Data-Driven Noise-Resilient Method for Wind Farm Reactive Power Optimization
Abstract
1. Introduction
- Wavelet-DBSCAN (WDBSCAN) for data cleaning is proposed, which innovatively integrates the time–frequency analysis capability of wavelet transform with the density-based clustering property of DBSCAN. This approach effectively eliminates noise and outliers from complex wind power SCADA datasets. WDBSCAN leverages multi-scale features extracted via wavelet decomposition to enhance adaptability to non-stationary signals.
- An approach combining Boomerang Evolutionary Optimization (BAEO) with the Seasonal Decomposition Improved Process (SDIP) is developed to achieve synergistic enhancement of trend decomposition and model parameter tuning. SDIP decomposes time series data into trend, seasonal, and residual components to generate a diverse set of candidate solutions.
- A Bidirectional Gated Recurrent Unit (BiGRU) network is proposed with an attention mechanism to improve the accuracy of reactive power forecasting in WFs. The BiGRU architecture captures long-term dependencies in temporal wind power data by modeling both forward and backward time sequences. The attention mechanism further improves prediction performance by dynamically focusing on key features. This combination enables the model to extract more informative representations from complex SCADA data, leading to enhanced forecasting precision.
2. Materials and Methods
2.1. Modeling of WT and Noise Analysis
2.2. WDBSCAN
2.3. BAEO-SDIP
2.3.1. Stochastic Differential Model for Decomposition
2.3.2. BAEO
2.4. BiGRU-Attention
3. Results
3.1. Test System
3.2. Data Cleaning
3.3. Control Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Number of WTs in WFs | |
Generator speed | |
Force thrust of WT | |
Torque shaft of WT | |
Active/reactive power of WT | |
Wind speed | |
Generator torque | |
Wind turbine voltage | |
Pitch angle | |
State error and output error | |
Current and wind phase angle | |
Process and measurement noise at time t | |
State transition, inputs and disturbances | |
State matrix, control input matrix | |
Disturbance input matrix | |
Population of parameter vectors | |
Mean squared error loss | |
Combined BiGRU hidden state | |
Time window length for feature vectors. | |
Augmented feature matrix | |
Transformed feature vector | |
Feature matrix | |
Attention weight for time t | |
Reset gate of GRU | |
Candidate hidden state in the GRU | |
Predicted reactive power at time | |
Optimal parameter vector | |
Objective function for BAEO | |
Child parameter vector | |
Mutation rate | |
states, inputs, and disturbances to the output y(t) | |
Output state matrix and output control matrix | |
Output disturbance matrix | |
Stochastic volatility | |
Denoised signal for the i-th state | |
Scaling function at decomposition |
References
- Wang, X.; Guo, P.; Huang, X. A review of wind power forecasting models. Energy Procedia 2011, 12, 770–778. [Google Scholar] [CrossRef]
- Ullah, T.; Sobczak, K.; Liśkiewicz, G.; Khan, A. Two-dimensional URANS numerical investigation of critical parameters on a pitch oscillating VAWT airfoil under dynamic stall. Energies 2022, 15, 5625. [Google Scholar] [CrossRef]
- Zhao, J. Neural network-based integrated reactive power optimization study for large-scale wind power grids. IET Gener. Transm. Distrib. 2024, 18, 2587–2603. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Wei, H.; Zeng, B.; Li, M.; Song, X. A wavelet-LSTM model for short-term wind power forecasting based on SCADA data analysis. Expert Syst. Appl. 2024, 247, 123237. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.; Xu, L.; May, R.; Pan, S.; Wu, J. A Review of Reinforcement Learning Methodologies on Control Systems for Building Energy; Working Paper; Dalarna University: Falun, Sweden, 2018; pp. 1–26. [Google Scholar]
- Wei, N.; Yin, L.; Li, C.; Liu, J.; Li, C.; Huang, Y.; Zeng, F. Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance. Energy 2022, 238, 122090. [Google Scholar] [CrossRef]
