Pharmaceutical Micropollutants in Wastewater: A Case Study of the Mascara WWTP (Algeria)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Wastewater Treatment Plants El Kouayer (WWTP-1)
2.1.2. Lagoon of Ghriss (WWTP-2)
2.2. Sampling Strategy
2.3. Physicochemical Characterization
2.4. Quantitative Analysis of Pharmaceuticals
2.4.1. Chemicals and Standards
2.4.2. Sample Preservation and Preparation
2.4.3. Solid-Phase Extraction (SPE)
2.4.4. Instrumental Analysis (UPLC-HR-QTOF-MS)
2.4.5. Method Validation and Quality Control
2.4.6. Estimation of Removal Efficiency
2.5. Data Analysis
Statistical Analysis
3. Results
3.1. Physicochemical Parameters
3.2. Pharmaceutical Concentration
3.3. Estimation of Removal Efficiency
3.4. Comparison and Correlation of PhACs Between WWTP-1 and WWTP-2
3.4.1. Comparison Between Concentrations
3.4.2. Analysis Using Principal Component Analysis (PCA)
3.4.3. Correlation Between Macropollution and Micropollution
4. Discussion
5. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
JORA | Official Journal of Reject Algerian |
LOD | Limit of detection |
LogKow | Octanol–water partition coefficient |
LOQ | Limit of quantification |
NSAIDs | Anti-inflammatory non-steroidal |
PhACs | Pharmaceutically active compounds |
SPE | Solid-phase extraction |
UPLC-HR-QTOF-MS | Ultra-Performance Liquid Chromatography coupled with High-Resolution Quadrupole Time-of-Flight Mass Spectrometry |
WWTP | Wastewater treatment plant |
Appendix A
References
- Hashem, M.S.; Qi, X. Treated wastewater irrigation—A review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2022, 8, e1500323. [Google Scholar] [CrossRef]
- Guergueb, M.; Ferhat, F. la gestion des eaux en Algérie: Vers un nouveau paradigme. J. Adv. Econ. Res. 2021, 6, 304–315. [Google Scholar] [CrossRef]
- Derdour, A.; Bouanani, A.; Kaid, N.; Mukdasai, K.; Algelany, A.; Ahmad, H.; Menni, Y.; Ameur, H. Groundwater Potentiality Assessment of Ain Sefra Region in UpperWadi Namous Basin, Algeria Using Integrated Geospatial Approaches. Sustainability 2022, 14, 4450. [Google Scholar] [CrossRef]
- Foglia, A.; González-Camejo, J.; Radini, S.; Sgroi, M.; Li, K.; Eusebi, A.L.; Fatone, F. Transforming Wastewater Treatment Plants into Reclaimed Water Facilities in Water-Unbalanced Regions. An Overview of Possibilities and Recommendations Focusing on the Italian Case. J. Clean. Prod. 2023, 410, 137264. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2012, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Benstaali, I.; Talia, A.; Benadela, L. Optimized wastewater management and pharmaceutical removal in Algeria. Sustainability 2024, 16, 1765. [Google Scholar] [CrossRef]
- Awathale, S.N.; Kokare, D.M. Pharmaceutical waste: A health risk for humans. In 360-Degree Waste Management; Elsevier: Amsterdam, The Netherlands, 2023; Volume 2, pp. 81–95. [Google Scholar] [CrossRef]
- Nebot, C.A.L.; Falcón, R.; Boyd, K.G.; Gibb, S.W. Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: A rural perspective. Environ. Sci. Pollut. Res. 2015, 22, 10559–10568. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Feng, C.; Wang, Z.; Wu, F.; Johnson, A.C.; Xiao, H.; Hollert, H.; Giesy, J.P. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environ. Int. 2020, 136, 105454. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116–455. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Meyer, C.; Stravs, M.A.; Hollender, J. How wastewater reflects human metabolism suspect screening of pharmaceutical metabolites in wastewater influent. Environ. Sci. Technol. 2024, 58, 9828–9839. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Danish, W.; Waheed, M.; Sattar, M.; Ali, M.; Sudheer, N.; Zahra, M.; Mehmood, M. Relationship between zoonotic diseases and food safety. Int. J. Agric. Biosci. Zoonosis 2023, 1, 338–347. [Google Scholar] [CrossRef]
- El Marghani, A.; Pradhan, A.; Seyoum, A.; Khalaf, H.; Ros, T.; Forsberg, L.-H.; Nermark, T.; Osterman, L.; Wiklund, U.; Ivarsson, P.; et al. Contribution of pharmaceuticals, fecal bacteria and endotoxin to the inflammatory responses to inland waters. Sci. Total Environ. 2014, 488–489, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of Environmental Wastes: The Role of Microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of pharmaceuticals in the Lis River (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef]
- ISO 11352:2012; Water Quality—General Rules for the Establishment of Performance Characteristics of Analytical Methods. International Organization for Standardization: Geneva, Switzerland, 2012.
- Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document. 2003; Volume 7. Available online: https://op.europa.eu/publication-detail/-/publication/95072480-dbe7-46cb-9d4f-d3e6e559ed87 (accessed on 16 September 2025).
- European Commission. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field ofWater Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Commission. Off. J. Eur. Union L. 2018, 141, 9–12. [Google Scholar]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. 2013/39/EC. Available online: https://eur-lex.europa.eu/eli/dir/2013/39/oj/eng (accessed on 16 September 2025).
- Bouabdellah, Z.; Ziani, N. La Gestion des Stocks des Produits Pharmaceutiques dans un Établissement Public de Santé en Algérie: Une Réponse aux Attentes et Besoins des Malades. Cas du CHU de TIZI-OUZOU. Ph.D. Thesis, Université Mouloud Mammeri, Tizi Ouzou, Algeria, 2017. [Google Scholar]
- Gorito, A.M.; Silva, A.R.L.; Ribeiro, A.R.L.; Silva, A.M.T. Occurrence of micropollutants in surface waters: Monitoring of Portuguese Lima and Douro River estuaries and interconnecting northwest coast. Mar. Pollut. Bull. 2024, 209, 117140. [Google Scholar] [CrossRef]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res. 2007, 41, 1001–1012. [Google Scholar] [CrossRef]
- JORA. Journal Officiel de la République Algérienne; Normes Algériennes de Rejet des Eaux Résiduaires. Décret Exécutif n° 93-160 du 10 Juillet 1993 Fixant les Normes de Qualité des Eaux Usées. Alger, Algérie. 1993. Available online: https://www.joradp.dz/FTP/JO-FRANCAIS/2016/F2016015.pdf (accessed on 16 September 2025).
- ONA, Office National de L’assainissement, 2019, Algérie. Available online: https://apex.ona-dz.com/ords/r/dpmg/o-n-a/home (accessed on 16 September 2025).
- ISO 5667-10:2020; Water Quality—Sampling—Part 10: Guidance on Sampling of Waste Water. International Organization for Standardization: Geneva, Switzerland, 2020.
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Algerian Ministry of Water Resources. Normes Algériennes de Qualité des Eaux Destinées à la Consommation Humaine. Off. J. Alger. 2012. [Google Scholar]
- National Center for Biotechnology Information. PubChem. U.S. National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 16 September 2025).
- Riva, F.; Zuccato, E.; Castiglioni, S. A multi-residue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. Anal. Methods 2021, 13, 526–535. [Google Scholar] [CrossRef]
- Jewell, K.S.; Wick, A.; Ternes, T.A. Comparisons between abiotic and biotic transformation of pharmaceuticals in wastewater treatment. Environ. Sci. Technol. 2016, 50, 6231–6241. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Fernández-López, C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain. Chem. Eng. J. 2017, 316, 332–340. [Google Scholar] [CrossRef]
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization/International Electrotechnical Committee: Geneva, Switzerland, 2006.
