Recovery of Lesser-Known Strategic Metals: The Gallium and Germanium Cases
Abstract
:1. Introduction
2. Research Methodology
3. Gallium Recovery Operations
3.1. Leaching
3.2. Adsorption
3.3. Ion Exchange Resins
3.4. Liquid–Liquid Extraction
3.5. Miscellaneous Operations
4. Germanium Recovery Operations
4.1. Leaching
4.2. Adsorption
4.3. Ion Exchange Resins
4.4. Liquid–Liquid Extraction
4.5. Miscellaneous Operations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USGS Mineral Resources Program, Gallium—A Smart Metal. Available online: https://pubs.usgs.gov/fs/2013/3006/pdf (accessed on 2 September 2024).
- Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Robla, J.I. Some recent advances in germanium recovery from various resources. Metals 2024, 14, 559. [Google Scholar] [CrossRef]
- Gao, Z.; Geng, Y.; Li, M.; Liang, J.-J.; Houssini, K. Tracking the global anthropogenic gallium cycle during 2000–2020: A trade-linked multiregional material flow analysis. Glob. Environ. Change 2024, 87, 102859. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Q.; Ouyang, X.; Song, H.; Gao, T.; Liu, Y.; Wen, B.; Dai, T. Tracking two decades of global gallium stocks and flows: A dynamic material flow analysis. Resour. Conserv. Recycl. 2024, 202, 107391. [Google Scholar] [CrossRef]
- Kluczka, J. A Review on the recovery and separation of gallium and indium from waste. Resources 2024, 13, 35. [Google Scholar] [CrossRef]
- Qu, L.; Li, L.; Wu, Y.; Liu, F.; Wang, Y. A review of the current state of research on gallium recovery from Bayer liquor. JOM 2024, 76, 6084–6098. [Google Scholar] [CrossRef]
- Sun, F.; Dai, S.; Wang, L.; Xing, Y.; Gui, X. Pre-enrichment experiment of high gradient magnetic separation based on lithium and gallium elements in coal gangue. Clean Coal Technol. 2024, 30, 154–162. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; He, Y. Advancements in recycling technologies for waste CIGS photovoltaic modules. Nano Energy 2024, 128, 109847. [Google Scholar] [CrossRef]
- Ghosh, K.; Mani, V.N. Purification of gallium for GaAs/GaN-based optoelectronic device applications. Cryst. Res. Technol. 2024, 59, 202300347. [Google Scholar] [CrossRef]
- Castro, L.; Zhang, R.; Muñoz, J.A.; Sand, W. Editorial: Bioleaching and biorecovery of critical raw materials from secondary sources. Front. Microbiol. 2024, 15, 1395820. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, Y.; Zhang, Z.; Wang, W.; Peng, W.; Cao, Y. A perspective on molecular recognition technology for recovering critical metals from minerals and processing wastes. Sep. Purif. Technol. 2024, 347, 127734. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, M.; Liu, B.; Su, S.; Sun, H.; Yang, S.; Han, G. The extraction and separation of scarce critical metals: A review of gallium, indium and germanium extraction and separation from solid wastes. Separations 2024, 11, 91. [Google Scholar] [CrossRef]
- Randazzo, S.; Vicari, F.; López, J.; Salem, M.; Lo Brutto, R.; Azzouz, S.; Chamam, S.; Cataldo, S.; Muratore, N.; Fernández de Labastida, M.; et al. Unlocking hidden mineral resources: Characterization and potential of bitterns as alternative sources of critical raw materials. J. Clean. Prod. 2024, 436, 140412. [Google Scholar] [CrossRef]
- Silwamba, M.; Chibesa, M.; Oteng, E.V.; Alagha, L. Extraction of critical elements-gallium, germanium, and indium-using ionic liquids: A review. Miner. Process. Extr. Metall. Rev. 2024. [Google Scholar] [CrossRef]
- Zheng, K.; Benedetti, M.F.; van Hullebusch, E.D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste)-a review. J. Environ. Manag. 2024, 347, 119043. [Google Scholar] [CrossRef]
- Available online: http://strategicmetalsinvest.com/ (accessed on 10 October 2024).