- Xie, X.; Hu, S.; Liu, Y.; Li, Q. Resilient adaptive event-triggered H∞ fuzzy filtering for cyber-physical systems under stochastic-sampling and denial-of-service attacks. IEEE Trans. Fuzzy Syst. 2023, 31, 278–292. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Li, X.; Zhang, G.; Chen, K.; Yang, W. Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module. Appl. Energy 2022, 327, 120109. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Yesilbudak, M. Data mining and wind power prediction: A literature review. Renew. Energy 2012, 46, 241–247. [Google Scholar] [CrossRef]
- Zou, M.; Zhou, B.; Wang, B.; Liu, Q.; Zhao, R.; Dai, M.; Rao, Z.; Wang, Y. Offshore wind turbine wind speed power anomaly data cleaning method based on RANSAC regression and DBSCAN clustering. In Proceedings of the 2024 4th International Conference on Smart Grid and Renewable Energy, Doha, Qatar, 8–10 January 2024; pp. 1–8. [Google Scholar]
- Yao, G.; Wu, Y.; Huang, X.; Ma, Q.; Du, J. Clustering of typical wind power scenarios based on K-means clustering algorithm and improved artificial bee colony algorithm. IEEE Access 2022, 10, 98752–98760. [Google Scholar] [CrossRef]
- Sun, F.; Jin, T. A hybrid approach to multi-step, short-term wind speed forecasting using correlated features. Renew. Energy 2022, 186, 742–754. [Google Scholar] [CrossRef]
- Jiang, Q.; Hong, H. Wavelet-based capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations. IEEE Trans. Power Syst. 2012, 28, 1363–1372. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, X.; Luo, Y.; Yang, D. Wind power prediction based on LSTM networks and nonparametric kernel density estimation. IEEE Access 2019, 7, 165279–165292. [Google Scholar] [CrossRef]
- Wang, Q.; Bu, S.; He, Z.; Dong, Z.Y. Toward the prediction level of situation awareness for electric power systems using CNN-LSTM network. IEEE Trans. Ind. Informat. 2021, 17, 6951–6961. [Google Scholar] [CrossRef]
- Dorado-Moreno, M.; Navarin, N.; Gutiérrez, P.; Prieto, L.; Sperduti, A.; Salcedo-Sanz, S.; Hervás-Martínez, C. Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Netw. 2020, 123, 401–411. [Google Scholar] [CrossRef]
- Ko, M.-S.; Lee, K.; Kim, J.-K.; Hong, C.W.; Dong, Z.Y.; Hur, K. Deep Concatenated Residual Network With Bidirectional LSTM for One-Hour-Ahead Wind Power Forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1321–1335. [Google Scholar] [CrossRef]
- Pan, C.; Wen, S.; Zhu, M.; Ye, H.; Ma, J.; Jiang, S. Hedge Backpropagation Based Online LSTM Architecture for Ultra-Short-Term Wind Power Forecasting. IEEE Trans. Power Syst. 2024, 39, 4179–4192. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Xue, X.; Saeed, A.; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans. Sustain. Energy 2020, 11, 1370–1380. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.; Liu, Y.; Gao, Y.; Han, S.; Li, L. Multi-source and temporal attention network for probabilistic wind power prediction. IEEE Trans. Sustain. Energy 2021, 12, 2205–2218. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, J.; Zhang, Y. Deep reinforcement learning based Volt-VAR optimization in smart distribution systems. IEEE Trans. Smart Grid 2021, 12, 361–371. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Qin, B.; Guo, L. Coordinated power smoothing control strategy of multi-wind turbines and energy storage systems in wind farm based on MADRL. IEEE Trans. Sustain. Energy 2024, 15, 368–380. [Google Scholar] [CrossRef]
- Shrivastava, S.; Khalid, S.; Nishad, D.K. Quantum-inspired control strategies for reducing DC-link voltage fluctuations in DFIG wind energy converters. IEEE Access 2025, 13, 108481–108499. [Google Scholar] [CrossRef]
- Song, C.; Yao, Y.; Chan, S. Incorporating online learning into MCTS-based intention progression. IEEE Access 2024, 12, 56400–56413. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, X.; Wang, X.; Nie, G. Task offloading and resource allocation for industrial Internet of Things: A double-dueling deep Q-network approach. IEEE Access 2022, 10, 103111–103120. [Google Scholar] [CrossRef]
