The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analysis of Acoustic Signals
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamolar-Domenech, S.; Crespo-Sariol, H.; Sáenz-Díez, J.; Sánchez-Roca, A.; Latorre-Biel, J.-I.; Blanco, J. A new approach for monitoring the alcoholic fermentation process based on acoustic emission analysis: A preliminary assessment. J. Food Eng. 2023, 353, 111537. [Google Scholar] [CrossRef]
- Gallego-Martínez, J.J.; Cañete-Carmona, E.; Gersnoviez, A.; Brox, M.; Sánchez-Gil, J.J.; Martín-Fernández, C.; Moreno, J. Devices for monitoring oenological processes: A review. Measurement 2024, 235, 114922. [Google Scholar] [CrossRef]
- Nelson, J.; Boulton, R.; Knoesen, A. Automated density measurement with real-time predictive modeling of wine fermentations. IEEE Trans. Instrum. Meas. 2022, 71, 1–7. [Google Scholar] [CrossRef]
- Cavaglia, J.; Schorn-Garcia, D.; Giussani, B.; Ferre, J.; Busto, O.; Acena, L.; Mestres, M.; Boque, R. ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control 2020, 109, 106947. [Google Scholar] [CrossRef]
- El Haloui, N.; Picque, D.; Corrieu, G. Alcoholic fermentation in winemaking: On-line measurement of density and carbon dioxide evolution. J. Food Eng. 1988, 8, 17–30. [Google Scholar] [CrossRef]
- Schorn-García, D.; Ezenarro, J.; Aceña, L.; Busto, O.; Boqué, R.; Giussani, B.; Mestres, M. Spatially Offset Raman Spectroscopic (SORS) Analysis of Wine Alcoholic Fermentation: A Preliminary Study. Fermentation 2023, 9, 115. [Google Scholar] [CrossRef]
- Berbegal, C.; Khomenko, I.; Russo, P.; Spano, G.; Fragasso, M.; Biasioli, F.; Capozzi, V. PTR-ToF-MS for the online monitoring of alcoholic fermentation in wine: Assessment of VOCs variability associated with different combinations of Saccharomyces/non-Saccharomyces as a case-study. Fermentation 2020, 6, 55. [Google Scholar] [CrossRef]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of sugar content in wine grapes via in situ VNIR–SWIR point spectroscopy using explainable artificial intelligence techniques. Sensors 2023, 23, 1065. [Google Scholar] [CrossRef]
- Fuller, H.; Beaver, C.; Harbertson, J. Alcoholic Fermentation Monitoring and PH Prediction in Red and White Wine by Combining Spontaneous Raman Spectroscopy and Machine Learning Algorithms. Beverages 2021, 7, 78. [Google Scholar] [CrossRef]
- Fuentes, S.; Torrico, D.D.; Tongson, E.; Gonzalez Viejo, C. Machine learning modeling of wine sensory profiles and color of vertical vintages of pinot noir based on chemical fingerprinting, weather and management data. Sensors 2020, 20, 3618. [Google Scholar] [CrossRef]
- Lamberti, N.; Ardia, L.; Albanese, D.; Di Matteo, M. An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics 2009, 49, 94–97. [Google Scholar] [CrossRef]
- Bowler, A.; Escrig, J.; Pound, M.; Watson, N. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning. Fermentation 2021, 7, 34. [Google Scholar] [CrossRef]
- Nelson, J.; Coleman, R.; Chacón-Rodríguez, L.; Runnebaum, R.; Boulton, R.; Knoesen, A. Advanced monitoring and control of redox potential in wine fermentation across scales. Fermentation 2022, 9, 7. [Google Scholar] [CrossRef]
- Nerantzis, E.; Tataridis, P.; Sianoudis, I.; Ziani, X.; Tegou, E. Winemaking process engineering on line fermentation monitoring—Sensors and equipment. Sci. Technol 2007, 5, 29–36. [Google Scholar]