- Ding, W.; Bao, S.; Zhang, Y.; Chen, B.; Wan, X.; Xiao, J. Innovative recovery of gallium and zinc from corundum flue dust by ultrasound-assisted H2SO4 leaching. Miner. Process. Extr. Metall. Rev. 2024, 45, 495–508. [Google Scholar] [CrossRef]
- Gao, J.-M.; Yan, Z.; Ma, S.; Guo, Y. Novel process for high value utilization of high-alumina fly ash: Valuable metals recovery and mesoporous silica in situ preparation. RSC Adv. 2024, 14, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cui, L.; Guo, Y.; Gao, J.-J.; Li, H.; Cheng, F. A stepwise separation process for selective recovery of gallium from hydrochloric acid leach liquor of coal fly ash. Sep. Purif. Technol. 2021, 265, 118455. [Google Scholar] [CrossRef]
- Gao, R.; Peng, H.; He, Q.; Meng, Z.; Xiang, P.; Hou, L.; Miao, Z. Simultaneous leaching of Li, Ga, and REEs from coal fly ash and a novel method for selective leaching of Li and Ga. J. Environ. Chem. Eng. 2024, 12, 112022. [Google Scholar] [CrossRef]
- Jiang, C.; Lei, Z.; Fan, Z. Study on leaching of gallium and scandium from a gibbsite-type bauxite. Multipurp. Util. Miner. Resur. 2024, 45, 185–189. [Google Scholar] [CrossRef]
- Liang, Y.; Luo, B.; Zhao, L.; Chen, L.; Ding, B.; Shen, Z.; Zheng, T.; Guo, Y.; Li, Q.; Zhou, B.; et al. Strong magnetic and ultrasonic fields enhanced the leaching of Ga and Ge from zinc powder replacement residue. Sep. Purif. Technol. 2024, 330, 125572. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, Q.; Guo, X.; Li, D.; Zou, M.; Xu, Z. Efficient separation and recovery of gallium from GaAs scraps by alkaline oxidative leaching, cooling crystallization and cyclone electrowinning. Process Saf. Environ. 2024, 185, 467–479. [Google Scholar] [CrossRef]
- Losev, V.; Buyko, O.; Shimanskii, A.; Kazantsev, Y.; Metelitsa, S.; Borodina, E.; Li, M. Extraction of gallium from carbon concentrate-aluminum industry waste. Hydrometallurgy 2024, 226, 106289. [Google Scholar] [CrossRef]
- Nan, T.; Yang, J.; Aromaa-Stubb, R.; Zhu, Q.; He, H.; Lundström, M. Extracting valuable metals from zinc sulfide concentrate: A comprehensive simulation-based life cycle assessment study of oxidative pressure leaching. Miner. Eng. 2024, 216, 108888. [Google Scholar] [CrossRef]
- Qin, R.; Chen, J.; Bai, Y. High-efficiency stepwise recovery of gallium and rare earths from NdFeB waste by a hydrometallurgical process. Sep. Purif. Technol. 2024, 350, 127914. [Google Scholar] [CrossRef]
- Wang, G.; Chen, C.; Li, J.; Yang, F.; Wang, L.; Lin, X.; Wu, H.; Zhang, J. A clean method for gallium recovery and the coproduction of silica-potassium compound fertilizer and zeolite F from brown corundum fly ash. J. Hazard. Mater. 2024, 461, 132625. [Google Scholar] [CrossRef]
- Zheng, K.; Benedetti, M.F.; Jain, R.; Pollmann, K.; van Hullebusch, E.D. Recovery of gallium (and indium) from spent LEDs: Strong acids leaching versus selective leaching by siderophore desferrioxamine E. Sep. Purif. Technol. 2024, 338, 126566. [Google Scholar] [CrossRef]
