Pathways to Carbon Neutrality: A Review of Life Cycle Assessment-Based Waste Tire Recycling Technologies and Future Trends
Abstract
:1. Introduction
2. Overview of Waste Tire Recycling Technologies
2.1. State of National-Level Waste Tire Treatment
2.2. Primary Resource Recovery Technologies
2.2.1. Physical Recovery Technologies
2.2.2. Thermochemical Recovery Technologies
3. LCA-Based Environmental Assessment of Recycling Technologies
3.1. Application of LCA in the Study of Waste Tire Resource Utilization
3.2. Comparison of LCA Results of Technical Routes
3.2.1. Comparison of Environmental Impacts Across Different Technological Pathways
3.2.2. Analysis of Key Environmental Factors
4. Current Status of Carbon Emission Reduction in Waste Tire Valorization
4.1. Contributions of Lifecycle Stages to Carbon Emissions
4.2. Identifying Key Sources of Carbon Reduction Benefits
5. Future Trends in Carbon Reduction for Waste Tire Valorization
5.1. Prospects for Emerging Valorization Technologies
5.2. Development of LCA Models
5.3. Integration with Carbon Neutrality Goals
6. Conclusions
- Improving mass and heat transfer, as well as catalytic performance in technological processes.
- Developing more detailed and multidimensional evaluation models.
- Establishing systematic approaches that balance policy objectives with environmental benefits within the framework of carbon neutrality.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zerin, N.H.; Rasul, M.G.; Jahirul, M.I.; Sayem, A.S.M. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. Sci. Total Environ. 2023, 905, 166981. [Google Scholar] [CrossRef] [PubMed]
- Messerle, V.; Ustimenko, A. Plasma Processing of Rubber Powder from End-of-Life Tires: Numerical Analysis and Experiment. Processes 2024, 12, 994. [Google Scholar] [CrossRef]
- Selbes, M.; Yilmaz, O.; Khan, A.A.; Karanfil, T. Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere 2015, 139, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.M.; Nabi, M.N.; Rainey, T.J.; Timothy, B.; Bayley, T.; Denis, R.; Ristovski, Z.; Brown, R. Novel biofuels derived from waste tyres and their effects on reducing oxides of nitrogen and particulate matter emissions. J. Clean. Prod. 2020, 242, 118463. [Google Scholar] [CrossRef]
- Sharma, A.; Sawant, R.J.; Sharma, A.; Joshi, J.B.; Jain, R.K.; Kasilingam, R. Valorisation of End-of-Life tyres for generating valuable resources under circular economy. Fuel 2022, 314, 123138. [Google Scholar] [CrossRef]
- Hossein, A.H.; Azarijafari, H.; Khoshnazar, R. The role of performance metrics in comparative LCA of concrete mixtures incorporating solid wastes: A critical review and guideline proposal. Waste Manag. 2022, 140, 40–54. [Google Scholar] [CrossRef]
- Nunes, F.M.; Silva, A.L.E.; May, J.; Szarblewski, M.S.; Flemming, L.; Assmann, E.E.; Moraes, J.A.R.; Machado, E.L. Environmental impacts associated with the life cycle of natural rubbers: A review and scientometric analysis. Ind. Crops Prod. 2025, 224, 120350. [Google Scholar] [CrossRef]
- Andooz, A.; Eqbalpour, M.; Kowsari, E.; Ramakrishna, S.; Cheshmeh, Z.A. A comprehensive review on pyrolysis from the circular economy point of view and its environmental and social effects. J. Clean. Prod. 2023, 388, 136021. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, X.; Ren, J.; Zeng, Z.; Qian, Q. Waste tire valorization: Advanced technologies, process simulation, system optimization, and sustainability. Sci. Total Environ. 2024, 942, 173561. [Google Scholar] [CrossRef]
- Fajimi, L.I.; Oboirien, B.O.; Adams, T.A. Waste tyre gasification Processes: A bibliometric Analysis and comprehensive review. Fuel 2024, 368, 131684. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Wang, S.; Formela, K. Waste tire rubber devulcanization technologies: State-of-the-art, limitations and future perspectives. Waste Manag. 2022, 150, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 2005, 84, 1884–1892. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, S. Evaluation of the physico-chemical development of kitchen food wastes through torrefaction—A biodiversity case study. Biomass Convers. Biorefinery 2021, 11, 1353–1362. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chang, C.-Y.; Tseng, C.-H. Pyrolysis products of uncoated printing and writing paper of MSW. Fuel 2002, 81, 719–725. [Google Scholar] [CrossRef]
- Peter, A.E.; Nagendra, S.S.; Nambi, I.M. Environmental burden by an open dumpsite in urban India. Waste Manag. 2019, 85, 151–163. [Google Scholar] [CrossRef]
- Paul, S.; Pegu, R.; Das, S.; Kim, K.-H.; Bhattacharya, S.S. Eco-geological consequences of textile processing wastes: Risk assessment, elemental dissolution kinetics, and health hazard potential. Environ. Res. 2023, 216, 114693. [Google Scholar] [CrossRef]
- China Rubber Industry Association. Statistical Data Analysis of Comprehensive Utilization of Waste Rubber in China in December 2023 and the Whole Year; China Rubber Industry Association: Guangzhou, China, 2023. [Google Scholar]
- The Japan Automobile Tyre Manufacturers Association, Inc. Tyre Industry of Japan 2022. Available online: https://www.jatma.or.jp/docs/publications/tyre_industry_2022.pdf (accessed on 5 January 2025).
- World Business Council for Sustainable Development, End-of-Life Tires: Full Report. Available online: https://docs.wbcsd.org/2018/02/TIP/End_of_Life_Tires-Full-Report.pdf (accessed on 5 January 2025).
- Dabić-Ostojić, S.; Miljuš, M.; Bojović, N.; Glišović, N.; Milenković, M. Applying a mathematical approach to improve the tire retreading process. Resour. Conserv. Recycl. 2014, 86, 107–117. [Google Scholar] [CrossRef]
- California Department of Transportation Analysis of Cost Differential Between Asphalt Containing Crumb Rubber and Conventional Asphalt for 2014; California Department of Transportation: Sacramento, CA, USA, 2014.