- Carvalho, G. Bioaugmentation for the Removal of the Antibiotic Sulfamethoxazole in Wastewater Treatment Plants. Ph.D. Thesis, Faculdade de Ciências e Technologia, Universidade Nova de Lisboa, Lisbon, Portugal, 2018. Available online: https://run.unl.pt/bitstream/10362/45215/1/Nguyen_2018.pdf (accessed on 16 September 2025).
- Díaz-Gamboa, L.; Martínez-López, S.; Ayuso-García, L.M.; Lahora, A.; Martínez-Alcalá, I. Can Lagoons Serve as a Quaternary Treatment for Micropollutants in Wastewater Treatment Plants? Recent Implications for Compliance with the New Urban Wastewater Treatment Directive. Environments 2024, 11, 105. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Mouhtady, O.; Obeid, E.; Abu-Samha, M.; Younes, K.; Murshid, N. Evaluation of the adsorption efficiency of graphene oxide hydrogels in wastewater Dye removal: Application of principal component analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Lata, R.; Thakur, N.; Bajala, V.; Chandra Kuniyal, J.; Kumar, K. Application of multivariate statistical analysis and water quality index for quality characterization of Parbati river, Northwestern Himalaya. Discov. Water. 2021, 1, 5. [Google Scholar] [CrossRef]
- Hussain, M.T. Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeol. J. 2004, 12, 144–158. [Google Scholar] [CrossRef]
- Morhit, M.; El Blidi, S.; Moukrim, A.; Belghyti, D. Étude de l’évolution spatio-temporelle des paramètres hydrologiques caractérisant la qualité des eaux de l’estuaire du Loukkos (Maroc). Bull. L’Inst. Sci. 2012, 34, 151–162. [Google Scholar]
- Moussaoui, T.; Derdour, A.; Hosni, A.; Ballesta-de los Santos, M.; Legua, P.; Pardo-Picazo, M.Á. Assessing the quality of treated wastewater for irrigation: A case study of Ain Sefra Wastewater treatment plant. Sustainability 2023, 15, 11133. [Google Scholar] [CrossRef]
- Alisawi, H.A.O. Performance of Wastewater Treatment during Variable Temperature. Appl. Water Sci. 2020, 10, 89. [Google Scholar] [CrossRef]
- Kadouche, S.; Hammoum, H.; Ghedamsi, H.; Si Tahar, L. Assessment of purifying performance of a wastewater filtration basin—Case study. J. Water Sci. 2018, 31, 387–398. [Google Scholar] [CrossRef]
- Nouha, K.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. EPS producing microorganisms from municipal wastewater activated sludge. Civ. Eng. 2016, 7, 2. [Google Scholar] [CrossRef]
- Xu, S.; Yao, J.; Ainiwaer, M.; Hong, Y.; Zhang, Y. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter. Biomed Res. Int. 2018, 2018, 8278970. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol. 2019, 19, 101174. [Google Scholar] [CrossRef]
- Berglund, B.; Fick, J.; Lindberg, R.; Järhult, J. Abundance and Dynamics of Antibiotic Resistance Genes and Integrons in Lake Sediment Microcosms. PLoS ONE 2014, 9, e108151. [Google Scholar] [CrossRef] [PubMed]
- Lara-Martín, P.A.; González-Mazo, E.; Petrovic, M.; Barceló, D.; Brownawell, B.J. Occurrence, Distribution and Partitioning of Nonionic Surfactants and Pharmaceuticals in the Urbanized Long Island Sound Estuary (NY). Mar. Pollut. Bull. 2014, 85, 710–719. [Google Scholar] [CrossRef]
- Henze, M.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design; IWA Publishing: London, UK, 2008. [Google Scholar]
- Roy, D.; McEvoy, J.; Blonigen, M.; Amundson, M.; Khan, E. Seasonal variation and ex-situ nitrification activity of ammonia oxidizing archaea in biofilm-based wastewater treatment processes. Bioresour. Technol. 2017, 244, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Haidara, R.; Abdelbaki, C.; Badr, N. Feasibility of Water Reuse for Agriculture—Case Study of Ain Temouchent (Algeria). In Sustainable Energy-Water-Environment Nexus in Deserts, Proceeding of the First International Conference on Sustainable Energy-Water; Springer Nature: Berlin, Germany, 2022. [Google Scholar] [CrossRef]
