An Electrochemical Method for Alkalizing the Rotor Cooling Water of a Synchronous Condenser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Analytical Methods
3. Results and Discussion
3.1. Alkalization of Simulated Rotor Cooling Water
3.2. Alkalization of Real Rotor Cooling Water
3.3. Cell Configuration Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gou, H.; Ma, C.; Liu, L. Optimal wind and solar sizing in a novel hybrid power system incorporating concentrating solar power and considering ultra-high voltage transmission. J. Clean. Prod. 2024, 470, 143361. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Sardans, J.; Hauglustaine, D.; Liu, W.; Xing, X. Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023, 619, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Shu, Y.; Ruan, J.; Hu, Y. Ultra high voltage transmission in China: Developments, current status and future prospects. Proc. IEEE 2009, 97, 555–583. [Google Scholar] [CrossRef]
- Wang, T.; Jia, X.; Wang, Y.; Ye, C. Corrosion and Plugging of the Hollow Copper Conductor Caused by CO2 Inleakage: Thermodynamic Analysis and Field Evidence. Ind. Eng. Chem. Res. 2023, 62, 14891–14900. [Google Scholar] [CrossRef]
- Benzarti, Z.; Arrousse, N.; Serra, R.; Cruz, S.; Bastos, A.; Tedim, J.; Salgueiro, R.; Cavaleiro, A.; Carvalho, S. Copper corrosion mechanisms, influencing factors, and mitigation strategies for water circuits of heat exchangers: Critical review and current advances. Corros. Rev. 2024. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Duffeau, F.; Aspden, D.; Coetzee, G.; Svoboda, R.; Blecken, W.-D.; Eickelbeck, U.; Fenton, R.E.; Wallis, D.; Stein, J. Guide on stator water chemistry management. Study Comm. 2010, 4, 37–41. [Google Scholar]
- Wang, T.; Wang, Y.; Jia, X.; Ye, C. Corrosion failure analysis of hollow copper coil used in generator internal cooling water system operated at low-oxygen/neutral water chemistry. Eng. Fail. Anal. 2022, 141, 106642. [Google Scholar] [CrossRef]
- Chandrasekara, N.G.N.; Pashley, R. Study of a new process for the efficient regeneration of ion exchange resins. Desalination 2015, 357, 131–139. [Google Scholar] [CrossRef]
- Guimaraes, D.; Leao, V.A. Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21. J. Hazard. Mater. 2014, 280, 209–215. [Google Scholar] [CrossRef]
- Wilbert, F.; Corte, J.F.; do Nascimento, F.T.; Jahno, V.D.; Rodrigues, M.A.S.; Celso, F.; da Silva, S.W.; Bernardes, A.M. Cationic/Anionic Poly (p-Phenylene Oxide) Membranes: Preparation and Electrodialysis Performance for Nickel Recovery from Industrial Effluents. Membranes 2024, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, H.; Wu, Y.; Li, S.; Zhang, G.; Miao, Z. Resourceful treatment of battery recycling wastewater containing H2SO4 and NiSO4 by diffusion dialysis and electrodialysis. Membranes 2023, 13, 570. [Google Scholar] [CrossRef] [PubMed]
- Caveriviere, R.; Galier, S.; Roux-de Balmann, H. On the Use of Permselectivity to Describe the Selective Transfer of Organic Acids in Electrodialysis. Membranes 2023, 13, 545. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yu, W.; Wang, Z.; Wu, L.; Wang, Y.; Xu, T. Review on high-performance polymeric bipolar membrane design and novel electrochemical applications. Aggregate 2024, 5, e527. [Google Scholar] [CrossRef]
- Toh, W.L.; Dinh, H.Q.; Chu, A.T.; Sauvé, E.R.; Surendranath, Y. The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes. Nat. Energy 2023, 8, 1405–1416. [Google Scholar] [CrossRef]
- Fu, R.; Wang, H.Y.; Yan, J.Y.; Li, R.R.; Jiang, C.X.; Wang, Y.M.; Xu, T.W. Asymmetric bipolar membrane electrodialysis for acid and base production. Aiche J. 2022, 69, e17957. [Google Scholar] [CrossRef]