- Jain, R.; Fan, S.; Kaden, P.; Tsushima, S.; Foerstendorf, H.; Barthen, R.; Lehmann, F.; Pollmann, K. Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach. Water Res. 2019, 158, 203–212. [Google Scholar] [CrossRef]
- Zhu, Y.; Ge, W.; Zhang, Y.; Liu, J.; Han, W.; Zhang, Q. Gallium extraction from red mud via leaching with a weak acid. Process Saf. Environ. 2024, 182, 740–751. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Zhang, Z.; Huang, M.; Wang, Y.; Gao, J.; Xiong, Y. A green synthesis method of a mussel-inspired polyphenol-functionalized silica-based material and its highly efficient adsorption of gallium. Sep. Purif. Technol. 2024, 349, 127670. [Google Scholar] [CrossRef]
- Li, C.; Zhou, C.; Quan, Y.; Xu, S.; Wang, Z.; Li, Z.; Li, X.; Liu, G.; Wang, J. Synthesis of hexagonal mesoporous silica from coal fly ash and their evaluation as adsorbent for gallium recovery. J. Mol. Liq. 2024, 410, 125597. [Google Scholar] [CrossRef]
- Shi, C.; Wang, K.; Chen, C.; Cao, Y.; Zhou, G.; Wang, J.; Li, C. Highly selective capture of gallium from aqueous solutions using tetradentate amidoxime functionalized MIL-53(Al) nanofiber membranes. Sep. Purif. Technol. 2024, 330A, 125303. [Google Scholar] [CrossRef]
- Vallès, V.; de Labastida, M.F.; López, J.; Cortina, J.L. Selective recovery of boron, cobalt, gallium and germanium from seawater solar saltworks brines using N-methylglucamine sorbents: Column operation performance. Sci. Total Environ. 2024, 923, 171438. [Google Scholar] [CrossRef] [PubMed]
- Vancea, C.; Ciocarlie, L.; Negrea, A.; Mosoarca, G.; Ciopec, M.; Duteanu, N.; Negrea, P.; Pascu, B.; Nemes, N.-S. Evaluation of functionalized Amberlite type XAD7 polymeric resin with L-valine amino acid performance for gallium recovery. Polymers 2024, 16, 837. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Lai, D.; Xu, Q.; Li, J.; Wang, Y. Selective isolation of gallium and indium from waste photovoltaic modules facilitated by extractant-mesoporous activated carbon composites. Sep. Purif. Technol. 2024, 330, 125510. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liang, C.; Qin, L.; Fu, D.; Wang, M.; Bai, Y.; Liu, W.; Liu, X. Preparation of graphene-based surface ion-imprinted adsorbent for Ga(III) selective extraction from acid leaching of fly ash. Sep. Purif. Technol. 2024, 325, 124681. [Google Scholar] [CrossRef]
- Zhao, M.; Fouda, A.; Salih, K.A.M.; Guibal, E.; Wei, Y.; Ning, S.; Hamza, M.F.; El Dakkony, S.R. Toward efficient and selective thorium recovery using stable ion-imprinting sorbent–Application to processed acidic ore leachate as a case study. Chem. Eng. J. 2024, 496, 154045. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Y.; Zheng, B. Preparation of 4-amino-3-hydrazino-1,2,4-triazol-5-thiol-modified graphene oxide and its greatly enhanced selective adsorption of gallium in aqueous solution. Molecules 2024, 29, 2778. [Google Scholar] [CrossRef]
- Olsson, E.; Chai, G.; Dove, M.; Cai, Q. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 2019, 11, 5274–5284. [Google Scholar] [CrossRef]
