrossRef]
- Fu, X.; Chang, X.; Xu, S.; Xu, H.; Ge, S.; Xie, Y.; Wang, R.; Xu, Y.; Luo, Z.; Shan, Y.; et al. Development of a Chitosan/Pectin-Based Multi-Active Food Packaging with Both UV and Microbial Defense Functions for Effectively Preserving of Strawberry. Int. J. Biol. Macromol. 2024, 254, 127968. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, A.; Huang, G.; Jin, X.; Xiao, Y.; Gan, R.Y.; Gao, H. Development of Apple Pectin/Soy Protein Isolate-Based Edible Films Containing Punicalagin for Strawberry Preservation. Int. J. Biol. Macromol. 2024, 273, 133111. [Google Scholar] [CrossRef]
- Takahashi, M.; Nkede, F.N.; Tanaka, F.; Tanaka, F. Development and Characterization of Mung Bean Starch and Citric Acid Active Packaging Combined with Terpinen-4-Ol and Its Application to Strawberry Preservation. J. Food Meas. Charact. 2024, 18, 2280–2292. [Google Scholar] [CrossRef]
- Taban, A.; Haghighi, T.M.; Mousavi, S.S.; Sadeghi, H. Are Edible Coatings (with or without Essential Oil/Extract) Game Changers for Maintaining the Postharvest Quality of Strawberries? A Meta-Analysis. Postharvest Biol. Technol. 2024, 216, 113082. [Google Scholar] [CrossRef]
- Hernández-Carrillo, J.G.; Orta-Zavalza, E.; González-Rodríguez, S.E.; Montoya-Torres, C.; Sepúlveda-Ahumada, D.R.; Ortiz-Rivera, Y. Evaluation of the Effectivity of Reuterin in Pectin Edible Coatings to Extend the Shelf-Life of Strawberries during Cold Storage. Food Packag. Shelf Life 2021, 30, 100760. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Celaya, L.S.; Alabrudzińska, M.H.; Molina, A.C.; Viturro, C.I.; Moreno, S. The Inhibition of Methicillin-Resistant Staphylococcus Aureus by Essential Oils Isolated from Leaves and Fruits of Schinus Areira Depending on Their Chemical Compositions. Acta Biochim. Pol. 2014, 1, 41–46. [Google Scholar] [CrossRef]
- Radice, M.; Durofil, A.; Buzzi, R.; Baldini, E.; Martínez, A.P.; Scalvenzi, L.; Manfredini, S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications. Life 2022, 12, 1602. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The Use of Polysaccharide-Based Edible Coatings Enriched with Essential Oils to Improve Shelf-Life of Strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; He, S.; Liu, J.; Shao, W. Development of an Edible Food Packaging Gelatin/Zein Based Nanofiber Film for the Shelf-Life Extension of Strawberries. Food Chem. 2023, 426, 136652. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Eryngo Essential Oil Nanoemulsion Stabilized by Sonicated-Insect Protein Isolate: An Innovative Edible Coating for Strawberry Quality and Shelf-Life Extension. Food Chem. 2025, 463, 141150. [Google Scholar] [CrossRef]