- Kikuchi, S.; Hirao, S.; Kayakiri, S.; Kakihana, Y.; Higa, M. Study on Efficient Operating Conditions for Bipolar Membrane Electrodialysis Using Different Ion Species and Anion—Exchange Membranes. Membranes 2024, 14, 262. [Google Scholar] [CrossRef]
- Oener, S.Z.; Foster, M.J.; Boettcher, S.W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 2020, 369, 1099–1103. [Google Scholar] [CrossRef]
- González, A.; Grágeda, M.; Ushak, S. Modeling and Validation of a LiOH Production Process by Bipolar Membrane Electrodialysis from Concentrated LiCl. Membranes 2023, 13, 187. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Rybalkina, O.; Solonchenko, K.; Butylskii, D.; Nikonenko, V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of NaxH(3−x)PO4 Solutions with pH from 4.5 to 9.9. Membranes 2023, 13, 647. [Google Scholar] [CrossRef]
- Fu, R.; Wang, H.Y.; Yan, J.Y.; Li, R.R.; Wang, B.Y.; Jiang, C.X.; Wang, Y.M.; Xu, T.W. Ion injection bipolar membrane electrodialysis realizes over 8 mol/L NaOH conversion from a brine stream. AIChE J. 2023, 70, e18345. [Google Scholar] [CrossRef]
- Miao, M.; Qiu, Y.; Yao, L.; Wu, Q.; Ruan, H.; Van der Bruggen, B.; Shen, J. Preparation of N,N,N-trimethyl-1-adamantylammonium hydroxide with high purity via bipolar membrane electrodialysis. Sep. Purif. Technol. 2018, 205, 241–250. [Google Scholar] [CrossRef]
- Szczygielda, M.; Antczak, J.; Prochaska, K. Separation and concentration of succinic acid from post-fermentation broth by bipolar membrane electrodialysis (EDBM). Sep. Purif. Technol. 2017, 181, 53–59. [Google Scholar] [CrossRef]
- He, J.; Zhou, R.; Dong, Z.; Yan, J.; Ma, X.; Liu, W.; Sun, L.; Li, C.; Yan, H.; Wang, Y. Bipolar Membrane Electrodialysis for Cleaner Production of Diprotic Malic Acid: Separation Mechanism and Performance Evaluation. Membranes 2023, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.K.; Xu, Q.C.; Oener, S.Z.; Fabrizio, K.; Boettcher, S.W. Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat. Commun. 2022, 13, 3846. [Google Scholar] [CrossRef]
- Tricker, A.W.; Lee, J.K.; Babbe, F.; Shin, J.R.; Weber, A.Z.; Peng, X. Engineering Bipolar Interfaces for Water Electrolysis Using Earth-Abundant Anodes. ACS Energy Lett. 2023, 8, 5275–5280. [Google Scholar] [CrossRef]
- Blommaert, M.A.; Aili, D.; Tufa, R.A.; Li, Q.F.; Smith, W.A.; Vermaas, D.A. Insights and Challenges for Applying Bipolar Membranes in Advanced Electrochemical Energy Systems. ACS Energy Lett. 2021, 6, 2539–2548. [Google Scholar] [CrossRef]
- Yang, K.L.; Li, M.R.; Subramanian, S.; Blommaert, M.A.; Smith, W.A.; Burdyny, T. Cation-Driven Increases of CO Utilization in a Bipolar Membrane Electrode Assembly for CO Electrolysis. ACS Energy Lett. 2021, 6, 4291–4298. [Google Scholar] [CrossRef]
- Xu, Z.; Wan, L.; Liao, Y.W.; Pang, M.B.; Xu, Q.; Wang, P.C.; Wang, B.G. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2. Nat. Commun. 2023, 14, 1619. [Google Scholar] [CrossRef]
- Yan, J.Y.; Yan, H.Y.; Wang, H.Y.; Li, Q.H.; Zhang, H.J.; Jiang, C.X.; Ye, B.J.; Wang, Y.M.; Xu, T.W. Bipolar membrane electrodialysis for clean production of L-10-camphorsulfonic acid: From laboratory to industrialization. AIChE J. 2022, 68, e17490. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, X.L.; Yan, H.Y.; Jiang, C.X.; Ge, L.; Xu, T.W. Bipolar membrane electrodialysis for cleaner production of methylatedglycine derivative amino acids. AIChE J. 2020, 66, e17023. [Google Scholar] [CrossRef]
- Tufa, R.A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; Di Profio, G.; Velizarov, S.; Crespo, J.G.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290–331. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yan, J.Y.; Fu, R.; Yan, H.Y.; Jiang, C.X.; Wang, Y.M.; Xu, T.W. Bipolar Membrane Electrodialysis for Cleaner Production of Gluconic Acid: Valorization of the Regenerated Base for the Upstream Enzyme Catalysis. Ind. Eng. Chem. Res. 2022, 61, 7634–7644. [Google Scholar] [CrossRef]