- Bagdaulet, K.; Kuralai, A.; Sergei, G.; Yerkezhan, A. Sorption extraction of gallium from alumina-alkaline solutions. Trans. Indian Inst. Met. 2024, 77, 919–929. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Guo, B.; Dai, Z.; Kong, Z.; Li, F.; Ou, J. Synthesis of polyacrylate-divinylbenzene hydroxamic resins and its gallium adsorption performance in sulfuric acid solution. J. Water Proc. Eng. 2024, 60, 105191. [Google Scholar] [CrossRef]
- Qin, Z.; Jin, X.; Yang, Z.; Xin, Y.; Liu, W. The effective separation of gallium, vanadium, and aluminum from a simulated Bayer solution by resin exchange. Materials 2024, 17, 4109. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wang, S.; Zhang, S.; Xie, J.; Zhou, C.; Wang, C.; Song, L.; Ma, K.; Luo, D.; Yue, H. Cross-linked amidoxime porous resin for selective gallium separation in Bayer solutions: Reaction mechanism and kinetic study. Chem. Eng. J. 2024, 481, 148340. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Chen, Y.; Lu, H.; Yu, L.; Cao, X.; Li, Y. Basic study on the synergistic extraction of V and Ga from Bayer mother liquor of alumina production. J. Sust. Metall. 2024, 10, 1225–1236. [Google Scholar] [CrossRef]
- Cui, L.; Feng, L.; Yuan, H.; Cheng, H.; Cheng, F. Efficient recovery of aluminum, lithium, iron and gallium from coal fly ash leachate via coextraction and stepwise stripping. Resourc. Conserv. Recycl. 2024, 202, 107380. [Google Scholar] [CrossRef]
- US National Library of Medicine. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 10 September 2024).
- Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human health effects of dichloromethane: Key findings and scientific issues. Environ. Health Perspect. 2015, 123, 114–119. [Google Scholar] [CrossRef]
- Dhiman, S.; Agarwal, S.; Gupta, H. Application of phosphonium ionic liquids to separate Ga, Ge and In utilizing solvent extraction: A review. J. Ion. Liq. 2024, 4, 100080. [Google Scholar] [CrossRef]
- Van den Bossche, A.; Vereycken, W.; Vander Hoogerstraete, T.; Dehaen, W.; Binnemans, K. Recovery of gallium, indium, and arsenic from semiconductors using tribromide ionic liquids. ACS Sustain. Chem. Eng. 2019, 7, 14451–14459. [Google Scholar] [CrossRef]
- Nayak, S.; Devi, N. Studies on extraction of gallium (III) from chloride solution using Cyphos IL 104 and its removal from photodiodes and red mud. Hydrometallurgy 2017, 171, 191–197. [Google Scholar] [CrossRef]
- Nayak, S.; Devi, N. Separation and recovery of gallium(III) ions from aqueous phase by liquid--liquid extraction using a novel extractant, Cyphos IL 101. Turk. J. Chem. 2017, 41, 8. [Google Scholar] [CrossRef]
- Hashizume, M.; Oshima, T.; Inada, A. Separation of gallium(III) using 2-nonanone based on ion solvation in acidic chloride media. Sep. Purif. Technol. 2024, 335, 126156. [Google Scholar] [CrossRef]
- Thombre, A.V.; Kundu, D. UNIQUAC-ext-PDH* framework for the ionic liquid assisted extraction of gallium (III). J. Sol. Chem. 2024, 53, 1149–1170. [Google Scholar] [CrossRef]
