Experimental Study on Variation Characteristics of Pressure Drop and Process Optimization for Corn Kernels During the Hot Air Convective Drying Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment Apparatus and Instruments
2.3. Experimental Design
2.4. The Fitting Pressure Drop Models
2.4.1. Ergun Model
2.4.2. Shedd’s Equation
2.4.3. Hukill Equation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Experimental Results
3.2. Discussion and Analysis
3.2.1. ANOVA Analysis
3.2.2. The Influence of Factors on Pressure Difference
3.2.3. Model Verification
3.2.4. Drying Process Optimization
4. Conclusions
- (1)
- During the corn drying process, the va has the most significant impact on the pressure drop, followed by L, vc, and T. In detail, δPRSM is positively correlated with factors va and L, and negatively correlated with vc.
- (2)
- An empirical pressure drop model δPRSM focusing on the corn hot air convective drying process was established and verified. The determination coefficient R2 of the model is determined to be 0.969, and Cook’s distances for the model are within 1, indicating that the model shows a good fitting performance.
- (3)
- By considering the minimum pressure drop as the goal, the optimal corn hot air drying conditions were determined to be a drying temperature of 60 °C, corn flow velocity of 0.06 m/s, hot air velocity of 0.2 m/s, and layer thickness of 500 mm, and the corresponding minimum pressure drop is 368.392 Pa. This set of parameter values can provide theoretical parameter values for the design of corn drying equipment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Liu, Z.; Liu, S.; Feng, T. Research on drying characteristics of corn kernel based on COMSOL porous media model. J. Food Process Eng. 2024, 47, e14711. [Google Scholar] [CrossRef]
- Gao, X.; Lin, Z.; Wang, D.; Xin, S.; Liu, G. Study on the influencing factors and moisture variation of maize deep-layer drying. J. Shenyang Agric. Univ. 2024, 55, 574–582. [Google Scholar]
- Zhu, J.; Wang, Q. Analysis of Hot Air Drying Characteristics of Corn Grain Considering the Effect of Flow Field. Anal. Test. 2022, 28, 164–167. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, B.; Li, C.; Huang, J.; Ou, W.; Li, C. Establishment of a New Heat Transfer Model for Corn Drying System Based on BP Neural Network. Res. Agric. Mech. 2021, 43, 237–244. [Google Scholar] [CrossRef]
- Zhang, S.; Kong, N.; Zhu, Y.; Zhang, Z.; Xu, C. 3D Model-Based Simulation Analysis of Energy Consumption in Hot Air Drying of Corn Kernels. Math. Probl. Eng. 2013, 2013 Pt 7, 601–622. [Google Scholar] [CrossRef]
- Da Silva, G.; Ferreira, A.; Coutinho, R.; Maia, C. Energy and exergy analysis of the drying of corn grains. Renew. Energy 2021, 163, 1942–1950. [Google Scholar]
- Wei, S.; Wang, Z.; Xie, W.; Wang, F.; Chen, P.; Yang, D. A heat and mass transfer model based on multi-component heterogeneity for corn kernel tempering drying: Development and application. Comput. Electron. Agric. 2020, 171, 105–109. [Google Scholar]
- Li, C. Theoretical analysis of exergy transfer and conversion in grain drying process. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2018, 34, 1–8. [Google Scholar] [CrossRef]
- Li, Q.; Hu, T.; Yu, Z.; Yang, Y.; Fang, Y. Experimental study of fluid drag in granary ventilation. J. Hydrodyn. Ser. A 2006, 21, 473–478. [Google Scholar]
- Li, C.; Fang, Z.; Mai, Z. Design and Test on Porosimeter for Particle Material. Trans. Chin. Soc. Agric. Mach. 2014, 45, 200–206. [Google Scholar] [CrossRef]