- Ariyapijati, R.H.; Hadiwardoyo, S.P.; Sumabrata, R.J. Contributions crumb rubber in hot mix asphalt to the resilient modulus. AIP Conf. Proc. 2017, 1855, 030005. [Google Scholar]
- Zheng, Y.; Han, S.; Zhang, C.; Luo, Y.; Men, C. Preparation and application of rubber modified emulsified asphalt. Constr. Build. Mater. 2024, 411, 134540. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, S.; Zhang, Y.; Zhang, C.; Chen, J.; Pan, X.; Wang, X.; Wang, S.; Wan, L. Preparation and property characterizations of functional rubber aerogels from recycled waste tire rubber powder. Chem. Eng. J. 2024, 493, 152670. [Google Scholar] [CrossRef]
- Thai, Q.B.; Siang, T.E.; Le, D.K.; Shah, W.A.; Phan-Thien, N.; Duong, H.M. Advanced fabrication and multi-properties of rubber aerogels from car tire waste. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 702–708. [Google Scholar] [CrossRef]
- Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 2019, 236, 117574. [Google Scholar] [CrossRef]
- Aoudia, K.; Azem, S.; Aït Hocine, N.; Gratton, M.; Pettarin, V.; Seghar, S. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manag. 2017, 60, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Asaro, L.; Gratton, M.; Seghar, S.; Aït Hocine, N. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Krzyżyńska, R.; Jouhara, H.; Spencer, N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 2017, 134, 1121–1131. [Google Scholar] [CrossRef]
- Mentes, D.; Tóth, C.E.; Nagy, G.; Muránszky, G.; Póliska, C. Investigation of gaseous and solid pollutants emitted from waste tire combustion at different temperatures. Waste Manag. 2022, 149, 302–312. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, M.; Xie, M.; Yang, Y.; Liu, T.; Zhou, T.; Cen, Q.; Liu, Z.; Li, B. From waste to energy: Comprehensive understanding of the thermal-chemical utilization techniques for waste tire recycling. Renew. Sustain. Energy Rev. 2025, 211, 115354. [Google Scholar] [CrossRef]
- Han, Q.; Liu, H.; Wei, G.; Zhu, Y.; Li, Q.; Li, T.; Su, X.; Duan, W. Environmental-energy-economic analyses of waste incinerators and Co-combustion pathways: A bottom-up study of over 300 cities in China. Energy Convers. Manag. 2025, 325, 119437. [Google Scholar] [CrossRef]
- Martínez, J.D.; Puy, N.; Murillo, R.; García, T.; Navarro, M.V.; Mastral, A.M. Waste tyre pyrolysis—A review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. [Google Scholar] [CrossRef]
- Oboirien, B.O.; North, B.C. A review of waste tyre gasification. J. Environ. Chem. Eng. 2017, 5, 5169–5178. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Chen, G.; Zhang, M.; Sun, T.; Burra, K.G.; Guo, S.; Chen, Y.; Yang, S.; Li, Z.; et al. Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis. Fuel 2023, 337, 127206. [Google Scholar] [CrossRef]
- Wang, F.; Gao, N.; Quan, C.; López, G. Investigation of hot char catalytic role in the pyrolysis of waste tires in a two-step process. J. Anal. Appl. Pyrolysis 2020, 146, 104770. [Google Scholar] [CrossRef]
- Söyler, N.; Ceylan, S. Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: TG-FTIR and fixed bed reactor study. J. Environ. Chem. Eng. 2021, 9, 106165. [Google Scholar] [CrossRef]
- Namchot, W.; Jitkarnka, S. Catalytic pyrolysis of waste tire using HY/MCM-41 core-shell composite. J. Anal. Appl. Pyrolysis 2016, 121, 297–306. [Google Scholar] [CrossRef]
- Zhang, M.; Qi, Y.; Zhang, W.; Wang, M.; Li, J.; Lu, Y.; Zhang, S.; He, J.; Cao, H.; Tao, X.; et al. A review on waste tires pyrolysis for energy and material recovery from the optimization perspective. Renew. Sustain. Energy Rev. 2024, 199, 114531. [Google Scholar] [CrossRef]
- Jiang, H.; Shao, J.A.; Zhu, Y.; Yu, J.; Cheng, W.; Yang, H.; Zhang, X.; Chen, H. Production mechanism of high-quality carbon black from high-temperature pyrolysis of waste tire. J. Hazard. Mater. 2023, 443, 130350. [Google Scholar] [CrossRef]
- Elbaba, I.F.; Williams, P.T. Two stage pyrolysis-catalytic gasification of waste tyres: Influence of process parameters. Appl. Catal. B Environ. 2012, 125, 136–143. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Wang, X.; Zhang, Z.; Zhao, J.; Yan, J.; Du, Y.; Zhang, H.; Ma, D. Complete CO Oxidation by O2 and H2O over Pt–CeO2−δ/MgO Following Langmuir–Hinshelwood and Mars–van Krevelen Mechanisms, Respectively. ACS Catal. 2021, 11, 11820–11830. [Google Scholar] [CrossRef]
- Kumar, N.; Aepuru, R.; Lee, S.-Y.; Park, S.-J. Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms. Nanomaterials 2025, 15, 256. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, D.; Wang, Y.; Zhao, L.; Xu, G.; Yu, Y.; He, H. Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production. Catalysts 2025, 15, 36. [Google Scholar] [CrossRef]
- Duan, P.-J.; Liu, J.-Y.; Chen, L.; Li, M.-X.; Pan, J.-W.; Zhang, Z.-Q.; Bai, C.-W.; Chen, X.-J.; Yu, H.-Q.; Chen, F. Polymeric products deactivate carbon-based catalysts in catalytic oxidation reactions. Nat. Water 2025, 3, 178–190. [Google Scholar] [CrossRef]