- Ge, Z.J.; Shehzad, M.A.; Yang, X.Q.; Li, G.; Wang, H.J.; Yu, W.S.; Liang, X.; Ge, X.L.; Wu, L.; Xu, T.W. High-performance bipolar membrane for electrochemical water electrolysis. J. Membr. Sci. 2022, 656, 120660. [Google Scholar] [CrossRef]
- Song, K.; Chae, S.C.; Bang, J.H. Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis (BMED). Chem. Eng. J. 2021, 423, 130179. [Google Scholar] [CrossRef]
- Yan, J.; Li, R.; Wang, H.; Hou, B.; Wu, S.; Fu, W.; He, D.; Wang, Z.; Li, Q.; Wang, B.; et al. Alcohol splitting with bipolar membranes for the production of metal alkoxides: Alcohol splitting behaviour and ion transport kinetics. Chem. Eng. Sci. 2024, 286, 119657. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, J.; Wang, H.; Fu, W.; He, D.; Wang, B.; Wang, Y.; Xu, T. Separation and conversion of CO2 reduction products into high-concentration formic acid using bipolar membrane electrodialysis. J. Membr. Sci. 2024, 708, 123016. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wang, Y.; Yan, J.Y.; Fu, R.; Wang, B.Y.; Jiang, C.X.; Wang, Y.M.; Xu, T.W. Bipolar membrane electrodialysis: A promising paradigm for caustic soda production. AIChE J. 2023, 70, e18260. [Google Scholar] [CrossRef]
- Onishi, N.; Minagawa, M.; Tanioka, A.; Matsumoto, H. Current–voltage characteristics and solvent dissociation of bipolar membranes in organic solvents. Membranes 2022, 12, 1236. [Google Scholar] [CrossRef]
Main Properties of Membranes | BP-1E | CMX | AMX |
---|---|---|---|
Thickness/mm | 0.20–0.35 | 0.12–0.18 | 0.12–0.18 |
Ion exchange capacity/mmol/g a | 1.50 | 1.25 | |
Voltage drop/V | 1.0 | - | - |
Water Uptake/% | 35 | 32 | |
Resistance/Ω·cm2 b | 2.0–3.5 | 2.0–3.5 | |
Transfer number/% | 98 | 99 | |
Functional group | –SO3− | –N(CH3)3+ |
Parameters | Remarks | |
---|---|---|
Repeating units | 20 | |
Applied voltage (V) | 200 | |
Batch experiment time (min) | 20 | |
Area of each membrane (m2) | 0.32 | |
Energy consumption (kWh/t) | 6.8 | |
Process capacity (×104 t/year) | 1.2 | 10 h/day, 320 days/year |
Bipolar membrane price ($/m2) | 440.32 | |
Mono-polar membrane price ($/m2) | 137.6 | |
Membrane lifetime and amortization of the peripheral equipment (year) | 3.00 | |
Electricity charge ($/kWh) | 0.11 | |
Energy consumption cost of peripheral equipment ($/t) | 0.037 | 0.05 times energy consumption of product |
Membrane cost (×103 $) | 3.70 | |
Stack cost (×103 $) | 5.55 | 1.5 times membrane cost |
Peripheral equipment cost (×103 $) | 8.32 | 1.5 times stack cost |
Total investment cost (×103 $) | 13.87 | |
Amortization (×103 $/year) | 4.62 | |
Interest (×103 $/year) | 1.11 | Interest rate, 8% |
Maintenance (×103 $/year) | 4.43 | 10% the investment cost |
Total fixed cost (×103 $/year) | 7.12 | |
Total fixed cost ($/t) | 0.58 | |
Energy cost ($/t) | 0.79 | |
Total process cost ($/t) | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, W.; Gu, X.; He, D.; Fu, W.; Gao, Y.; Wang, Y.; Yan, J. An Electrochemical Method for Alkalizing the Rotor Cooling Water of a Synchronous Condenser. Processes 2025, 13, 742. https://doi.org/10.3390/pr13030742
Chen X, Li W, Gu X, He D, Fu W, Gao Y, Wang Y, Yan J. An Electrochemical Method for Alkalizing the Rotor Cooling Water of a Synchronous Condenser. Processes. 2025; 13(3):742. https://doi.org/10.3390/pr13030742
Chicago/Turabian StyleChen, Xiaochun, Wei Li, Xiantao Gu, Duyi He, Weicheng Fu, Yuxiang Gao, Yaoming Wang, and Junying Yan. 2025. "An Electrochemical Method for Alkalizing the Rotor Cooling Water of a Synchronous Condenser" Processes 13, no. 3: 742. https://doi.org/10.3390/pr13030742
APA StyleChen, X., Li, W., Gu, X., He, D., Fu, W., Gao, Y., Wang, Y., & Yan, J. (2025). An Electrochemical Method for Alkalizing the Rotor Cooling Water of a Synchronous Condenser. Processes, 13(3), 742. https://doi.org/10.3390/pr13030742