- Gewurtz, S.B.; Auyeung, A.S.; Teslic, S.; Smyth, S.A. Pharmaceuticals and personal care products in Canadian municipal wastewater and biosolids: Occurrence, fate, and time trends 2010–2013 to 2022. Environ. Sci. Pollut. Res. 2025, 32, 5022–5039. [Google Scholar] [CrossRef]
- Bodík, I.; Mackuľak, T.; Fáberová, M.; Ivanová, L. Pharmaceuticals and illicit drugs in wastewater: Occurrence, removal and environmental risk in Slovakia. Environ. Sci. Pollut. Res. 2016, 23, 1144–1153. [Google Scholar] [CrossRef]
- Song, J.; Qu, B.; Li, X.; Yuan, H.; Li, N.; Duan, L. Carbon sinks/sources in the Yellow and East China Seas—Air-sea interface exchange, dissolution in seawater, and burial in sediments. Sci. China Earth Sci. 2018, 61, 1583–1593. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Moslah, B.; Hapeshi, E.; Jrad, A.; Fatta-Kassinos, D.; Hedhili, A. Pharmaceuticals and illicit drugs in wastewater samples in north-eastern Tunisia. Environ. Sci. Pollut. Res. 2017, 25, 18226–18241. [Google Scholar] [CrossRef]
- Mourad, S.; Ayoub, G.M.; Al Hindi, M.; Zayyat, R.M. Occurrence and hazard assessment of natural radioactivity in drinking water in South Lebanon. Environ. Monit. Assess. 2021, 193, 6. [Google Scholar] [CrossRef]
- Yuan, F.; Hu, C.; Hu, X.; Wei, D.; Chen, Y.; Qu, J. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J. Hazard. Mater. 2011, 185, 1256–1263. [Google Scholar] [CrossRef]
- Rolbiecki, D.; Harnisz, M.; Korzeniewska, E.; Jałowiecki, Ł.; Płaza, G. Occurrence of fluoroquinolones and sulfonamides resistance genes in wastewater and sludge at different stages of wastewater treatment: A preliminary case study. Appl. Sci. 2020, 10, 5816. [Google Scholar] [CrossRef]
- Lorenzo, P.; Adriana, A.; Jéssica, S.; Carles, B.; Marinella, F.; Marta, L.; Luis, B.J.; Pierre, S. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere 2018, 206, 70–82. [Google Scholar] [CrossRef]
- Mutiyar, P.K.; Mittal, A.K. Risk assessment of antibiotic residues in different water matrices in India: Key issues and challenges. Environ. Sci. Pollut. Res. 2014, 21, 7723–7736. [Google Scholar] [CrossRef]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622, 293–305. [Google Scholar] [CrossRef]
- K’oreje, K.O.; Demeestere, K.; De Wispelaere, P.; Vergeynst, L.; Dewulf, J.; Van Langenhove, H. From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 2012, 437, 153–164. [Google Scholar] [CrossRef]
- Netshithothole, R.; Madikizela, L.M. Occurrence of selected pharmaceuticals in the East London coastline encompassing major rivers, estuaries, and seawater in the Eastern Cape province of South Africa. ACS Meas. Sci. Au 2024, 4, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Tahrani, L.; Van Loco, J.; Mansour, H.B.; Reyns, T. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia. J. Water Health 2016, 14, 208–213. [Google Scholar] [CrossRef]
- Oluwalana, A.E.; Musvuugwa, T.; Sikwila, S.T.; Sefadi, J.S.; Whata, A.; Nindi, M.M.; Chaukura, N. The screening of emerging micropollutants in wastewater in sol plaatje municipality, northern cape, South Africa. Environ. Pollut. 2022, 314, 120275. [Google Scholar] [CrossRef] [PubMed]
- Waleng, N.J.; Nomngongo, P.N. Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environ. Chem. Ecotoxicol. 2022, 4, 50–66. [Google Scholar] [CrossRef]
- Zuriaga, E.; Lomba, L.; German, B.; Lanuza, P.M.; Aldea, L.; Ribate, M.P.; García, C.B.; Giner, B. Ecotoxicity in Aliivibrio fischeri of ibuprofen, omeprazole and their mixtures. Chem. Ecol. 2019, 35, 102–114. [Google Scholar] [CrossRef]