- Wang, P.; Guo, J.; Cheng, F.; Gu, Y.; Yuan, F.; Zhang, F. A MPC-based load frequency control considering wind power intelligent forecasting. Renew. Energy 2025, 244, 122636. [Google Scholar] [CrossRef]
Parameter | Value/Description | Unit/Notes | |
Grid Configuration | Wind Farm Scale | 10 × 5 MW | Total of 50 MW, DFIG-type turbines |
Connection Voltage Level | 0.69 kV/35 kV | Turbine–transformer–collector line | |
Line Impedance | R = 0.092 Ω/km, X = 0.47 Ω/km | Based on simplified IEEE 33-bus | |
Load Power Factor | 0.85 | Simulated grid load | |
Data Sampling and Simulation | Simulation Duration | 500 s | Total steps: 500 (real-time constraint: computation cycle < 1 s) |
Sampling Rate | 1 Hz | SCADA data acquisition frequency | |
Time Window Length | 24 | For BiGRU input feature matrix | |
SCADA Noise Characteristics | Noise Type | Gaussian white noise | Simulates sensor/transmission errors |
Noise Standard Deviation | 0.02 | Applied to wind speed/power (SNR ≈ 20 dB) | |
Outlier Proportion | 5% | Randomly injected for WDBSCAN testing | |
MPC Parameters | Prediction Horizon | 10 | Steps |
Control Horizon | 3 | Steps | |
Weight Matrices | Q = 1, R = 0.1 | State/control weights [26] | |
Constraint Bounds | Q ∈ [−0.5, 0.5] pu | Reactive power limits | |
PD Parameters | Proportional Gain | 0.8 | / |
Derivative Gain | 0.2 | Time constant: 0.1 s | |
PSO Parameters | Number of Particles | 30 | / |
Inertia Weight | 0.9 → 0.4 (linear decay) | Over 50 iterations | |
Acceleration Coefficients | 2.0, 2.0 | Global/local best | |
GA Parameters | Population Size | 50 | / |
Crossover Rate | 0.8 | Single-point crossover | |
Mutation Rate | 0.01 | Over 100 iterations | |
General Optimization Parameters | Max Iterations | 200 | For BAEO/PSO/GA |
Convergence Threshold | 1.00 × 10−4 | Objective: MSE |
Reactive power (Var) | Wg (rad/s) | Tg (N·m) | ||||
Methods | WDBSCAN | MPC | WDBSCAN | MPC | WDBSCAN | MPC |
WT1 | 4.861 × 105 | 5.291 × 105 | 1.207 × 102 | 1.206 × 102 | 1.980 × 104 | 1.983 × 104 |
WT2 | 4.835 × 105 | 5.272 × 105 | 1.310 × 102 | 1.308 × 102 | 1.853 × 104 | 1.858 × 104 |
WT3 | 4.817 × 105 | 5.243 × 105 | 1.265 × 102 | 1.264 × 102 | 1.903 × 104 | 1.906 × 104 |
WT4 | 4.788 × 105 | 5.225 × 105 | 1.211 × 102 | 1.310 × 102 | 1.998 × 104 | 2.300 × 104 |
WT5 | 4.861 × 105 | 5.303 × 105 | 1.296 × 102 | 1.295 × 102 | 1.869 × 104 | 1.874 × 104 |
WT6 | 4.865 × 105 | 5.291 × 105 | 1.377 × 102 | 1.375 × 102 | 1.730 × 104 | 1.732 × 104 |
WT7 | 4.836 × 105 | 5.266 × 105 | 1.291 × 102 | 1.290 × 102 | 1.890 × 104 | 1.894 × 104 |
WT8 | 4.814 × 105 | 5.248 × 105 | 1.425 × 102 | 1.423 × 102 | 1.657 × 104 | 1.657 × 104 |
WT9 | 4.647 × 105 | 5.063 × 105 | 1.348 × 102 | 1.346 × 102 | 1.830 × 104 | 1.835 × 104 |
WT10 | 4.640 × 105 | 5.053 × 105 | 1.287 × 102 | 1.286 × 102 | 1.868 × 104 | 1.872 × 104 |
Sum | 4.796 × 106 | 5.226 × 106 | 1.302 × 103 | 1.408 × 103 | 1.858 × 105 | 2.161 × 105 |
Percentage | −8.22% | / | −7.53% | / | −14.02% | / |
Comparison | p-Value |
---|---|
WBS-BiGRU and BiGRU | 1.45 × 10−5 |
WBS-BiGRU and DDPG | 3.04 × 10−7 |
WBS-BiGRU and PD | 6.43 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Huang, L.; Huang, K.; Bai, G.; Zhou, L. Data-Driven Noise-Resilient Method for Wind Farm Reactive Power Optimization. Processes 2025, 13, 3303. https://doi.org/10.3390/pr13103303
Pan Z, Huang L, Huang K, Bai G, Zhou L. Data-Driven Noise-Resilient Method for Wind Farm Reactive Power Optimization. Processes. 2025; 13(10):3303. https://doi.org/10.3390/pr13103303
Chicago/Turabian StylePan, Zhen, Lijuan Huang, Kaiwen Huang, Guan Bai, and Lin Zhou. 2025. "Data-Driven Noise-Resilient Method for Wind Farm Reactive Power Optimization" Processes 13, no. 10: 3303. https://doi.org/10.3390/pr13103303
APA StylePan, Z., Huang, L., Huang, K., Bai, G., & Zhou, L. (2025). Data-Driven Noise-Resilient Method for Wind Farm Reactive Power Optimization. Processes, 13(10), 3303. https://doi.org/10.3390/pr13103303