- Betancur, M.; Natalia Arenas, C.; Daniel Martínez, J.; Victoria Navarro, M.; Murillo, R. CO2 gasification of char derived from waste tire pyrolysis: Kinetic models comparison. Fuel 2020, 273, 117745. [Google Scholar] [CrossRef]
- Koch, D.; Friedl, A.; Mihalyi, B. Influence of different LCIA methods on an exemplary scenario analysis from a process development LCA case study. Environ. Dev. Sustain. 2023, 25, 6269–6293. [Google Scholar] [CrossRef]
- Bianco, I.; Panepinto, D.; Zanetti, M. End-of-Life Tyres: Comparative Life Cycle Assessment of Treatment Scenarios. Appl. Sci. 2021, 11, 3599. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.; Hong, J.; Lu, B. Life cycle assessment of Chinese radial passenger vehicle tire. Int. J. Life Cycle Assess. 2016, 21, 1749–1758. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Q.; Chen, X.; Song, G.; Xiao, J. Life cycle assessment of waste tire recycling: Upgraded pyrolytic products for new tire production. Sustain. Prod. Consum. 2024, 46, 294–309. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Guo, S.; Cai, Y.; Zhang, J.; Huangfu, C.; Huang, Y.; Ma, L.; Zhao, W. Life-cycle-based reconfiguration of sustainable carbon black production: Integrated conventional technique with waste tire pyrolysis and its future improvement potentials. J. Clean. Prod. 2024, 442, 141022. [Google Scholar] [CrossRef]
- Piotrowska, K.; Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method. Materials 2019, 12, 4177. [Google Scholar] [CrossRef]
- Nurzhan, A.; Ruan, X.; Chen, D. A Review of Life Cycle Assessment Application in Municipal Waste Management: Recent Advances, Limitations, and Solutions. Sustainability 2025, 17, 302. [Google Scholar] [CrossRef]
- Pyay, S.; Thanungkano, W.; Mungkalasiri, J.; Musikavong, C. A life cycle assessment of intermediate rubber products in Thailand from the product environmental footprint perspective. J. Clean. Prod. 2019, 237, 117632. [Google Scholar] [CrossRef]
- Buadit, T.; Ussawarujikulchai, A.; Suchiva, K.; Papong, S.; Ma, H.-w.; Rattanapan, C. Environmental impact of passenger car tire supply chain in Thailand using the life cycle assessment method. Sustain. Prod. Consum. 2023, 37, 156–168. [Google Scholar] [CrossRef]
- Banar, M. Life cycle assessment of waste tire pyrolysis. Fresenius Environ. Bull. 2015, 24, 1215–1226. [Google Scholar]
- Landi, D.; Marconi, M.; Bocci, E.; Germani, M. Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. J. Clean. Prod. 2020, 248, 119295. [Google Scholar] [CrossRef]
- Maga, D.; Aryan, V.; Blömer, J. A comparative life cycle assessment of tyre recycling using pyrolysis compared to conventional end-of-life pathways. Resour. Conserv. Recycl. 2023, 199, 107255. [Google Scholar] [CrossRef]
- Rogachuk, B.E.; Okolie, J.A. Comparative assessment of pyrolysis and Gasification-Fischer Tropsch for sustainable aviation fuel production from waste tires. Energy Convers. Manag. 2024, 302, 118110. [Google Scholar] [CrossRef]
- Li, J.; Santos, J.; Vargas-Farias, A.; Castro-Fresno, D.; Xiao, F. Prospective LCA of valorizing end-of-life tires in asphalt mixtures with emerging pretreatment technologies of crumb rubber. Resour. Conserv. Recycl. 2024, 210, 107828. [Google Scholar] [CrossRef]
- Kolendo, G.; Voronova, V.; Bumanis, G.; Korjakins, A.; Bajare, D. Life Cycle Assessment of End-of-Life Tire Disposal Methods and Potential Integration of Recycled Crumb Rubber in Cement Composites. Appl. Sci. 2024, 14, 11667. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Ding, N.; Lu, B. Identification of the potential environmental loads of waste tire treatment in China from the life cycle perspective. Resour. Conserv. Recycl. 2023, 193, 106938. [Google Scholar] [CrossRef]
- Thai, Q.B.; Chong, R.O.; Nguyen, P.T.T.; Le, D.K.; Le, P.K.; Phan-Thien, N.; Duong, H.M. Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. J. Environ. Chem. Eng. 2020, 8, 104279. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Yek, P.N.Y.; Lock, S.S.M.; Chin, B.L.F.; Yiin, C.L.; Lan, J.C.-W.; Lam, S.S. Microwave-assisted pyrolysis in biomass and waste valorisation: Insights into the life-cycle assessment (LCA) and techno-economic analysis (TEA). Chem. Eng. J. 2024, 491, 151942. [Google Scholar] [CrossRef]
- Tsangas, M.; Papamichael, I.; Loizia, P.; Voukkali, I.; Salman Raza, N.; Vincenzo, N.; Zorpas, A.A. Life cycle assessment of electricity generation by tire pyrolysis oil. Process Saf. Environ. Prot. 2024, 186, 376–387. [Google Scholar] [CrossRef]
- Savin, I.; Van Den Bergh, J. Tired of climate targets? Shift focus of IPCC scenarios from emission and growth targets to policies. Ann. Acad. Sci. 2022, 1517, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Rybaczewska-Błażejowska, M.; Jezierski, D. Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. Int. J. Life Cycle Assess. 2024, 29, 1799–1817. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Jin, J.; Li, S. A life cycle assessment case study of ground rubber production from scrap tires. Int. J. Life Cycle Assess. 2014, 19, 1833–1842. [Google Scholar] [CrossRef]