- Li, T.; Li, C.; Li, C.; Fang, Z. Porosity of flowing rice layer: Experiments and numerical simulation. Biosyst. Eng. 2019, 179, 1–12. [Google Scholar] [CrossRef]
- Brzinski, T.; Mayor, P.; Durian, D. Depth-Dependent Resistance of Granular Media to Vertical Penetration. Phys. Rev. Lett. 2013, 111, 168002. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Tabil, L. Resistance of bulk pistachio nuts (Ohadi variety) to airflow. J. Food Eng. 2009, 90, 104–109. [Google Scholar] [CrossRef]
- Yazdanpanah, F.; Sokhansanj, S.; Lau, A.; Lim, C.; Bi, X.; Melin, S. Airflow versus pressure drop for bulk wood pellets. Biomass Bioenergy 2011, 35, 1960–1966. [Google Scholar] [CrossRef]
- Petre, C.; Larachi, F.; Iliuta, I.; Grandjean, B. Pressure drop through structured packings: Breakdown into the contributing mechanisms by CFD modeling. Chem. Eng. Sci. 2003, 58, 163–177. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Jackson, C. Resistance to airflow of grain sorghum. Trans. ASAE 2013, 31, 1237–1240. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Ma, X.; Li, J.; Zou, X.; Wang, R. Experiment and Numerical Simulation of Layer Resistance Parameters in Dryer. Trans. Chin. Soc. Agric. Mach. 2014, 45, 216–221. [Google Scholar] [CrossRef]
- Li, B.; Peng, G.; Luo, C.; Qiu, G.; Yang, L. Optimization of rapeseed vacuum drying technology parameter by response surface methodology. Food Ferment. Ind. 2016, 42, 105–110. [Google Scholar] [CrossRef]
- Mezher, Z.; Tameemi, H.; Al-Shati, A. Thermal cracking process on atmospheric residue from Al-Dewaniya petroleum refinery using Response Surface Methodology (RSM). AIP Conf. Proc. 2023, 2787, 18. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, H.; Torki, M.; Beigi, M.; Zhu, L.; Huang, X.; Yang, X.; Hu, B. Thermodynamically analysis and optimization of potato drying in a combined infrared/convective dryer. Case Stud. Therm. Eng. 2023, 42, 102671. [Google Scholar] [CrossRef]
- Parhizi, Z.; Karami, H.; Golpour, I.; Kaveh, M.; Szymanek, M.; Blanco-Marigorta, A.M.; Marcos, J.D.; Khalife, E.; Skowron, S.; Adnan Othman, N.; et al. Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM. Sustainability 2022, 14, 8839. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, M.; Wang, X.; Wu, W.; Zheng, Z.; Hu, Z.; Ma, B. Modeling and Optimization for Konjac Vacuum Drying Based on Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Processes 2020, 8, 1430. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Huang, J.; Li, C. Application of Artificial Neural Network for Prediction of Key Indexes of Corn Industrial Drying by Considering the Ambient Conditions. Appl. Sci. 2020, 10, 5659. [Google Scholar] [CrossRef]
- Mohsenin, N. Physical Properties of Plant and Animal Materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 1986, 11, 83–89. [Google Scholar] [CrossRef]
- Oliveros, N.; Hernández, J.; Sierra-Espinosa, F.; Guardián-Tapia, R.; Pliego-Solórzano, R. Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. J. Food Eng. 2017, 199, 100–112. [Google Scholar] [CrossRef]
- Kenghe, R.; Nimkar, P.; Shirkole, S.; Shinde, K. Airflow resistance in soybean. Int. Agrophysics 2012, 26, 137–143. [Google Scholar] [CrossRef]
- Giner, S.; Denisienia, E. Pressure Drop Through Wheat as Affected by Air Velocity, Moisture Content and Fines. J. Agric. Eng. Res. 1996, 63, 73–85. [Google Scholar] [CrossRef]
- Chokphoemphun, S. Moisture content prediction of paddy drying in a fluidized-bed drier with a vortex flow generator using an artificial neural network. Appl. Therm. Eng. Des. Process. Equip. Econ. 2018, 145, 630–636. [Google Scholar] [CrossRef]