- Chakankar, M.; Oestreich, A.; Pollmann, K.; Rudolph, M. Gallium bioionflotation using rhamnolipid: Influence of frother addition and foam properties. Sep. Purif. Technol. 2024, 329, 125217. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chen, Y.; Chiueh, P.-T.; Lo, S.-L. Metal recovery from copper indium gallium selenide solar cells by using microwave pyrolysis, thermal oxidation and thermal chlorination. Process Saf. Environ. 2024, 190, 226–232. [Google Scholar] [CrossRef]
- Kombargi, A.E.; Godart, P.E.; Hart, D.P. Enhanced recovery of activation metals for accelerated hydrogen generation from aluminum and seawater. Cell Rep. Phys. Sci. 2024, 5, 102121. [Google Scholar] [CrossRef]
- Shi, S.; Ma, B.; Yang, H.; Chen, Y.; Wang, C. Selective separation of Fe and Ga from Al-containing HNO3 leach liquor using cupferron: Efficiency, mechanism, and regeneration. Chem. Eng. J. 2024, 489, 151178. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, L.; French, D.; Graham, I.; Wei, Q.; Dai, S.; Feng, L. Revisiting sustainable resources in the combustion products of alumina-rich coal: Critical metal (Li, Ga, Nb, and REY) potential of ash from the Togtoh Power Plant, Inner Mongolia, China. Sci. Total Environ. 2024, 950, 175056. [Google Scholar] [CrossRef]
- Drzazga, M.; Ciszewski, M.; Kozłowicz, S.; Maj, I.; Ochmański, M.; Radoń, A. Leaching of liquation-feeding furnace dross as a first step for germanium recovery. BMC Res. Notes 2024, 17, 180. [Google Scholar] [CrossRef]
- Fernandez-Pereira, C.; Leiva, C.; Luna-Galiano, Y.; Vilches, L.F.; Arroyo, F. Improved recycling of a gasification fly ash: An integrated waste management approach within the framework of a circular economy. Waste Manag. 2024, 187, 31–38. [Google Scholar] [CrossRef]
- Liang, M.; Hong, Y.; Di, H.; Yang, K.; Zhang, L. Mechanism of germanium adsorption by iron hydroxide colloids during the leaching process of secondary zinc oxide. Langmuir 2024, 40, 13167–13176. [Google Scholar] [CrossRef]
- Liang, M.; Dai, J.; Di, H.; Zhu, K.; Yang, K.; Zhang, L. Mechanism and kinetic study on ultrasonically enhanced reduction leaching of zinc suboxide. Langmuir 2024, 40, 19155–19165. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, Y.X.; Deng, Z.; Zhen, Y.; Wei, C.; Li, X.; Li, M. Dissociation of germanium-containing insoluble mineral phases in zinc oxide dust. Can. Metall. Q. 2024. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Luo, X.; Wei, C.; Deng, Z.; Li, X.; Peng, X.; Sun, P. Selective separation of zinc from germanium-bearing iron cake via a roasting-leaching process. Sep. Purif. Technol. 2024, 337, 126166. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, H.; Zhang, Q.; Zhang, L. An original strategy and evaluation of a reaction mechanism for recovering valuable metals from zinc oxide dust containing intractable germanide. J. Hazard. Mater. 2024, 468, 133766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Teng, D.; Fan, G.; Cao, Y.; Liu, J.; Li, P. Co-extraction of germanium and nitrogen-rich humic acid from germanium-rich lignite by ammonoxidation. Fuel 2024, 366, 131361. [Google Scholar] [CrossRef]