- Clauzade, C.; Osset, P.; Hugrel, C.; Chappert, A.; Durande, M.; Palluau, M. Life cycle assessment of nine recovery methods for end-of-life tyres. Int. J. Life Cycle Assess. 2010, 15, 883–892. [Google Scholar] [CrossRef]
- Ortíz-Rodríguez, O.O.; Ocampo-Duque, W.; Duque-Salazar, L.I. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia. Energies 2017, 10, 2117. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Q.; Chen, X.; Song, G.; Xiao, J. Integrated Assessment of Waste Tire Pyrolysis and Upgrading Pathways for Production of High-Value Products. ACS Omega 2022, 7, 30954–30966. [Google Scholar] [CrossRef]
- Qi, J.; Wang, Y.; Xu, P.; Hu, M.; Huhe, T.; Ling, X.; Yuan, H.; Li, J.; Chen, Y. Coupling of molten salt heating tire pyrolysis process with carbon black modification process: Technical economic evaluation and life cycle assessment. J. Clean. Prod. 2025, 486, 144454. [Google Scholar] [CrossRef]
- Wu, Q.; Leng, S.; Zhang, Q.; Xiao, J. Resource and environmental assessment of pyrolysis-based high-value utilization of waste passenger tires. Waste Manag. 2021, 126, 201–208. [Google Scholar] [CrossRef]
- Lacirignola, M.; Blanc, P.; Girard, R.; Pérez-López, P.; Blanc, I. LCA of emerging technologies: Addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Sci. Total Environ. 2017, 578, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Markwardt, S.; Wellenreuther, F. Sensitivity analysis as a tool to extend the applicability of LCA findings. Int. J. Life Cycle Assess. 2016, 21, 1148–1158. [Google Scholar] [CrossRef]
- Borgonovo, E.; Plischke, E. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 2016, 248, 869–887. [Google Scholar] [CrossRef]
- Intergovernamental Panel on Climate Change (IPCC). Special Report on Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Gwak, J.M.; Kim, M.-R.; Hur, T. Analysis of internally recurring unit processes in life cycle assessment. J. Clean. Prod. 2003, 11, 787–795. [Google Scholar] [CrossRef]
- Banguera, L.A.; Sepúlveda, J.M.; Ternero, R.; Vargas, M.; Vásquez, Ó.C. Reverse logistics network design under extended producer responsibility: The case of out-of-use tires in the Gran Santiago city of Chile. Int. J. Prod. Econ. 2018, 205, 193–200. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Gao, Y.; Tao, Y. Comparison of end-of-life tire treatment technologies: A Chinese case study. Waste Manag. 2010, 30, 2235–2246. [Google Scholar] [CrossRef]
- Oyola-Cervantes, J.; Amaya-Mier, R. Reverse logistics network design for large off-the-road scrap tires from mining sites with a single shredding resource scheduling application. Waste Manag. 2019, 100, 219–229. [Google Scholar] [CrossRef]
- Yu, J.; Xu, J.; Li, Z.; He, W.; Huang, J.; Xu, J.; Li, G. Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies. Front. Environ. Sci. Eng. 2019, 14, 19. [Google Scholar] [CrossRef]
- Gigli, S.; Landi, D.; Germani, M. Cost-benefit analysis of a circular economy project: A study on a recycling system for end-of-life tyres. J. Clean. Prod. 2019, 229, 680–694. [Google Scholar] [CrossRef]
- Paramanik, A.R.; Mahanty, B. A circular system for end-of-life tires under extended producer responsibility. Mater. Manuf. Process. 2023, 38, 1964–1971. [Google Scholar] [CrossRef]
- Li, D.; Lei, S.; Rajput, G.; Zhong, L.; Ma, W.; Chen, G. Study on the co-pyrolysis of waste tires and plastics. Energy 2021, 226, 120381. [Google Scholar] [CrossRef]
- Tatrari, G.; Tewari, C.; Pathak, M.; Karakoti, M.; Bohra, B.S.; Pandey, S.; SanthiBhushan, B.; Srivastava, A.; Rana, S.; Sahoo, N.G. Bulk production of zinc doped reduced graphene oxide from tire waste for supercapacitor application: Computation and experimental analysis. J. Energy Storage 2022, 53, 105098. [Google Scholar] [CrossRef]
- Deng, S.; Chen, R.; Duan, S.; Jia, Q.; Hao, X.; Zhang, L. Research progress on sustainability of key tire materials. SusMat 2023, 3, 581–608. [Google Scholar] [CrossRef]
- Öner, İ.V.; Atabani, A.E.; Durnagöl, T. Recycling of waste tires to crude pyrolytic oil: Engine performance, combustion characteristics and emissions analysis of diesel-butanol-crude pyrolytic oil blends in CI diesel engines. Sustain. Energy Technol. Assess. 2023, 56, 103023. [Google Scholar] [CrossRef]
- Kazemi, M.; Parikhah Zarmehr, S.; Yazdani, H.; Fini, E. Review and Perspectives of End-of-Life Tires Applications for Fuel and Products. Energy Fuels 2023, 37, 10758–10774. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Anh Mai, T.L.; Brandão, M.; Anaya de la Rosa, R.; Kristiansen, P.; Joseph, S. Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. J. Clean. Prod. 2017, 162, 260–272. [Google Scholar] [CrossRef]
- Alonso Pastor, L.E.; Nuñez Carrero, K.C.; González, M.; Araujo-Morera, J.; Peters, G.; Pastor, J.M.; Hernández Santana, M. Life cycle assessment applied to a self-healing elastomer filled with ground tire rubber. J. Clean. Prod. 2023, 419, 138207. [Google Scholar] [CrossRef]
