The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analysis of Acoustic Signals
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamolar-Domenech, S.; Crespo-Sariol, H.; Sáenz-Díez, J.; Sánchez-Roca, A.; Latorre-Biel, J.-I.; Blanco, J. A new approach for monitoring the alcoholic fermentation process based on acoustic emission analysis: A preliminary assessment. J. Food Eng. 2023, 353, 111537. [Google Scholar] [CrossRef]
- Gallego-Martínez, J.J.; Cañete-Carmona, E.; Gersnoviez, A.; Brox, M.; Sánchez-Gil, J.J.; Martín-Fernández, C.; Moreno, J. Devices for monitoring oenological processes: A review. Measurement 2024, 235, 114922. [Google Scholar] [CrossRef]
- Nelson, J.; Boulton, R.; Knoesen, A. Automated density measurement with real-time predictive modeling of wine fermentations. IEEE Trans. Instrum. Meas. 2022, 71, 1–7. [Google Scholar] [CrossRef]
- Cavaglia, J.; Schorn-Garcia, D.; Giussani, B.; Ferre, J.; Busto, O.; Acena, L.; Mestres, M.; Boque, R. ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control 2020, 109, 106947. [Google Scholar] [CrossRef]
- El Haloui, N.; Picque, D.; Corrieu, G. Alcoholic fermentation in winemaking: On-line measurement of density and carbon dioxide evolution. J. Food Eng. 1988, 8, 17–30. [Google Scholar] [CrossRef]
- Schorn-García, D.; Ezenarro, J.; Aceña, L.; Busto, O.; Boqué, R.; Giussani, B.; Mestres, M. Spatially Offset Raman Spectroscopic (SORS) Analysis of Wine Alcoholic Fermentation: A Preliminary Study. Fermentation 2023, 9, 115. [Google Scholar] [CrossRef]
- Berbegal, C.; Khomenko, I.; Russo, P.; Spano, G.; Fragasso, M.; Biasioli, F.; Capozzi, V. PTR-ToF-MS for the online monitoring of alcoholic fermentation in wine: Assessment of VOCs variability associated with different combinations of Saccharomyces/non-Saccharomyces as a case-study. Fermentation 2020, 6, 55. [Google Scholar] [CrossRef]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of sugar content in wine grapes via in situ VNIR–SWIR point spectroscopy using explainable artificial intelligence techniques. Sensors 2023, 23, 1065. [Google Scholar] [CrossRef]
- Fuller, H.; Beaver, C.; Harbertson, J. Alcoholic Fermentation Monitoring and PH Prediction in Red and White Wine by Combining Spontaneous Raman Spectroscopy and Machine Learning Algorithms. Beverages 2021, 7, 78. [Google Scholar] [CrossRef]
- Fuentes, S.; Torrico, D.D.; Tongson, E.; Gonzalez Viejo, C. Machine learning modeling of wine sensory profiles and color of vertical vintages of pinot noir based on chemical fingerprinting, weather and management data. Sensors 2020, 20, 3618. [Google Scholar] [CrossRef]
- Lamberti, N.; Ardia, L.; Albanese, D.; Di Matteo, M. An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics 2009, 49, 94–97. [Google Scholar] [CrossRef]
- Bowler, A.; Escrig, J.; Pound, M.; Watson, N. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning. Fermentation 2021, 7, 34. [Google Scholar] [CrossRef]
- Nelson, J.; Coleman, R.; Chacón-Rodríguez, L.; Runnebaum, R.; Boulton, R.; Knoesen, A. Advanced monitoring and control of redox potential in wine fermentation across scales. Fermentation 2022, 9, 7. [Google Scholar] [CrossRef]
- Nerantzis, E.; Tataridis, P.; Sianoudis, I.; Ziani, X.; Tegou, E. Winemaking process engineering on line fermentation monitoring—Sensors and equipment. Sci. Technol 2007, 5, 29–36. [Google Scholar]