- Hintersatz, C.; Tsushima, S.; Kaufer, T.; Kretzschmar, J.; Thewes, A.; Pollmann, K.; Jain, R. Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium. J. Hazard. Mater. 2024, 478, 135523. [Google Scholar] [CrossRef]
- Patel, M.; Karamalidis, A.K. Fixed-bed column adsorption of Ge(IV) using catechol-based adsorbents and aqueous complexation modeling to understand Ge(IV) selectivity. Sep. Purif. Technol. 2024, 351, 128106. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, S.; Wu, Y.; Liu, X.; Liu, H.; Zhang, D.; Fu, L. Synthesis of novel MOF for adsorption of germanium: Kinetics, isotherm and thermodynamics. Microporous Mesoporous Mater. 2024, 363, 112826. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, S.; Wu, Y.; Liu, X.; Zhu, M.; Li, P.; Fu, L. Novel Zr-based MOF with ortho-hydroxyl group selectively traps germanium from aqueous media. Sep. Purif. Technol. 2024, 338, 126477. [Google Scholar] [CrossRef]
- Wu, H.; Hu, L.; Zhang, Z.; Guo, W.; Chen, W.; Yu, J.; Feng, G.; Chi, R.; Pan, Z. Highly effective and selective recovery of germanium from coal acid leaching solution by trihydroxyl functionalized titanium dioxide. Coll. Surf. A Physicochem. Eng. Asp. 2024, 70, 135130. [Google Scholar] [CrossRef]
- He, C.; Qi, M.; Liu, Y.; Liu, Z.; Wei, Y.; Fujita, T.; Wang, G.; Ma, S.; Yang, W.; Gan, J. Highly selective separation of germanium from sulfuric solution using an anion exchange D201× 7 resin with tartaric acid. Hydrometallurgy 2024, 224, 106230. [Google Scholar] [CrossRef]
- Gu, Z.; Li, C.; Li, C.; Liu, Q.; Wang, Q.; Song, J.; Wang, Y. Coordination separation pattern and extraction mechanism of germanium in zinc leaching solution by wet process. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2024, 34, 279–291. [Google Scholar] [CrossRef]
- Tan, Z.; Zhen, Y.; Wei, C.; Jin, X.; Li, X.; Fan, G.; Luo, X.G. Organic phase modification of YW100 extraction system: Extraction of germanium using YW100+D2EHPA+N235. Sep. Purif. Technol. 2024, 329, 125175. [Google Scholar] [CrossRef]
- Bo, W.; Wu, J.; Miao, Z.; Wan, K. Germanium extraction from lignite using gravity separation combined with low-temperature sintering and chlorinated distillation. Sep. Purif. Technol. 2024, 329, 125215. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Zhang, L. Separation and recovery of arsenic, germanium and tungsten from toxic coal ash from lignite by sequential vacuum distillation with disulphide. Environ. Poll. 2024, 340, 122775. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Meng, C.; Yang, H.; Xiong, H.; Deng, Y.; Yang, B.; Xu, B.; Dong, Z.; He, Y. Separation behavior of trace impurities during deep purification of zone-fused germanium tailings via vacuum distillation. Sep. Purif. Technol. 2024, 337, 126475. [Google Scholar] [CrossRef]
Metal | Current Price, USD/kg | Change from Last Year, % | Variation from January 2020, % |
---|---|---|---|
Dysprosum | 403.2 | −31.76 | 16.79 |
Neodymium | 107.6 | −4.95 | 65.54 |
Praseodymium | 107.3 | −4.88 | 47.45 |
Terbium | 1496.8 | −31.84 | 124.07 |
Gallium | 911.4 | 20.59 | 205.63 |
Germanium | 3885.6 | 36.85 | 90 |
Hafnium | 4496.8 | −3.44 | 187.2 |