- Cañete-Carmona, E.; Gallego-Martínez, J.-J.; Martín, C.; Brox, M.; Luna-Rodriguez, J.-J.; Moreno, J. A low-cost IoT device to monitor in real-time wine alcoholic fermentation evolution through CO 2 emissions. IEEE Sens. J. 2020, 20, 6692–6700. [Google Scholar] [CrossRef]
- Guittin, C.; Maçna, F.; Picou, C.; Perez, M.; Barreau, A.; Poitou, X.; Sablayrolles, J.-M.; Mouret, J.-R.; Farines, V. New online monitoring approaches to describe and understand the kinetics of acetaldehyde concentration during wine alcoholic fermentation: Access to production balances. Fermentation 2023, 9, 299. [Google Scholar] [CrossRef]
- Pinheiro, C.; Rodrigues, C.M.; Schäfer, T.; Crespo, J.G. Monitoring the aroma production during wine–must fermentation with an electronic nose. Biotechnol. Bioeng. 2002, 77, 632–640. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, X.; Chen, Y.; Wang, Z.; Xia, J.; Qian, J.; Zhuang, Y.; Chu, J. Real-time and on-line monitoring of ethanol fermentation process by viable cell sensor and electronic nose. Bioresour. Bioprocess. 2021, 8, 37. [Google Scholar] [CrossRef]
- Littarru, E.; Modesti, M.; Alfieri, G.; Pettinelli, S.; Floridia, G.; Bellincontro, A.; Sanmartin, C.; Brizzolara, S. Optimizing the winemaking process: NIR spectroscopy and e-nose analysis for the online monitoring of fermentation. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef]
- Han, F.; Zhang, D.; Aheto, J.H.; Feng, F.; Duan, T. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Sci. Nutr. 2020, 8, 4330–4339. [Google Scholar] [CrossRef]
- Buonocore, D.; Ciavolino, G.; Dello Iacono, S.; Liguori, C. Online Identification of Beer Fermentation Phases. Fermentation 2024, 10, 399. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Godelmann, R.; Steiner, M.; Ansay, B.; Weigel, J.; Krieg, G. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Cent. J. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Jiménez, F.; Vázquez, J.; Sánchez-Rojas, J.; Barrajón, N.; Úbeda, J. Multi-purpose optoelectronic instrument for monitoring the alcoholic fermentation of wine. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 390–393. [Google Scholar]
- Sánchez-Gil, J.J.; Cañete-Carmona, E.; Brox, M.; Gersnoviez, A.; Molina-Espinosa, M.Á.; Gámez-Granados, J.C.; Moreno, J. An electronic barrel bung to wirelessly monitor the biological aging process of Fino Sherry wine. IEEE Access 2024, 12, 35337–35350. [Google Scholar] [CrossRef]
- Graña, C.Q.; Acevedo, J.M.; Paz, A.C.; Caneiro, M.G. Experiences in measuring density by fiber optic sensors in the grape juice fermentation process. In Proceedings of the XIX IMEKO World Congress Fundamental Applied Metrology, Lisbon, Portugal, 6–11 September 2009; pp. 6–11. [Google Scholar]
- Pastore, A.; Badocco, D.; Cappellin, L.; Tubiana, M.; Pastore, P. Real-time monitoring of the pH of white wine and beer with colorimetric sensor arrays (CSAs). Food Chem. 2024, 452, 139513. [Google Scholar] [CrossRef]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.Y.; Aheto, J.; Ren, Y.; Zhang, X.; Wang, L. Novel colorimetric sensor array for Chinese rice wine evaluation based on color reactions of flavor compounds. J. Food Process Eng. 2021, 44, e13889. [Google Scholar] [CrossRef]