- Farina, A.; Zanetti, M.C.; Santagata, E.; Blengini, G.A. Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement. Resour. Conserv. Recycl. 2017, 117, 204–212. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; He, W.; Huang, J.; Xu, J.; Li, G. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable. Sci. Total Environ. 2021, 793, 148597. [Google Scholar] [CrossRef]
- Subramanian, A.S.; Gundersen, T.; Adams, T.A. Optimal design and operation of a waste tire feedstock polygeneration system. Energy 2021, 223, 119990. [Google Scholar] [CrossRef]
- Subramanian, A.S.R.; Gundersen, T.; Barton, P.I.; Adams, T.A. Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system. Energy 2022, 250, 123722. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, Y.; Jiang, X.; Yang, H.; Yan, K.; Han, M.; Li, W.; Zhong, H.; Tan, X.; Xia, L.; et al. Simulation and techno-economical analysis on the pyrolysis process of waste tire. Energy 2022, 260, 125039. [Google Scholar] [CrossRef]
- Shahjalal, M.; Islam, K.; Batool, F.; Tiznobaik, M.; Zahid Hossain, F.M.; Sakil Ahmed, K.; Alam, M.S.; Ahsan, R. Fiber-reinforced recycled aggregate concrete with crumb rubber: A state-of-the-art review. Constr. Build. Mater. 2023, 404, 133233. [Google Scholar] [CrossRef]
- Qi, J.; Xu, P.; Hu, M.; Huhe, T.; Ling, X.; Yuan, H.; Wang, Y.; Chen, Y. Machine learning-driven prediction and optimization of pyrolysis oil and limonene production from waste tires. J. Anal. Appl. Pyrolysis 2024, 177, 106296. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.S.; Tsang, D.C.W.; Clark, J.H.; Budarin, V.L.; Hu, C.; Wu, K.C.W.; Zhang, S. Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chem. 2020, 22, 725–736. [Google Scholar] [CrossRef]
- Silva, W.O.; Nagar, B.; Ellersiek, D.; Bondaz, L.; Espín, J.; Soutrenon, M.; Girault, H.H. Hydrogen production by waste tire recycling by photo-pyrolysis. Sustain. Energy Fuels 2023, 7, 5693–5703. [Google Scholar] [CrossRef]
- Giray, E.S.; Sönmez, Ö. Supercritical extraction of scrap tire with different solvents and the effect of tire oil on the supercritical extraction of coal. Fuel Process. Technol. 2004, 85, 251–265. [Google Scholar] [CrossRef]
- Wen, M.; Sun, N.; Jiao, L.; Zang, S.-Q.; Jiang, H.-L. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO2 Electroreduction at Ampere-Level Current. Angew. Chem. Int. Ed. 2024, 63, e202318338. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Yang, Y.; Sun, J.; Zhao, X.; Wang, W.; Mao, Y.; Yuan, X.; Wang, Q. Characteristics of limonene formation during microwave pyrolysis of scrap tires and quantitative analysis. Energy 2018, 142, 953–961. [Google Scholar] [CrossRef]
- Zandifar, A.; Esmaeilzadeh, F.; Rodríguez-Mirasol, J. Hydrogen-rich gas production via supercritical water gasification (SCWG) of oily sludge over waste tire-derived activated carbon impregnated with Ni: Characterization and optimization of activated carbon production. Environ. Pollut. 2024, 342, 123078. [Google Scholar] [CrossRef]
- Yan, S.; Xia, D.; Liu, X. Beneficial migration of sulfur element during scrap tire depolymerization with supercritical water: A molecular dynamics and DFT study. Sci. Total Environ. 2021, 776, 145835. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Zhang, J.; Hu, S.; Ma, S.; Huang, R.; Su, S.; Wang, Y.; Jiang, L.; Xu, J.; Xiang, J. Novel photothermal pyrolysis on waste tire to generate high-yield limonene. Fuel 2022, 329, 125482. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Vo, D.-V.N.; Kozinski, J.A.; Gökalp, I. Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. J. Supercrit. Fluids 2019, 154, 104627. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Yu, J. The mechanism on liquefaction of waste tire by ethanolysis. Energy 2024, 307, 132749. [Google Scholar] [CrossRef]
- Ma, Y.; Qi, H.; Zhang, J.; Cui, P.; Zhu, Z.; Wang, Y. Thermodynamic analysis of a carbon capture hydrogen production process for end-of-life tires using plasma gasification. J. Clean. Prod. 2023, 384, 135662. [Google Scholar] [CrossRef]
- Tsipa, P.C.; Phiri, M.M.; Iwarere, S.A.; Mkhize, N.M.; Phiri, M.J.; Hlangothi, S.P. A novel chemical pre-pyrolysis treatment of waste tyre crumbs: A viable way for low temperature waste tyre pyrolysis. J. Anal. Appl. Pyrolysis 2024, 181, 106631. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste tyre valorization by catalytic pyrolysis—A review. Renew. Sustain. Energy Rev. 2020, 129, 109932. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 123, 224–228. [Google Scholar] [CrossRef]
- Li, Q.; Li, F.; Meng, A.; Tan, Z.; Zhang, Y. Thermolysis of scrap tire and rubber in sub/super-critical water. Waste Manag. 2018, 71, 311–319. [Google Scholar] [CrossRef]
- Geweda, A.E.; Zayed, M.E.; Khan, M.Y.; Alquaity, A.B.S. Mitigating CO2 emissions: A review on emerging technologies/strategies for CO2 capture. J. Energy Inst. 2025, 118, 101911. [Google Scholar] [CrossRef]
- Duduku, K.; Anisuzzaman, S.M.; Bono; Teo, B.K.; Rao, V.V.B. Carbon dioxide capture using waste tire based adsorbent. IOP Conf. Ser. Mater. Sci. Eng. 2019, 606, 012006. [Google Scholar] [CrossRef]