- Cai, X.; Chen, L.; Yang, X.; Wang, Y.; Xu, J.; Zhang, R.; Ling, S.; Liu, Y. Active Curcumin-Loaded γ-Cyclodextrin-Metal Organic Frameworks as Nano Respiratory Channels for Reinforcing Chitosan/Gelatin Films in Strawberry Preservation. Food Hydrocoll. 2025, 159, 110656. [Google Scholar] [CrossRef]
Parameters | Storage Time (Days) | Treatments | ||||
---|---|---|---|---|---|---|
Control | 50:50:00 | 30:70 | 50:50:00 | 30:70 | ||
ALB:PEC (1 g) | ALB:PEC (1 g) | ALB:PEC (0.4 g) | ALB:PEC (0.4 g) | |||
Weight loss (%) | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 2.31 ± 0.07 aC | 1.29 ± 0.01 bB | 1.66 ± 0.17 bB | 1.19 ± 0.02 bB | 1.72 ± 0.09 bB | |
5 | 4.64 ± 0.13 aB | 1.70 ± 0.12 cB | 2.29 ± 0.14 bB | 1.65 ± 0.13 cB | 2.34 ± 0.12 bB | |
7 | 6.21 ± 0.13 aA | 2.88 ± 0.25 bA | 3.24 ± 0.22 bA | 3.00 ± 0.15 bA | 3.18 ± 0.11 bA | |
Soluble solids (°Brix) | 0 | 6.97 ± 0.15 aA | 6.97 ± 0.15 aA | 6.97 ± 0.15 aA | 6.97 ± 0.15 aA | 6.97 ± 0.15 aA |
3 | 5.90 ± 0.00 aC | 5.67 ± 0.58 aB | 6.10 ± 0.00 aB | 5.86 ± 0.05 aB | 5.82 ± 0.17 aB | |
5 | 6.43 ± 0.21 aB | 6.13 ± 0.06 aB | 6.23 ± 0.06 aB | 6.34 ± 0.03 aB | 6.30 ± 0.03 aB | |
7 | 5.43 ± 0.06 bD | 6.20 ± 0.1 aAB | 5.17 ± 0.06 cC | 6.33 ± 0.01 aB | 6.28 ± 0.06 aB | |
pH | 0 | 3.76 ± 0.01 aA | 3.76 ± 0.01 aA | 3.76 ± 0.01 aA | 3.76 ± 0.01 aA | 3.76 ± 0.01 aA |
3 | 3.68 ± 0.01 cB | 3.72 ± 0.02 bBC | 3.76 ± 0.01 aA | 3.71 ± 0.04 bBC | 3.73 ± 0.01 aA | |
5 | 3.65 ± 0.05 bB | 3.71 ± 0.01 abC | 3.74 ± 0.02 aAB | 3.70 ± 0.02 abC | 3.71 ± 0.02 aAB | |
7 | 3.71 ± 0.01 bAB | 3.75 ± 0.01 aAB | 3.71 ± 0.01 bB | 3.74 ± 0.01 aAB | 3.68 ± 0.01 bB | |
Titratable acidity (g of citric acid/100 g of sample) | 0 | 0.49 ± 0.09 aA | 0.49 ± 0.09 aA | 0.49 ± 0.09 aA | 0.45 ± 0.01 aA | 0.46 ± 0.09 aA |
3 | 0.57 ± 0.08 aA | 0.48 ± 0.04 aA | 0.54 ± 0.33 aA | 0.44 ± 0.02 aA | 0.52 ± 0.33 aA | |
5 | 0.56 ± 0.08 aA | 0.54 ± 0.08 aA | 0.60 ± 0.08 aA | 0.54 ± 0.08 aA | 0.56 ± 0.08 aA | |
7 | 0.55 ± 0.00 aA | 0.53 ± 0.04 aA | 0.48 ± 0.05 aA | 0.48 ± 0.03 aA | 0.44 ± 0.05 aA |
Color Parameters | Storage Time (Days) | Treatment | ||||
---|---|---|---|---|---|---|