- Faleye, A.C.; Adegoke, A.A.; Ramluckan, K.; Fick, J.; Bux, F.; Stenstrom, T.A. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci. Total Environ. 2019, 678, 10–20. [Google Scholar] [CrossRef]
- Sackey, L.N.A.; Okobeng, A.; Obidieh, P.Y.; Ngala, F.-M.M.; Otoo, E.B.; Quartey, J.; Bentil, J.A.; Azanu, D.; Etikala, B. Risk Assessment of Pharmaceutical Contaminants in Pharmaceutical Wastewater. Sci. World J. 2024, 2024, 5538398. [Google Scholar] [CrossRef] [PubMed]
- Akawa, M.N.; Dimpe, K.M.; Nomngongo, P.N. Ultrasonic assisted magnetic solid phase extraction based on the use of magnetic waste-tyre derived activated carbon modified with methyltrioctyl ammonium chloride adsorbent for the preconcentration and analysis of non-steroidal anti-inflammatory drugs in wastewater. Arab. J. Chem. 2021, 14, 103329. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on pharmaceuticals in the aquatic environment: Occurrence, distribution and removal. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Kermia, A.E.; Fouial-Djebbar, D.; Trari, M. Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants: Case of Algeria. Environ. Monit. Assess. 2016, 188, 548. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466–467, 421–438. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L. Occurrence of ibuprofen, diclofenac and naproxen in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ. Sci. Pollut. Res. 2017, 24, 24443–24459. [Google Scholar] [CrossRef]
- Stec, M.; Astel, A. Occurrence and toxicological assessment of six non-steroidal anti-inflammatory drugs (NSAIDs) in a wastewater treatment plant in Słupsk (Poland). Ecohydrol. Hydrobiol. 2024, 24, 523–534. [Google Scholar] [CrossRef]
- Ashiwaju, B.I.; Uzougbo, C.G.; Orikpete, O.F. Environmental Impact of Pharmaceuticals: A Comprehensive Review. Matrix Sci. Pharma 2023, 7, 85–94. [Google Scholar] [CrossRef]
- Togola, A.; Budzinski, H. Analytical development for analysis of pharmaceuticals in water samples by SPE and GC-MS. Anal. Bioanal. Chem. 2007, 388, 627–635. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Barceló, D. Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Anal. Chem. 2009, 81, 898–912. [Google Scholar] [CrossRef]
- Thiebault, T. L’adsorption des Produits Pharmaceutiques par Interactions Organominerales: Processus et Applications Environnementales. Ph.D. Thesis, Universite d’Orleans, Orléans, France, 2015. [Google Scholar]
- Sim, W.J.; Lee, J.W.; Oh, J.E. Occurrence and Fate of Pharmaceuticals in Wastewater Treatment Plants and Rivers in Korea. Environ. Pollut. 2010, 158, 1938–1947. [Google Scholar] [CrossRef]
- Yu, J.T.; Bouwer, E.J.; Coelhan, M. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric. Water Manag. 2006, 86, 72–80. [Google Scholar] [CrossRef]
- Ternes, T.A.; Joss, A.; Siegrist, H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38, 392A–399A. [Google Scholar] [CrossRef]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plants—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Heberer, T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002, 266, 175–189. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Maurer, M.; Escher, B.I.; Richle, P.; Schaffner, C.; Alder, A.C. Elimination of beta blockers in sewage treatment plants. Water Res. 2007, 41, 1614–1622. [Google Scholar] [CrossRef]
- Scheurer, M.; Ramil, M.; Metcalfe, C.D.; Groh, S.; Ternes, T.A. The challenge of analyzing beta-blocker drugs in sludge and wastewater. Anal. Bioanal. Chem. 2010, 396, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Choubert, J.M.; Martin-Ruel, S.; Budzinski, H.; Miege, C.; Esperanza, M.; Soulier, C.; Lagarrigue, C.; Coquery, M. Evaluer les rendements des stations d’épuration. Tech. Sci. Méthodes 2011, 1, 44–62. [Google Scholar] [CrossRef]