- Toh-ae, P.; Timasart, N.; Tumnantong, D.; Bovornratanaraks, T.; Poompradub, S. Utilization of waste tire derived activated carbon as CO2 capture and photocatalyst for CO2 conversion. Sci. Rep. 2024, 14, 17100. [Google Scholar] [CrossRef] [PubMed]
- Dziejarski, B.; Hernández-Barreto, D.F.; Moreno-Piraján, J.C.; Giraldo, L.; Serafin, J.; Knutsson, P.; Andersson, K.; Krzyżyńska, R. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO2 capture abilities. Environ. Res. 2024, 247, 118169. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, H.; Qiu, G.; Guo, S.; Li, H.; Li, Y.; Guo, Y.; Zhang, Y.; Wu, J. Development of CO2 adsorption materials from recycling spent tire char via orthogonal design: Optimal solution and thermodynamic evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131749. [Google Scholar] [CrossRef]
- Cho, S.-H.; Oh, J.-I.; Jung, S.; Park, Y.-K.; Tsang, Y.F.; Ok, Y.S.; Kwon, E.E. Catalytic pyrolytic platform for scrap tires using CO2 and steel slag. Appl. Energy 2020, 259, 114164. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Ren, J. Waste tires to blue hydrogen by integrating plasma gasification process, CO2 capture and cascade power generation: New process development and technical feasibility analysis. Energy 2025, 315, 134227. [Google Scholar] [CrossRef]
- Al-Qadri, A.A.; Ahmed, U.; Abdul Jameel, A.G.; Zahid, U.; Ahmad, N.; Shahbaz, M.; Nemitallah, M.A. Technoeconomic Feasibility of Hydrogen Production from Waste Tires with the Control of CO2 Emissions. ACS Omega 2022, 7, 48075–48086. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Q.; Hao, R.; He, H.; Yang, F.; Mao, X.; Mao, Y.; Zhao, P. Combustion behavior, emission characteristics of SO2, SO3 and NO, and in situ control of SO2 and NO during the co-combustion of anthracite and dried sawdust sludge. Sci. Total Environ. 2019, 646, 716–726. [Google Scholar] [CrossRef]
- Dai, Z.; Deng, L. Membrane absorption using ionic liquid for pre-combustion CO2 capture at elevated pressure and temperature. Int. J. Greenh. Gas Control 2016, 54, 59–69. [Google Scholar] [CrossRef]
- Batuecas, E.; Serrano, D.; Horvat, A.; Abelha, P. Sustainable conditions for waste tires recycling through gasification in a bubbling fluidized bed. J. Clean. Prod. 2023, 415, 137839. [Google Scholar] [CrossRef]
- Shimako, A.H.; Tiruta-Barna, L.; Bisinella de Faria, A.B.; Ahmadi, A.; Spérandio, M. Sensitivity analysis of temporal parameters in a dynamic LCA framework. Sci. Total Environ. 2018, 624, 1250–1262. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, M.; Peng, L.; Yang, J.; Li, M.; Tian, J.; Chen, L.; Mauzerall, D.L. Carbon mitigation and environmental co-benefits of a clean energy transition in China’s industrial parks. Environ. Sci. Technol. 2023, 57, 6494–6505. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Glad, T.; Zhong, Z.; He, R.; Tian, J.; Chen, L. Environmental life-cycle assessment of municipal solid waste incineration stocks in Chinese industrial parks. Resour. Conserv. Recycl. 2018, 139, 387–395. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Li, C.Z.; Liu, G.; Wu, Z.; Zhong, X. An integrated framework for embodied energy quantification of buildings in China: A multi-regional perspective. Resour. Conserv. Recycl. 2018, 138, 183–193. [Google Scholar] [CrossRef]
- Piñero, P.; Cazcarro, I.; Arto, I.; Mäenpää, I.; Juutinen, A.; Pongrácz, E. Accounting for Raw Material Embodied in Imports by Multi-regional Input-Output Modelling and Life Cycle Assessment, Using Finland as a Study Case. Ecol. Econ. 2018, 152, 40–50. [Google Scholar] [CrossRef]
- De Simone Souza, H.H.; De Abreu Evangelista, P.P.; Medeiros, D.L.; Albertí, J.; Fullana-i-Palmer, P.; Boncz, M.Á.; Kiperstok, A.; Gonçalves, J.P. Functional unit influence on building life cycle assessment. Int. J. Life Cycle Assess. 2021, 26, 435–454. [Google Scholar] [CrossRef]
- Cole, R. EU Commits €1bn of Horizon 2020 Funding to Circular Economy Until 2020. Resource.co. 30 October 2017. Available online: https://resource.co/article/eu-commits-1bn-horizon-2020-funding-circular-economy-until-2020-12198 (accessed on 5 January 2025).
- TREMS. New Research Hub to Tackle Global Waste Crisis. Available online: https://puddleofmuddmerch.com/ (accessed on 2 July 2020).
- Department of Climate Change, Energy, the Environment and Water; Australian Government. Investing in Australia’s Waste and Recycling Infrastructure; Department of Climate Change, Energy, the Environment and Water: East Melbourne, Australia, 2020. [Google Scholar]
- China Enterprise Confederation; Rocky Mountain Institute (RMI); China Sustainability Tribune. Selected Cases of Excellent Practice in Green and Low Carbon Development of China Enterprises; China Enterprise Management Publishing House: Beijing, China, 2023. [Google Scholar]
- State Taxation Administration of the People’s Republic of China, Resource Comprehensive Utilization Products and Labor Value-Added Tax Immediate Collection and Refund. Available online: https://www.chinatax.gov.cn/chinatax/c102166/c5178970/content.html (accessed on 5 January 2025).