Control | 50:50 ALB:PEC (1 g) | 30:70 ALB:PEC (1 g) | 50:50 ALB:PEC (0.4 g) | 30:70 ALB:PEC (0.4 g) | ||
L* | 0 | 33.32 ± 3.30 aA | 33.32 ± 3.30 aA | 33.32 ± 3.30 aAB | 33.32 ± 3.30 aA | 33.32 ± 3.30 aAB |
3 | 34.50 ± 3.11 aB | 33.04 ± 3.42 aA | 33.93 ± 4.68 aA | 30.59 ± 3.03 bB | 32.60 ± 2.83 abB | |
5 | 36.66 ± 4.77 aB | 32.28 ± 3.03 sA | 31.69 ± 3.78 aB | 30.75 ± 3.03 bB | 31.87 ±2.84 aB | |
7 | 33.15 ± 2.89 aA | 32.91 ± 5.14 aB | 32.69 ± 2.93 aAB | 30.02 ± 3.61 B | 34.84 ± 3.98 A | |
a* | 0 | 36.77 ± 2.23 aB | 36.77 ± 2.23 aB | 36.77 ± 2.23 aB | 36.77 ± 2.23 aA | 36.77 ± 2.23 aB |
3 | 39.92 ± 2.12 aA | 39.61 ± 2.30 aA | 38.75 ± 2.56 aA | 36.06 ± 2.12 bA | 36.75 ± 1.52 bB | |
5 | 38.38 ± 4.76 aAB | 37.19 ± 2.32 aB | 37.83 ± 2.61 aAB | 37.44 ± 3.15 aA | 38.30 ± 2.71 aA | |
7 | 38.43 ± 2.65 aAB | 37.27 ± 2.71 aB | 37.14 ± 2.56 aB | 34.50 ± 1.86 bB | 37.83 ± 2.97 aAB | |
b* | 0 | 27.14 ± 3.96 aC | 27.14 ± 3.96 aA | 27.14 ± 3.96 aA | 27.14 ± 3.96 aA | 27.14 ± 3.96 aB |
3 | 31.03 ± 3.31 aAB | 29.16 ± 3.81 abA | 28.51 ± 5.19 abA | 26.49 ± 3.86 bA | 28.12 ± 4.07 bB | |
5 | 32.93 ± 2.88 aA | 26.76 ± 4.09 cdA | 29.99 ± 4.50 bA | 25.02 ± 3.79 dAB | 27.66 ± 3.60 bcB | |
7 | 29.34 ± 3.36 bB | 28.51 ± 5.76 bA | 28.31 ± 4.11 bA | 23.65 ± 3.35 cB | 32.68 ± 4.31 aA | |
Chroma | 0 | 45.79 ± 3.53 aC | 45.79 ± 3.53 aB | 45.79 ± 3.53 aA | 45.79 ± 3.53 aA | 45.79 ± 3.53 aB |
3 | 50.62 ± 3.22 aA | 49.24 ± 3.85 aA | 48.24 ± 4.53 abA | 44.81 ± 3.64 cA | 46.38 ± 3.08 bcB | |
5 | 50.57 ± 5.56 aA | 45.88 ± 4.00 bcB | 48.34 ± 4.62 abA | 45.09 ± 4.41 cA | 47.29 ± 4.06 bcB | |
7 | 48.13 ± 3.52 abB | 47.04 ± 5.46 bAB | 46.75 ± 4.32 bA | 41.88 ± 3.19 cB | 50.04 ± 4.68 aA | |
Hue | 0 | 36.27 ± 3.60 aB | 36.27 ± 3.60 aA | 36.27 ± 3.60 aAB | 36.27 ± 3.60 aA | 36.27 ± 3.60 aB |
3 | 37.79 ± 2.57 aB | 36.21 ± 2.63 aA | 36.75 ± 4.37 aB | 36.13 ± 3.19 aAB | 37.23 ± 3.73 aB | |
5 | 40.82 ± 4.16 aA | 35.54 ± 3.01 cdA | 38.20 ± 2.81 bA | 33.60 ± 2.74 dC | 35.69 ± 2.45 cB | |
7 | 37.15 ± 2.53 bB | 37.00 ± 3.96 bA | 37.14 ± 2.64 bAB | 34.27 ± 2.97 cBC | 40.68 ± 2.74 aA | |
ΔE | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 11.21 ± 4.41 aA | 5.94 ± 2.79 bA | 7.03 ± 3.30 bA | 5.39 ± 2.85 bcA | 4.55 ± 2.74 cA | |
5 | 11.14 ± 4.69 aA | 5.00 ± 2.64 bA | 6.43 ± 3.34 bA | 5.87 ± 2.94 bA | 5.23 ± 1.92 bA | |
7 | 6.71 ± 3.04 aB | 7.20 ± 4.0 aA | 4.67 ± 3.43 aA | 6.65 ± 3.49 aA | 7.69 ± 4.06 aA |