- Mansouri, F.; Chouchene, K.; Roche, N.; Ksibi, M. Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl. Sci. 2021, 11, 6659. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Illicit drugs and pharmaceuticals in the environment–Forensic applications of environmental data. Part 1: Estimation of the usage of drugs in local communities. Environ. Pollut. 2009, 157, 1773–1777. [Google Scholar] [CrossRef]
- Bartha, B.; Huber, C.; Schröder, P. Uptake and metabolism of diclofenac in Typha latifolia–how plants cope with human pharmaceutical pollution. Plant Sci. 2014, 227, 12–20. [Google Scholar] [CrossRef]
- Osorio, V.; Imbert-Bouchard, M.; Zonja, B.; Abad, J.-L.; Pérez, S.; Barceló, D. Simultaneous determination of diclofenac, its human metabolites and microbial nitration/nitrosation transformation products in wastewaters by liquid chromatography/quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2014, 1347, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR at different sludge retention times. Water Res. 2011, 45, 243–250. [Google Scholar] [CrossRef]
- Tran, N.H.; Li, J.; Hu, J.; Ong, S.L. Occurrence and suitability of pharmaceuticals as markers of wastewater contamination in surface water and groundwater. Environ. Sci. Pollut. Res. 2014, 21, 4727–4740. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.A.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid determination of phytosterols by NIRS and chemometric methods. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Sinha, R.K.; Yamashita, N.; Balasubramanian, V.G.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J. Environ. Chem. Eng. 2015, 3, 2882–2891. [Google Scholar] [CrossRef]
- Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abdallah, M.A.E. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 2020, 6, 124–132. [Google Scholar] [CrossRef]
- Angeles, L.F.; Mullen, R.A.; Huang, I.J.; Wilson, C.; Khunjar, W.; Sirotkin, H.I.; McElroy, A.E.; Aga, D.S. Assessing Pharmaceutical Removal and Reduction in Toxicity Provided by Advanced Wastewater Treatment Systems. Environ. Sci. Water Res. Technol. 2019, 6, 62–77. [Google Scholar] [CrossRef]
- Heidler, J.; Halden, R. Meta-analysis of mass balances examining chemical fate during wastewater treatment. Environ. Sci. Technol. 2008, 42, 6324–6332. [Google Scholar] [CrossRef]
- Brown, D.M.; Hughes, C.B.; Spence, M.; Bonte, M.; Whale, G. Assessing the suitability of a manometric test system for determining the biodegradability of volatile hydrocarbons. Chemosphere 2018, 195, 381–389. [Google Scholar] [CrossRef]
- Gulkowska, A.; Leung, H.; So, M.; Taniyasu, S.; Yamashita, N.; Yeung, L.W.; Richardson, B.J.; Lei, A.; Giesy, J.; Lam, P.K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res. 2008, 42, 395–403. [Google Scholar] [CrossRef]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the Degradation, Sorption, and Negative Mass Balances of Pharmaceuticals and Personal Care Products during Wastewater Treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef]
- Ejhed, H.; Fang, J.; Hansen, K.; Graae, L.; Rahmberg, M.; Magnér, J.; Dorgeloh, E.; Plaza, G. The Effect of Hydraulic Retention Time in Onsite Wastewater Treatment and Removal of Pharmaceuticals, Hormones and Phenolic Utility Substances. Sci. Total Environ. 2018, 618, 250–261. [Google Scholar] [CrossRef]
- Carmona, E.; Andreu, V.; Pico, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Coxon, S. Assessment of the Presence of Pharmaceuticals in, and Removal from, Municipal Wastewater in Aotearoa New Zealand. 2024. Available online: https://www.phfscience.nz/media/yb1lpzwm/esr-health-risk-assessment-pharmaceuticals-new-zealand-wastewater.pdf (accessed on 16 September 2025).