- Cañete-Carmona, E.; Gallego-Martínez, J.-J.; Martín, C.; Brox, M.; Luna-Rodriguez, J.-J.; Moreno, J. A low-cost IoT device to monitor in real-time wine alcoholic fermentation evolution through CO 2 emissions. IEEE Sens. J. 2020, 20, 6692–6700. [Google Scholar] [CrossRef]
- Guittin, C.; Maçna, F.; Picou, C.; Perez, M.; Barreau, A.; Poitou, X.; Sablayrolles, J.-M.; Mouret, J.-R.; Farines, V. New online monitoring approaches to describe and understand the kinetics of acetaldehyde concentration during wine alcoholic fermentation: Access to production balances. Fermentation 2023, 9, 299. [Google Scholar] [CrossRef]
- Pinheiro, C.; Rodrigues, C.M.; Schäfer, T.; Crespo, J.G. Monitoring the aroma production during wine–must fermentation with an electronic nose. Biotechnol. Bioeng. 2002, 77, 632–640. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, X.; Chen, Y.; Wang, Z.; Xia, J.; Qian, J.; Zhuang, Y.; Chu, J. Real-time and on-line monitoring of ethanol fermentation process by viable cell sensor and electronic nose. Bioresour. Bioprocess. 2021, 8, 37. [Google Scholar] [CrossRef]
- Littarru, E.; Modesti, M.; Alfieri, G.; Pettinelli, S.; Floridia, G.; Bellincontro, A.; Sanmartin, C.; Brizzolara, S. Optimizing the winemaking process: NIR spectroscopy and e-nose analysis for the online monitoring of fermentation. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef]
- Han, F.; Zhang, D.; Aheto, J.H.; Feng, F.; Duan, T. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Sci. Nutr. 2020, 8, 4330–4339. [Google Scholar] [CrossRef]
- Buonocore, D.; Ciavolino, G.; Dello Iacono, S.; Liguori, C. Online Identification of Beer Fermentation Phases. Fermentation 2024, 10, 399. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Godelmann, R.; Steiner, M.; Ansay, B.; Weigel, J.; Krieg, G. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Cent. J. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Jiménez, F.; Vázquez, J.; Sánchez-Rojas, J.; Barrajón, N.; Úbeda, J. Multi-purpose optoelectronic instrument for monitoring the alcoholic fermentation of wine. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 390–393. [Google Scholar]
- Sánchez-Gil, J.J.; Cañete-Carmona, E.; Brox, M.; Gersnoviez, A.; Molina-Espinosa, M.Á.; Gámez-Granados, J.C.; Moreno, J. An electronic barrel bung to wirelessly monitor the biological aging process of Fino Sherry wine. IEEE Access 2024, 12, 35337–35350. [Google Scholar] [CrossRef]
- Graña, C.Q.; Acevedo, J.M.; Paz, A.C.; Caneiro, M.G. Experiences in measuring density by fiber optic sensors in the grape juice fermentation process. In Proceedings of the XIX IMEKO World Congress Fundamental Applied Metrology, Lisbon, Portugal, 6–11 September 2009; pp. 6–11. [Google Scholar]
- Pastore, A.; Badocco, D.; Cappellin, L.; Tubiana, M.; Pastore, P. Real-time monitoring of the pH of white wine and beer with colorimetric sensor arrays (CSAs). Food Chem. 2024, 452, 139513. [Google Scholar] [CrossRef]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.Y.; Aheto, J.; Ren, Y.; Zhang, X.; Wang, L. Novel colorimetric sensor array for Chinese rice wine evaluation based on color reactions of flavor compounds. J. Food Process Eng. 2021, 44, e13889. [Google Scholar] [CrossRef]