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Bai, Y.; Peng, Y.; Zhang, D.; Yang, G.; Chen, L.; Kang, L.; Zhou, W.; Wei, B.; Xie, Y.; Yang, Y. Heating up the roof of the world: Tracing the impacts of in-situ warming on carbon cycle in alpine grasslands on the tibetan plateau. Natl. Sci. Rev. 2024, 12, nwae371. [Google Scholar] [CrossRef]
- Xu, G.; Zang, L.; Schwarz, P.; Yang, H. Achieving China’s carbon neutrality goal by economic growth rate adjustment and low-carbon energy structure. Energy Policy 2023, 183, 113817. [Google Scholar] [CrossRef]
- Calderón, S.; Alvarez, A.C.; Loboguerrero, A.M.; Arango, S.; Calvin, K.; Kober, T.; Daenzer, K.; Fisher-Vanden, K. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Econ. 2016, 56, 575–586. [Google Scholar] [CrossRef]
- Hao, D.; Han, H. The greenhouse gas emissions reduction co-benefit of end-of-life electric vehicle battery treatment strategies. Carbon Footpr. 2024, 3, 2–19. [Google Scholar]
- Jin, Y.; Sharifi, A.; Li, Z.; Chen, S.; Zeng, S.; Zhao, S. Carbon emission prediction models: A review. Sci. Total Environ. 2024, 927, 172319. [Google Scholar] [CrossRef] [PubMed]
- Ameyaw, B.; Yao, L. Analyzing the Impact of GDP on CO2 Emissions and Forecasting Africa’s Total CO2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory. Sustainability 2018, 10, 3110. [Google Scholar] [CrossRef]
- Wen, L.; Cao, Y. A hybrid intelligent predicting model for exploring household CO2 emissions mitigation strategies derived from butterfly optimization algorithm. Sci. Total Environ. 2020, 727, 138572. [Google Scholar] [CrossRef]
Field | Highlights | Carbon Reduction | Ref. |
---|---|---|---|
Solid waste (including WTs) mixture for concrete LCA comparison | Guidelines for a probabilistic LCA of solid waste mixtures for concrete have been proposed, indicating that the use of alternative materials (such as fly ash and recycled concrete aggregates) can significantly reduce CO2 emissions in concrete production. However, no detailed emission assessment has been conducted for other stages. | √ | [6] |
LCA study of natural rubber (WT raw material) production, use, and disposal management | A brief comparison of the environmental impacts of different waste disposal technologies is provided. The potential of sustainable treatment methods in reducing greenhouse gas emissions is highlighted. However, a deeper discussion is not provided. | [7] | |
LCA study of pyrolysis technology for WTs, plastics, and biomass | A comprehensive analysis of pyrolysis technology is conducted from the perspective of a circular economy. Although GHGs and other indicators of current technologies are discussed from an LCA perspective, there is a lack of specific guidance on future emission reduction strategies. | √ | [8] |
Comprehensive study of high-value WT recycling technologies | The review deeply explores high-value WT recycling technologies and outlines a sustainable assessment framework combining LCAs. However, it does not delve deeply into the field of CO2 emissions. | [9] | |
Technical review of gasification technologies | The review mainly introduces technological advancements in gasification. In the future outlook, it emphasizes the importance of LCAs in assessing the environmental impact of gasification emissions, but it does not delve further into this topic. | [10] | |
LCA of WT recycling technologies | A systematic review of the current CO2 emissions in WT recycling technologies has been conducted, and detailed recommendations for future carbon neutrality measures have been provided. | √ | This work |
Carbon (C) (%) | Hydrogen (H) (%) | Oxygen (O) (%) | Sulfur (S) (%) | Nitrogen (N) (%) | Metal (%) | Ash (%) | Moisture (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
WTs | 70–85 | 5–10 | 10–20 | 1–3 | 0.5–1 | 1–2 | 8–10 | 1–3 | [12] |
Food Waste | 40–55 | 5–7 | 30–50 | 0.2–0.5 | 1–4 | 1–3 | 5–10 | 40–80 | [13] |
Paper | 35–45 | 5–6 | 30–45 | <0.1 | 0.1–0.5 | <1 | 5–10 | 5–15 | [14] |
Plastic | 50–80 | 6–14 | 5–20 | <0.1 | <0.1 | <1 | <1 | 1–3 | [15] |
Textile | 40–55 | 5–6 | 25–40 | <0.2 | 15–20 | <1 | 5–10 | 10–20 | [16] |
Main Technique | Key Products | Resource Utilization | |
---|---|---|---|
Physical recovery | crushing, grinding, buffing, and other mechanical methods | crumb rubber, reclaimed rubber, and tread rubber | asphalt modifier, cushioning materials, rubber product manufacturing |
Chemical (thermochemical) recovery | combustion | energy | energy production |
pyrolysis | oil, gas, and carbon black | fuel and chemical production | |
gasification | syngas (H2 and CO) | clean energy production |
Scope | Impact Categories | Key Findings | Ref. |
---|---|---|---|
Comparative LCA of three types of hot mix asphalt (HMA) mixtures: standard, cellulose-reinforced, and WT-fiber-reinforced | Climate change, cumulative energy demand (CED), ReCiPe indicators | WT-fiber-reinforced HMA shows the best environmental performance, with a 30.8% reduction in CED and global warming potential (GWP) compared to standard HMA. | [57] |
LCA of WT treatment methods (pyrolysis, energy recovery in a cement plant and in a dedicated incineration plant, production of infill) | Climate change, acidification, resource use, eutrophication, freshwater ecotoxicity | Pyrolysis offers lower environmental impacts in climate change and resource use compared to energy recovery pathways. Cement plant incineration shows better performance in energy recovery but higher impacts in some categories. | [58] |
LCA of two thermochemical processes (pyrolysis and gasification and Fischer–Tropsch, GFT) for producing sustainable aviation fuel (SAF) from WTs | Climate change, human toxicity potential, terrestrial ecotoxicity, freshwater ecotoxicity | Pyrolysis has lower GWP but higher toxicity and photochemical pollution risks. Pyrolysis SAF is more expensive compared to GFT SAF (0.66 USD/l). | [59] |