- Plugatar, Y.; Johnson, J.B.; Timofeev, R.; Korzin, V.; Kazak, A.; Nekhaychuk, D.; Borisova, E.; Rotanov, G. Prediction of Ethanol Content and Total Extract Using Densimetry and Refractometry. Beverages 2023, 9, 31. [Google Scholar] [CrossRef]
- Yaa’ri, R.; Schneiderman, E.; Ben Aharon, V.; Stanevsky, M.; Drori, E. Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation 2024, 10, 125. [Google Scholar] [CrossRef]
- Lima, B.; Luna, R.; Lima, D.; Normey-Rico, J.; Perez-Correa, J. Advancing Wine Fermentation: Extended Kalman Filter for Early Fault Detection. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Coleman, R.; Nelson, J.; Boulton, R. Methods for Parameter Estimation in Wine Fermentation Models. Fermentation 2024, 10, 386. [Google Scholar] [CrossRef]
- Nelson, J.; Boulton, R. Models for Wine Fermentation and Their Suitability for Commercial Applications. Fermentation 2024, 10, 269. [Google Scholar] [CrossRef]
- Mahima; Gupta, U.; Patidar, Y.; Agarwal, A.; Singh, K.P. Wine quality analysis using machine learning algorithms. In Micro-Electronics and Telecommunication Engineering: Proceedings of 3rd ICMETE 2019; Springer: Cham, Switzerland, 2020; pp. 11–18. [Google Scholar]
- Longo, R.; Dambergs, R.G.; Westmore, H.; Nichols, D.S.; Kerslake, F.L. A feasibility study on monitoring total phenolic content in sparkling wine press juice fractions using a new in-line system and predictive models. Food Control 2021, 123, 106810. [Google Scholar] [CrossRef]
- Gomes, V.; Reis, M.S.; Rovira-Más, F.; Mendes-Ferreira, A.; Melo-Pinto, P. Prediction of sugar content in port wine vintage grapes using machine learning and hyperspectral imaging. Processes 2021, 9, 1241. [Google Scholar] [CrossRef]
Specifications | |
---|---|
Model | A5 |
Sensitivity | −173 dBV re: 1 uPa (−193 sensor + 20 dB integrated signal conditioning) |
Linear bandwidth | 20 Hz–10 kHz (+/−4 dB) |
Directivity | Omnidirectional (<20 kHz) |
Max depth | 100 m |
Supply current | 2–20 mA IEPE constant current |
Tank 24 | Tank 25 | Tank 26 | |||
---|---|---|---|---|---|
Experimental (g/L) | Predicted (g/L) | Experimental (g/L) | Predicted (g/L) | Experimental (g/L) | Predicted (g/L) |
1095 | 1084 | 1098 | 1092 | 1092 | 1084 |
1067 | 1067 | 1070 | 1070 | 1075 | 1067 |
1040 | 1047 | 1036 | 1039 | 1041 | 1049 |
1018 | 1026 | 1015 | 1021 | 1016 | 1033 |
1005 | 1010 | 1000 | 1006 | 1002 | 1014 |
997 | 999 | 997 | 995 | 997 | 1002 |
995 | 991 | 992 | 990 | 995 | 994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Roca, A.; Latorre-Biel, J.-I.; Jiménez-Macías, E.; Saenz-Díez, J.C.; Blanco-Fernández, J. The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes 2024, 12, 2797. https://doi.org/10.3390/pr12122797
Sanchez-Roca A, Latorre-Biel J-I, Jiménez-Macías E, Saenz-Díez JC, Blanco-Fernández J. The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes. 2024; 12(12):2797. https://doi.org/10.3390/pr12122797
Chicago/Turabian StyleSanchez-Roca, Angel, Juan-Ignacio Latorre-Biel, Emilio Jiménez-Macías, Juan Carlos Saenz-Díez, and Julio Blanco-Fernández. 2024. "The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis" Processes 12, no. 12: 2797. https://doi.org/10.3390/pr12122797
APA StyleSanchez-Roca, A., Latorre-Biel, J.-I., Jiménez-Macías, E., Saenz-Díez, J. C., & Blanco-Fernández, J. (2024). The Characterization of the Alcoholic Fermentation Process in Wine Production Based on Acoustic Emission Analysis. Processes, 12(12), 2797. https://doi.org/10.3390/pr12122797