Storage Time (Days) | Anthocyanin Content (mg Cyanidin-3-O-Glucoside/g Sample) | ||||
---|---|---|---|---|---|
Control | 50:50 ALB:PEC (1 g) | 30:70 ALB:PEC (0.4 g) | 50:50 ALB:PEC (1 g) | 30:70 ALB:PEC (0.4 g) | |
0 | 80.462 ± 10.838 aA | 80.462 ± 10.838 aA | 80.462 ± 10.838 aA | 80.462 ± 10.838 aA | 80.462 ± 10.838 aA |
3 | 86.275 ± 6.94 aA | 88.201 ± 4.294 aA | 96.230 ± 4.558 aA | 88.352 ± 3.657 aA | 96.900 ± 2.958 aA |
5 | 79.912 ± 5.182 bA | 80.902 ± 3.830 bA | 94.738 ± 5.270 aA | 88.215 ± 5.962 aA | 88.739 ± 4.515 aA |
7 | 82.454 ± 12.606 aA | 95.666 ± 6.771 aA | 80.350 ± 10.338 aA | 85.202 ± 2.509 aA | 94.433 ± 2.116 aA |
Retention Index | Peak Area % | ||||
---|---|---|---|---|---|
This Study | Literature | Essential Oil | ALB:PEC 50:50 | ALB:PEC 30:70 | |
Monoterpenes | |||||
α-Pinene | 937.58 | 939 | 12.93 ± 0.12 a | 8.80 ± 0.73 b | 9.59 ± 1.70 b |
Camphene | 948.87 | 953 | 0.17 ± 0.00 a | 0.35 ± 0.03 b | 0.13 ± 0.02 b |
β-Phellandrene | 974.58 | 997 | 0.78 ± 0.01 a | 0.76 ± 0.08 a | 0.74 ± 0.09 a |
β-Pinene | 976.81 | 981 | 0.79 ± 0.01 a | 0.78 ± 0.07 a | 0.79 ± 0.03 a |
β-Myrcene | 995.12 | 992 | 3.38 ± 0.20 a | 3.22 ± 0.04 a | 3.25 ± 0.34 a |
α-Phellandrene | 1011.16 | 1006 | 34.75 ± 0.10 a | 37.53 ± 2.20 a | 37.17 ± 1.78 a |
3-Carene | 1021.1 | 1009 | 16.85 ± 0.10 a | 15.31 ± 0.58 b | 15.99 ± 0.72 b |
4-Carene | 1022.81 | 1022 | 0.18 ± 0.00 a | 0.16 ± 0.03 a | 0.21 ± 0.05 a |
ο-Cymene | 1030.51 | 1027 | 4.10 ± 0.03 c | 8.99 ± 2.87 a | 8.18 ± 1.83 a |
D-Limonene | 1030.51 | 1030 | 15.93 ± 0.10 b | 19.40 ± 1.89 a | 19.19 ± 1.68 a |
2-Carene | 1092.52 | 1021 | 1.80 ± 0.06 b | 2.74 ± 0.27 a | 2.46 ± 0.25 a |
Sesquiterpenes | |||||
Caryphyllene | 1426.82 | 1467 | 4.47 ± 0.24 a | 3.57 ± 0.13 a | 6.11 ± 1.41 a |
Gamacreme D | 1487.46 | 1478 | 3.86 ± 0.26 a | 3.15 ± 0.07 a | 3.86± 0.49 a |
Release (% ) | ||||||||
---|---|---|---|---|---|---|---|---|
Monoterpenes | ALB:PEC 50:50 | ALB:PEC 30:70 | ||||||
0 Days | 3 Days | 5 Days | 7 Days | 0 Days | 3 Days | 5 Days | 7 Days | |
α-Pinene | 0.0 | 4.3 ± 0.1 | 5.3 ± 0.2 | 18.7 ± 0.4 | 0.0 | 12.8 ± 0.7 | 15.9 ± 1.5 | 19.9 ± 3.1 |
Camphene | 0.0 | 54.7 ± 2.3 | 60.2 ± 1.7 | 67.8 ± 4.3 | 0.0 | 25.1 ± 1.4 | 46.6 ± 4.2 | 54.0 ± 4.3 |
β-Phellandrene | 0.0 | 2.5 ± 0.3 | 4.0 ± 0.2 | 15.2 ± 1.4 | 0.0 | 1.1 ± 0.1 | 3.2 ± 0.2 | 20.7 ± 3.0 |
β-Pinene | 0.0 | 1.1 ± 0.0 | 0.5 ± 0.0 | 4.3 ± 0.7 | 0.0 | 1.0 ± 0.0 | 1.2 ± 0.1 | 6.0 ± 0.4 |