- Yogendrasasidhar, D.; Setty, Y. Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer. Energy 2018, 151, 799–811. [Google Scholar] [CrossRef]
- Ghodsiyeh, D.; Davoudinejad, A.; Hashemzadeh, M.; Hosseininezhad, N.; Golshan, A. Optimizing Finishing Process in Wedming of Titanium Alloy (Ti6Al4V) by Brass Wire based on Response Surface Methodology. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 1290–1301. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Zhang, J.; Wei, J. Pressure Drop Characteristic of Dilute Negative Pressure Pneumatic Conveying. Part. Sci. Technol. 2019, 39, 101–107. [Google Scholar] [CrossRef]
- Weisberg, S. Applied Linear Regression, 4th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cook, R. Detection of influential observation in linear regression. Technometrics 1977, 19, 15–18. [Google Scholar] [CrossRef]
Instruments | Model/Material | Place of Manufacture | Values/Range | Accuracy |
---|---|---|---|---|
Frequency converter | Delta VFD002M43B | Bellme Electrical Technology Co., Ltd., Shenzhen, China | 2.2 kW | - |
Centrifugal fan | XYFL-170 | Jiachangle Electric Appliance Co., Ltd., Guangzhou, China | 2.2 kW | - |
Screen | Stainless steel | - | 2 × 2 mm | - |
Digital vernier caliper | MNT-150 | Mitutoyo Corporation, Kanagawa, Japan | 0–200 mm | 0.02 mm |
Intelligent air pressure and volume instrument | GZF-S100 | Anhui Jixun Automation Instruments Co., Ltd., Anhui, China | 0–±5000 Pa | ±1 Pa |
Thermal resistor | PT100 | Lixiang Electronics Co., Ltd., Guangzhou, China | −200–450 °C | ±0.1 °C |
Parameters | Values |
---|---|
Specification and size | 330 × 156 × 220 mm |
Maximum air volume | 540 m3/h |
Noise level | 52 dB (A) |
Voltage | 220 V |
Rated power | 80 W |
Maximum rotational speed | 2550 r/min |
Pipe diameter | 160 mm |
Opening Degree l/mm | Corn Velocity vc/m·s−1 |
---|---|
15.8 | 0.02025 ± 0.0001232 |
17.0 | 0.02986 ± 0.0000867 |
18.8 | 0.04012 ± 0.0002458 |
20.8 | 0.05072 ± 0.0000957 |
22.6 | 0.06042 ± 0.0003457 |
24.2 | 0.06992 ± 0.0000892 |
26.8 | 0.08007 ± 0.0001785 |
Code | Levels | |||
---|---|---|---|---|
T/°C | vc/m·s−1 | va/m·s−1 | L/mm | |
+r | 80 | 0.08 | 0.5 | 800 |
1 | 75 | 0.06 | 0.4 | 700 |
0 | 70 | 0.04 | 0.3 | 600 |
−1 | 65 | 0.02 | 0.2 | 500 |
−r | 60 | 0 | 0.1 | 400 |
Run | Experimental Design | Results | |||
---|---|---|---|---|---|
T/°C | vc/m·s−1 | va/m·s−1 | L/mm | δP/Pa | |
1 | 65(−1) | 0.02(−1) | 0.2(−1) | 500(−1) | 474.37 |
2 | 75(1) | 0.02(−1) | 0.2(−1) | 500(−1) | 534.53 |
3 | 65(−1) | 0.06(1) | 0.2(−1) | 500(−1) | 324.42 |
4 | 75(1) | 0.06(1) | 0.2(−1) | 500(−1) | 369.41 |
5 | 65(−1) | 0.02(−1) | 0.4(1) | 500(−1) | 1244.68 |
6 | 75(1) | 0.02(−1) | 0.4(1) | 500(−1) | 1367.52 |
7 | 65(−1) | 0.06(1) | 0.4(1) | 500(−1) | 925.38 |
8 | 75(1) | 0.06(1) | 0.6(1) | 500(−1) | 998.56 |
9 | 65(−1) | 0.02(−1) | 0.2(−1) | 700(1) | 1024.68 |
10 | 75(1) | 0.02(−1) | 0.2(−1) | 700(1) | 1130.33 |
11 | 65(−1) | 0.06(1) | 0.2(−1) | 700(1) | 749.66 |
12 | 75(1) | 0.06(1) | 0.2(−1) | 700(1) | 834.05 |
13 | 65(−1) | 0.02(−1) | 0.4(1) | 700(1) | 2305.92 |
14 | 75(1) | 0.02(−1) | 0.4(1) | 700(1) | 2592.15 |
15 | 65(−1) | 0.06(1) | 0.4(1) | 700(1) | 1790.98 |
16 | 75(1) | 0.06(1) | 0.6(1) | 700(1) | 1951.87 |
17 | 60(−r) | 0.04(0) | 0.3(0) | 600(0) | 925.38 |
18 | 80(r) | 0.04(0) | 0.3(0) | 600(0) | 1130.37 |
19 | 70(0) | 0.00(−r) | 0.3(0) | 600(0) | 1367.52 |
20 | 70(0) | 0.08(r) | 0.3(0) | 600(0) | 749.66 |
21 | 70(0) | 0.04(0) | 0.1(−r) | 600(0) | 369.41 |