- Plugatar, Y.; Johnson, J.B.; Timofeev, R.; Korzin, V.; Kazak, A.; Nekhaychuk, D.; Borisova, E.; Rotanov, G. Prediction of Ethanol Content and Total Extract Using Densimetry and Refractometry. Beverages 2023, 9, 31. [Google Scholar] [CrossRef]
- Yaa’ri, R.; Schneiderman, E.; Ben Aharon, V.; Stanevsky, M.; Drori, E. Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation 2024, 10, 125. [Google Scholar] [CrossRef]
- Lima, B.; Luna, R.; Lima, D.; Normey-Rico, J.; Perez-Correa, J. Advancing Wine Fermentation: Extended Kalman Filter for Early Fault Detection. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Coleman, R.; Nelson, J.; Boulton, R. Methods for Parameter Estimation in Wine Fermentation Models. Fermentation 2024, 10, 386. [Google Scholar] [CrossRef]
- Nelson, J.; Boulton, R. Models for Wine Fermentation and Their Suitability for Commercial Applications. Fermentation 2024, 10, 269. [Google Scholar] [CrossRef]
- Mahima; Gupta, U.; Patidar, Y.; Agarwal, A.; Singh, K.P. Wine quality analysis using machine learning algorithms. In Micro-Electronics and Telecommunication Engineering: Proceedings of 3rd ICMETE 2019; Springer: Cham, Switzerland, 2020; pp. 11–18. [Google Scholar]
- Longo, R.; Dambergs, R.G.; Westmore, H.; Nichols, D.S.; Kerslake, F.L. A feasibility study on monitoring total phenolic content in sparkling wine press juice fractions using a new in-line system and predictive models. Food Control 2021, 123, 106810. [Google Scholar] [CrossRef]
- Gomes, V.; Reis, M.S.; Rovira-Más, F.; Mendes-Ferreira, A.; Melo-Pinto, P. Prediction of sugar content in port wine vintage grapes using machine learning and hyperspectral imaging. Processes 2021, 9, 1241. [Google Scholar] [CrossRef]
Specifications | |
---|---|
Model | A5 |
Sensitivity | −173 dBV re: 1 uPa (−193 sensor + 20 dB integrated signal conditioning) |
Linear bandwidth | 20 Hz–10 kHz (+/−4 dB) |
Directivity | Omnidirectional (<20 kHz) |
Max depth | 100 m |
Supply current | 2–20 mA IEPE constant current |
Tank 24 | Tank 25 | Tank 26 | |||
---|---|---|---|---|---|
Experimental (g/L) | Predicted (g/L) | Experimental (g/L) | Predicted (g/L) | Experimental (g/L) | Predicted (g/L) |
1095 | 1084 | 1098 | 1092 | 1092 | 1084 |
1067 | 1067 | 1070 | 1070 | 1075 | 1067 |
1040 | 1047 | 1036 | 1039 | 1041 | 1049 |
1018 | 1026 | 1015 | 1021 | 1016 | 1033 |
1005 | 1010 | 1000 | 1006 | 1002 | 1014 |
997 | 999 | 997 | 995 | 997 | 1002 |
995 | 991 | 992 | 990 | 995 | 994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Roca, A.; Latorre-Biel, J.-I.; Jiménez-Macías, E.; Saenz-Díez, J.C.; Blanco-Fernández, J. The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes 2024, 12, 2797. https://doi.org/10.3390/pr12122797
Sanchez-Roca A, Latorre-Biel J-I, Jiménez-Macías E, Saenz-Díez JC, Blanco-Fernández J. The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes. 2024; 12(12):2797. https://doi.org/10.3390/pr12122797
Chicago/Turabian StyleSanchez-Roca, Angel, Juan-Ignacio Latorre-Biel, Emilio Jiménez-Macías, Juan Carlos Saenz-Díez, and Julio Blanco-Fernández. 2024. "The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis" Processes 12, no. 12: 2797. https://doi.org/10.3390/pr12122797
APA StyleSanchez-Roca, A., Latorre-Biel, J.-I., Jiménez-Macías, E., Saenz-Díez, J. C., & Blanco-Fernández, J. (2024). The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes, 12(12), 2797. https://doi.org/10.3390/pr12122797