β-Myrcene | 0.0 | 0.3 ± 0.0 | 0.6 ± 0.0 | 0.8 ± 0.1 | 0.0 | 0.8 ± 0.0 | 3.3 ± 0.0 | 3.3 ± 0.7 |
α-Phellandrene | 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.8 ± 0.1 | 0.0 | 0.4 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 |
3-Carene | 0.0 | 2.8 ± 0.2 | 3.5 ± 0.2 | 3.8 ± 0.3 | 0.0 | 2.5 ± 0.1 | 6.5 ± 0.3 | 9.4 ± 0.1 |
4-Carene | 0.0 | 20.3 ± 1.5 | 35.8 ± 0.4 | 59.9 ± 3.5 | 0.0 | 38.7 ± 1.3 | 40.9 ± 2.7 | 71.2 ± 2.6 |
ο-Cymene | 0.0 | 2.6 ± 0.0 | 3.3 ± 0.1 | 3.2 ± 0.0 | 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 |
D-Limonene | 0.0 | 0.1 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.0 | 0.4 ± 0.0 | 1.3 ± 0.2 | 4.8 ± 0.3 |
2-Carene | 0.0 | 2.1 ± 0.2 | 4.3 ± 0.1 | 5.4 ± 0.5 | 0.0 | 0.2 ±0.0 | 1.0 ± 0.0 | 1.1 ± 0.1 |
Sesquiterpenes | ||||||||
Caryphyllene | 0.0 | 24.6 ± 1.6 | 48.3 ± 2.2 | 52.2 ± 3.3 | 0.0 | 0.1 ± 0.0 | 58.3 ± 4.6 | 76.8 ± 6.2 |
Gamacreme D | 0.0 | 29.9 ± 1.0 | 53.6 ± 1.3 | 54.4 ± 2.0 | 0.0 | 1.5 ± 0.0 | 42.1 ± 3.5 | 62.5 ± 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Cattelan, M.G.; Janzantti, N.S.; Nicoletti, V.R.; Aouada, F.A.; de Moura, M.R. Active Packaging Incorporating Cryogels Loaded with Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) for Strawberry Preservation. Processes 2025, 13, 1179. https://doi.org/10.3390/pr13041179
Chaux-Gutiérrez AM, Pérez-Monterroza EJ, Cattelan MG, Janzantti NS, Nicoletti VR, Aouada FA, de Moura MR. Active Packaging Incorporating Cryogels Loaded with Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) for Strawberry Preservation. Processes. 2025; 13(4):1179. https://doi.org/10.3390/pr13041179
Chicago/Turabian StyleChaux-Gutiérrez, Ana María, Ezequiel José Pérez-Monterroza, Marília Gonçalves Cattelan, Natália Soares Janzantti, Vânia Regina Nicoletti, Fauze Ahmad Aouada, and Márcia Regina de Moura. 2025. "Active Packaging Incorporating Cryogels Loaded with Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) for Strawberry Preservation" Processes 13, no. 4: 1179. https://doi.org/10.3390/pr13041179
APA StyleChaux-Gutiérrez, A. M., Pérez-Monterroza, E. J., Cattelan, M. G., Janzantti, N. S., Nicoletti, V. R., Aouada, F. A., & de Moura, M. R. (2025). Active Packaging Incorporating Cryogels Loaded with Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) for Strawberry Preservation. Processes, 13(4), 1179. https://doi.org/10.3390/pr13041179