22 | 70(0) | 0.04(0) | 0.5(r) | 600(0) | 2305.92 |
23 | 70(0) | 0.04(0) | 0.3(0) | 400(−r) | 474.37 |
24 | 70(0) | 0.04(0) | 0.3(0) | 800(r) | 1951.87 |
25 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1335.26 |
26 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1344.99 |
27 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1336.19 |
28 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1368.17 |
29 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1317.38 |
30 | 70(0) | 0.04(0) | 0.3(0) | 600(0) | 1312.22 |
Parameter | Deferential Pressure δP/(Pa) | |||
---|---|---|---|---|
Degree of Freedom df | Sum of Squares | F-Value | p-Value | |
Model | 14 | 1.044 × 107 | 985.56 | <0.0001 ** |
T | 1 | 75,747.49 | 100.14 | <0.0001 ** |
vc | 1 | 6.552 × 105 | 866.25 | <0.0001 ** |
va | 1 | 5.615 × 106 | 7423.23 | <0.0001 ** |
L | 1 | 3.447 × 106 | 4557.32 | <0.0001 ** |
T·vc | 1 | 2793.92 | 3.69 | 0.0738 |
T·va | 1 | 7566.83 | 10.00 | 0.0064 ** |
T·L | 1 | 7055.58 | 9.33 | 0.0080 ** |
vc·va | 1 | 57,253.72 | 75.69 | <0.0001 ** |
vc·L | 1 | 32,687.74 | 43.21 | <0.0001 ** |
va·L | 1 | 2.675 × 105 | 353.63 | <0.0001 ** |
T2 | 1 | 1.594 × 105 | 210.73 | <0.0001 ** |
vc2 | 1 | 1.289 × 105 | 170.42 | <0.0001 ** |
va2 | 1 | 40.48 | 0.0535 | 0.8202 |
L2 | 1 | 24,556.46 | 32.46 | <0.0001 ** |
Residual | 15 | 11,346.17 | ||
Lack of fit | 10 | 9318.19 | 2.30 | 0.1856 (NS) |
Pure error | 5 | 2027.97 | ||
Total variation | 29 | 1.045 × 107 | ||
Std·Dev | 27.50 | |||
Mean | 1196.91 | |||
C.V.% | 2.30 | |||
R2 | 0.9989 | |||
AdjR2 | 0.9879 | |||
PreR2 | 0.9746 |
Experiment Number | T/°C | vc/m·s−1 | va/m·s−1 | L/mm |
---|---|---|---|---|
1 | 62 | 0.05 | 0.25 | 550 |
2 | 68 | 0.05 | 0.25 | 550 |
3 | 74 | 0.05 | 0.25 | 550 |
4 | 68 | 0.03 | 0.25 | 550 |
5 | 68 | 0.05 | 0.25 | 550 |
6 | 68 | 0.07 | 0.25 | 550 |
7 | 68 | 0.05 | 0.15 | 550 |
8 | 68 | 0.05 | 0.25 | 550 |
9 | 68 | 0.05 | 0.35 | 550 |
10 | 68 | 0.05 | 0.25 | 450 |
11 | 68 | 0.05 | 0.25 | 550 |
12 | 68 | 0.05 | 0.25 | 650 |
No. | Drying Condition | Indicator | Desirability | |||
---|---|---|---|---|---|---|
T/°C | vc/m·s−1 | va/m·s−1 | L/mm | δPd/Pa | ||
1 | 65.000 | 0.060 | 0.200 | 500.000 | 368.392 | 0.990 |
2 | 65.007 | 0.060 | 0.201 | 500.001 | 370.286 | 0.989 |
3 | 65.018 | 0.059 | 0.201 | 500.001 | 371.416 | 0.987 |
4 | 65.032 | 0.060 | 0.200 | 502.584 | 375.625 | 0.986 |
5 | 65.102 | 0.060 | 0.200 | 500.005 | 372.661 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, C.; Zhang, X.; Li, B.; Peng, G. Experimental Study on Variation Characteristics of Pressure Drop and Process Optimization for Corn Kernels During the Hot Air Convective Drying Process. Processes 2025, 13, 1180. https://doi.org/10.3390/pr13041180
Zhang H, Liu C, Zhang X, Li B, Peng G. Experimental Study on Variation Characteristics of Pressure Drop and Process Optimization for Corn Kernels During the Hot Air Convective Drying Process. Processes. 2025; 13(4):1180. https://doi.org/10.3390/pr13041180
Chicago/Turabian StyleZhang, Haoping, Chuandong Liu, Xuefeng Zhang, Bin Li, and Guilan Peng. 2025. "Experimental Study on Variation Characteristics of Pressure Drop and Process Optimization for Corn Kernels During the Hot Air Convective Drying Process" Processes 13, no. 4: 1180. https://doi.org/10.3390/pr13041180
APA StyleZhang, H., Liu, C., Zhang, X., Li, B., & Peng, G. (2025). Experimental Study on Variation Characteristics of Pressure Drop and Process Optimization for Corn Kernels During the Hot Air Convective Drying Process. Processes, 13(4), 1180. https://doi.org/10.3390/pr13041180