Prospective LCA of two emerging pretreatment technologies (supercritical swelling and supercritical decrosslinking) for incorporating crumb rubber from WTs into asphalt mixtures | Cumulative energy demand (CED), human health, ecosystem quality, mineral and resource scarcity | Supercritical swelling pretreated crumb rubber-modified asphalt shows the lowest environmental impact in most categories. The pretreatment process has high uncertainty but can be improved by reducing the use of dry ice and chemical reagents. | [60] |
Case | Environmental Indicators | Scenario 1 (Blank) | Scenario 2 (Improvement) | Ref. | |
---|---|---|---|---|---|
Independent system vs. integrated system | GWP 1 | kg CO2 eq. | 382 | 354 | [72] |
ODP 2 | kg CFC-11 eq. | 0.025 | 0.02 | ||
POCP 3 | kg C2H4 eq | 1.5 | 1.3 | ||
AP 4 | kg SO2 eq. | 13.8 | 12.4 | ||
Molten salt heating tire pyrolysis vs. molten salt heating tire pyrolysis with product substitution | GWP | kg CO2 eq. | 224 | −1292.2 | [73] |
AP | kg SO2 eq. | 0.22 | −3.2 | ||
HTP 5 | kg 1,4-DCB eq. | 127 | −373.86 | ||
ADP 6-fossil | kg oil eq. | 15.1 | −1152.1 | ||
ADP-mineral | kg Sb eq. | 15.1 | −26.0 | ||
ELT-fiber-reinforced HMA8 vs. standard HMA | GWP | kg CO2 eq. | 62.6 | 43.3 | [57] |
AP | kg SO2 eq. | 0.091 | 0.062 | ||
POCP | kg C2H4 eq | 0.034 | 0.025 | ||
CED 7 | MJ | 2781 | 1924 | ||
ReCiPe endpoint | EcoPt | 0.116 | 0.08 | ||
High-value vs. conventional utilization pyrolysis process | GWP | kg CO2 eq. | 8.76 × 10−10 | 2.21 × 10−11 | [74] |
ODP | kg CFC-11 eq. | 4.21 × 10−11 | 2.51 × 10−12 | ||
HTP | kg 1,4-DCB eq. | 7.73 × 10−11 | 5.73 × 10−12 | ||
ADP-fossil | kg oil eq. | 3.69 × 10−11 | 5.73 × 10−12 | ||
Physical modification (M1)/nitric acid modification (M2)/plasma modification (M3) pyrolysis vs. conventional physical recycling (C1)/chemical desulfurization (C2)/conventional pyrolysis (C3) | GWP | kg CO2 eq. | M1: 1.16 × 104, M2: 1.22 × 104 M3: 1.16 × 104 | C1: 1.24 × 104, C2: 1.21 × 104 C3: 1.21 × 104 | [50] |
ODP | kg CFC-11 eq. | M1: 1.80 × 10−3, M2: 1.74 × 10−3 M3: 1.65 × 10−3 | C1: 2.43 × 10−3, C2: 2.28 × 10−3 C3: 2.28 × 10−3 | ||
HTP | kg 1,4-DCB eq. | M1: 1.27 × 104, M2: 1.30 × 104 M3: 1.28 × 104 | C1: 1.69 × 104, C2: 1.68 × 104 C3: 1.68 × 104 | ||
AP | kg SO2 eq. | M1: 4.32 × 101, M2: 4.49 × 101 M3: 4.31 × 101 | C1: 5.09 × 104, C2: 4.92 × 104 C3: 4.94 × 104 |
Technology | Environmental Impact Level | Energy Recovery Potential | Environmental Deterioration Phase | Environmental Benefit Phase |
---|---|---|---|---|
Incineration | High | High | Combustion processing | Fuel substitution |
Cement kiln coprocessing (improved incineration) | Medium or low | High | Combustion processing | Fuel substitution, energy recovery |
Pyrolysis | High, low after modification | High | Combustion processing, production modification | Energy recovery, material and energy substitution, product repair |
Mechanical recycling (grinding, moulded product manufacturing and retreading) | Low | Low | Product manufacturing | Raw material replacement and product reuse |
Classification Dimension | Category | Characteristics | Application Scenarios |
---|---|---|---|
Temporal perspective | DLCA | Combines the time dimension to analyze the dynamic changes in carbon emissions. | Analyzing the dynamic changes in carbon emissions during the resource recovery process of WTs. |
PLCA | Predicts the potential environmental impacts of emerging technologies before large-scale commercialization. | Evaluating the carbon reduction potential of emerging treatment technologies such as supercritical pretreatment. | |
FLCA | Focuses on the cumulative environmental impacts of technological pathways over a long-term time frame. | Assessing the trend of long-term carbon emissions and resource consumption for different waste tire treatment methods. | |
Geographical perspective | GE-LCA | Combines geographical and regional characteristics to analyze the distribution and impacts of carbon emissions. | Comparing the differences in carbon emissions from transportation, recycling, and treatment in urban and rural areas. |
MR- LCA | Cross-regional supply chain analysis to evaluate the distribution of resource flows and carbon emissions across regions. | Evaluating cross-regional carbon emissions from the generation site to the recycling site; analyzing the carbon footprint of recycled products used in multiple regions. | |
Functional perspective | Different FU application | Considers different functional units in the analysis to evaluate the environmental impacts of diverse goals. | When considering different target needs or requirements for more comprehensive consideration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wu, Y.; Xu, J.; Xu, J.; Zhu, H.; He, W.; Li, G. Pathways to Carbon Neutrality: A Review of Life Cycle Assessment-Based Waste Tire Recycling Technologies and Future Trends. Processes 2025, 13, 741. https://doi.org/10.3390/pr13030741
Zhao Q, Wu Y, Xu J, Xu J, Zhu H, He W, Li G. Pathways to Carbon Neutrality: A Review of Life Cycle Assessment-Based Waste Tire Recycling Technologies and Future Trends. Processes. 2025; 13(3):741. https://doi.org/10.3390/pr13030741
Chicago/Turabian StyleZhao, Qingzi, Yezi Wu, Junqing Xu, Junshi Xu, Haochen Zhu, Wenzhi He, and Guangming Li. 2025. "Pathways to Carbon Neutrality: A Review of Life Cycle Assessment-Based Waste Tire Recycling Technologies and Future Trends" Processes 13, no. 3: 741. https://doi.org/10.3390/pr13030741
APA StyleZhao, Q., Wu, Y., Xu, J., Xu, J., Zhu, H., He, W., & Li, G. (2025). Pathways to Carbon Neutrality: A Review of Life Cycle Assessment-Based Waste Tire Recycling Technologies and Future Trends. Processes, 13(3), 741. https://doi.org/10.3390/pr13030741