- Joss, A.; Zabczynski, S.; Göbel, A.; Hoffmann, B.; Löffler, D.; McArdell, C.S.; Ternes, T.A.; Thomsen, A.; Siegrist, H. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res. 2006, 40, 1686–1696. [Google Scholar] [CrossRef]
- Göbel, A.; McArdell, C.S.; Joss, A.; Siegrist, H.; Ternes, T.A. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 2007, 372, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- El Aatik, A.; Navarro, J.M.; Martínez, R.; Vela, N. Estimation of global water quality in four municipal wastewater treatment plants over time based on statistical methods. Water 2023, 15, 1520. [Google Scholar] [CrossRef]
- Newhart, S. Psychometric Properties of the Family Adaptability and Cohesion Scale IV with College Students in the United States. J. Child Fam. Stud. 2024, 33, 3920–3932. [Google Scholar] [CrossRef]
- Rahmat, M.A.A.; Hamid, A.S.A.; Lu, Y.; Ishak, M.A.A.; Suheel, S.Z.; Fazlizan, A.; Ibrahim, A. An analysis of renewable energy technology integration investments in Malaysia using HOMER pro. Sustainability 2022, 14, 13684. [Google Scholar] [CrossRef]
- Abba, S.; Elkiran, G.; Nourani, V. Improving novel extreme learning machine using PCA algorithms for multi-parametric modeling of the municipal wastewater treatment plant. Desalination Water Treat. 2021, 215, 414–426. [Google Scholar] [CrossRef]
- Jelic, A.; Petrovic, M.; Barceló, D. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta 2009, 80, 363–371. [Google Scholar] [CrossRef]
- Chang, S.H. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—A review. Environ. Sci. Pollut. Res. 2010, 27, 32371–32388. [Google Scholar] [CrossRef] [PubMed]
- Altaf, Q.-A.; Barnett, A.H.; Et Tahrani, A.A. Novel therapeutics for type 2 diabetes: Insulin resistance. Diabetes Obes. Metab. 2015, 17, 319–334. [Google Scholar] [CrossRef]
- Peng, X. China’s demographic history and future challenges. Science 2011, 333, 581–587. [Google Scholar] [CrossRef]
- Benedetti, L.; Langeveld, J.; Comeau, A.; Corominas, L.; Daigger, G.; Martin, C.; Mikkelsen, P.S.; Vezzaro, L.; Weijers, S.; Vanrolleghem, P.A. Modelling and monitoring of integrated urban wastewater systems: Review on status and perspectives. Water Sci. Technol. 2013, 68, 1203–1215. [Google Scholar] [CrossRef]
- Hou, J.; Chen, Z.; Gao, J.; Xie, Y.; Li, L.; Qin, S.; Wang, Q.; Mao, D.; Luo, Y. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Res. 2019, 159, 511–520. [Google Scholar] [CrossRef]
- Guo, X.; Pang, J.; Chen, S.; Jia, H. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; McArdell, C.S.; Ort, C.; Singer, H.P.; von Gunten, U.; Siegrist, H. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef] [PubMed]
Category | Pharmaceuticals | CAS N◦ | LogKow (25 °C) | pKa |