Indium | 687.2 | 22.36 | 118.08 |
Rhenium | 2490 | 24.81 | 45.49 |
Iridium | USD 169.85/g | 1.32 | 221.02 |
Acid | Li | Ga | REEs |
---|---|---|---|
HCl 0.5 M | 43.9 | 1.5 | 24.8 |
Citric acid 0.5 M | 80.1 | 80.2 | 71.5 |
HCl 2 M | 90.4 | 86.8 | 80.3 |
Citric acid 2 M | 79.8 | 80.8 | 78.9 |
Zn | S | In | Ga | Ge | Cu | Cd | Co |
---|---|---|---|---|---|---|---|
95.6 | 86.6 | 82.4 | 82.6 | 68.9 | 62.5 | 85.9 | 85.6 |
Adsorbent, x = | a [Ga]e, mg/g |
---|---|
18 | 75.01 |
27 | 64.85 |
36 | 88.65 |
54 | 60.88 |
72 | 55.58 |
pH | [Ga]e, mg/g |
---|---|
2 | 2.9 |
2.5 | 4.5 |
3 | 23.9 |
3.5 | 1.3 |
Adsorbent/Resin | a [Ga(III)]m, mg/g | Ref. |
---|---|---|
KIT-6@36-CA/PEI | 88.65 | [32] |
Mesoporous silica | 386.84 | [33] |
PAN/MIL-53(Al)-AO | 231.08 | [34] |
Amberlite XAD-7/DL-valine | 28.86 | [36] |
II-GO/PAA | 236.2 | [38] |
GO-AHTZT | 41.4 | [40] |
HA-PDR | 27.7 | [43] |
A-PSD | 14.67 | [45] |
LSC-6005 (OH form) | 38.46 | [46] |
Extractant | HCl 3 M | HCl 5 M |
---|---|---|
1,2-dimethoxybenzene | 30 | 99 |
Methyl isobutylketone | 90 | 99 |
2-nonanone | 30 | 99 |
Dibutyl carbitol | 25 | 90 |
Valerophenone | nil | 90 |
Propiophenone | 55 | 85 |
Acid | T, °C | Time, h | [Acid], % wt. | L/S | % Recovery |
---|---|---|---|---|---|
Sulfuric | 80 | 2 | 15 | 25/1 | 60 |
Oxalic | 80 | 3 | 12.5 | 10/1 | 57 |
Chemical | ΒZn/Ge |
---|---|
NH3 | 470 |
NH3+NH4Cl | 883 |
NH3+(NH4)2SO4 | 993 |
NH3+(NH4)2CO3 | 948 |
NH3+NH4HCO3 | 678 |
Cycle | HNO3 | NaOH |
---|---|---|
1 | 88.5–85.6 | 88.5 – <10 |
2 | 84.6–74.6 | 40 – <10 |
3 | 76.7–72.9 | 20 – <5 |
4 | 72.2–65.4 | - |
5 | 65.7–61.6 | - |
Adsorbent/Resin | a [Ge(IV)]m, mg/g | Ref. |
---|---|---|
OG-UiO-66 | 250.04 | [71] |
UiO-66-NH2 | 216.21 | [71] |
Ma-Zr-MOF | 82.06 | [72] |
TiO2-NH2-3OH | 72.94 | [73] |
D201×7 resin | 212 | [74] |
Operation Unit | Operational Time | Metal Concentration | Selectivity | Feed Solution | pH Solution | Problematic Phases Separation |
---|---|---|---|---|---|---|
Adsorption | min/h | 10−3–103 mg/L | average–good | clarified/non-clarified | 0–14 | no |
Resin ion exchange | min/h | 10−3–103 mg/L | average–good | clarified/non-clarified | 0–14 | no |
Liquid–liquid extraction | min | 101–105 mg/L | good | clarified | 0–14 | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robla, J.I.; Alonso, M.; Alguacil, F.J. Recovery of Lesser-Known Strategic Metals: The Gallium and Germanium Cases. Processes 2024, 12, 2545. https://doi.org/10.3390/pr12112545
Robla JI, Alonso M, Alguacil FJ. Recovery of Lesser-Known Strategic Metals: The Gallium and Germanium Cases. Processes. 2024; 12(11):2545. https://doi.org/10.3390/pr12112545
Chicago/Turabian StyleRobla, Jose Ignacio, Manuel Alonso, and Francisco Jose Alguacil. 2024. "Recovery of Lesser-Known Strategic Metals: The Gallium and Germanium Cases" Processes 12, no. 11: 2545. https://doi.org/10.3390/pr12112545
APA StyleRobla, J. I., Alonso, M., & Alguacil, F. J. (2024). Recovery of Lesser-Known Strategic Metals: The Gallium and Germanium Cases. Processes, 12(11), 2545. https://doi.org/10.3390/pr12112545