---|---|---|---|---|
Antidepressants | Carbamazepine | 298-46-4 | 2.45 a | <1–13.9 b |
Sulpiride | 15676-16-1 | 0.6 | 9.12 | |
Anti-inflammatory | Diclofenac | 15307-86-5 | 4.51 b | 4.15–4.3 b |
Ibuprofen | 15687-27-1 | 3.97 | 5.3 | |
Naproxen | 22204-53-1 | 3.18 | 4.15 | |
Analgesics | Acetaminophen | 103-90-2 | 0.46 | 9.38 |
Antihistamine | Ketoprofen | 22071-15-4 | 3.2 | 4.45 |
Beta-blockers | Atenolol | 29122-68-7 | 0.16 | 9.6 |
Antibiotics | Sulfomethoxazole | 723-46-6 | 0.89 | 1.6 |
Ofloxacin | 82419-36-1 | −0.39 | 8.31 |
PhACs | LOQ (ng/mL) | LOD (ng/mL) |
---|---|---|
Acetominophen | ≥0.80 | ≥0.11 |
Atenolol | ≥0.10 | ≥0.05 |
Sulfomethoxazole | ≥0.15 | ≥0.04 |
Sulpiride | ≥0.13 | ≥0.04 |
Ofloxacin | ≥1.33 | ≥0.55 |
Ibuprofen | ≥0.40 | ≥0.08 |
Ketoprofen | ≥1.01 | ≥0.53 |
Naproxen | ≥1.01 | ≥0.45 |
Diclofenac | ≥0.16 | ≥0.04 |
Parameter | WWTP-1 | Removal Rate WWTP (%) | WWTP-2 | Removal Rate WWTP (%) | ||
---|---|---|---|---|---|---|
Influent | Effluent | Influent | Effluent | |||
pH | 7.98 | 7.73 | NA | 8.15 | 8.68 | NA |
Water temperature (°C) | 14.0 | 14.5 | NA | 25.0 | 22.9 | NA |
Air temperature (°C) | 21.5 | 21.5 | NA | 21.5 | 22.3 | NA |
Dissolved oxygen (mg/L) | 0.70 | 1.06 | NA | 0.59 | 2.03 | NA |
Ammonium (NH4+, mg/L) | 11.13 | 3.33 | NA | 11.51 | 8.59 | NA |
Nitrite (NO2−, mg/L) | 1.45 | 0.46 | NA | 0.08 | 0.06 | NA |
Total phosphorus (Pt, mg/L) | 1.45 | 1.27 | NA | 1.21 | 1.04 | NA |
Phosphate (PO43−, mg/L) | 4.50 | 3.91 | NA | 3.70 | 3.18 | NA |
Suspended solids (SS, mg/L) | 67.0 | 24.0 | 64.17 | 446.8 | 65.1 | 85.43 |
Chemical Oxygen Demand (COD (mg/L) | 775.0 | 55.0 | 92.90 | 1001.0 | 309.23 | 69.10 |
Biochemical Oxygen DemandBOD5 (mg/L) | 300.0 | 25.0 | 91.66 | 356.0 | 174.0 | 51.11 |
Electrical Conductivity (μS/cm) | 3360.0 | 2875.0 | NA | 2575.0 | 2359.0 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saim, S.; Mokrani, S.; Martínez-Alcalá, I. Pharmaceutical Micropollutants in Wastewater: A Case Study of the Mascara WWTP (Algeria). Processes 2025, 13, 3205. https://doi.org/10.3390/pr13103205
Saim S, Mokrani S, Martínez-Alcalá I. Pharmaceutical Micropollutants in Wastewater: A Case Study of the Mascara WWTP (Algeria). Processes. 2025; 13(10):3205. https://doi.org/10.3390/pr13103205
Chicago/Turabian StyleSaim, Souhila, Slimane Mokrani, and Isabel Martínez-Alcalá. 2025. "Pharmaceutical Micropollutants in Wastewater: A Case Study of the Mascara WWTP (Algeria)" Processes 13, no. 10: 3205. https://doi.org/10.3390/pr13103205
APA StyleSaim, S., Mokrani, S., & Martínez-Alcalá, I. (2025). Pharmaceutical Micropollutants in Wastewater: A Case Study of the Mascara WWTP (Algeria). Processes, 13(10), 3205. https://doi.org/10.3390/pr13103205