Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Jussara Pulp
2.2. Production of PEO-Jussara Composites Using Electrospinning
2.3. Bioaccessibility
2.4. HPLC Analysis of the Anthocyanins
2.5. Antioxidant Activity
2.6. Thermal Stability
2.7. Statistical Analysis
3. Results
3.1. Anthocyanin Bioaccessibility
3.2. Antioxidant Activity
3.3. Thermal Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bicudo, M.O.P.; Ribani, R.H.; Beta, T. Anthocyanins, Phenolic Acids and Antioxidant Properties of Juçara Fruits (Euterpe edulis M.) Along the On-Tree Ripening Process. Plant Foods Hum. Nutr. 2014, 69, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.D.S.C.; Gonzaga, L.V.; Jardini, F.A.; Mancini Filho, J.; Heller, M.; Micke, G.; Costa, A.C.O.; Fett, R. Protective Effect of Euterpe edulis M. on Vero Cell Culture and Antioxidant Evaluation Based on Phenolic Composition Using HPLC—ESI-MS/MS. Food Res. Int. 2013, 51, 363–369. [Google Scholar] [CrossRef]
- da Silva, N.A.; Rodrigues, E.; Mercadante, A.Z.; de Rosso, V.V. Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. J. Agric. Food Chem. 2014, 62, 5072–5084. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Borges, G.d.S.C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Juçara Fruit (Euterpe edulis Mart.): Sustainable Exploitation of a Source of Bioactive Compounds. Food Res. Int. 2016, 89, 14–26. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Mesquita, L.M.d.S.; Martins, P.L.G.; Habu, S.; de Rosso, V.V. Lactobacillus Fermentation of Jussara Pulp Leads to the Enzymatic Conversion of Anthocyanins Increasing Antioxidant Activity. J. Food Compos. Anal. 2018, 69, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.R.C.; Murador, D.C.; de Souza Mesquita, L.M.; de Rosso, V.V. Bioavailability of Anthocyanins: Gaps in Knowledge, Challenges and Future Research. J. Food Compos. Anal. 2018, 68, 31–40. [Google Scholar] [CrossRef]
- Murador, D.C.; Braga, A.R.C.; da Cunha, D.; de Rosso, V.V. Alterations in Phenolic Compound Levels and Antioxidant Activity in Response to Cooking Technique Effects: A Meta-Analytic Investigation. Crit. Rev. Food Sci. Nutr. 2017, 58, 169–177. [Google Scholar] [CrossRef]
- Vannuchi, N.; Braga, A.R.C.; de Rosso, V.V. High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe edulis) Using Deep Eutectic Solvents. Processes 2022, 10, 615. [Google Scholar] [CrossRef]
- Vannuchi, N.; Jamar, G.; Pisani, L.; Braga, A.R.C.; de Rosso, V.V. Chemical Composition, Bioactive Compounds Extraction, and Observed Biological Activities from Jussara (Euterpe edulis): The Exotic and Endangered Brazilian Superfruit. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3192–3224. [Google Scholar] [CrossRef]
- Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay between Anthocyanins and Gut Microbiota. J. Agric. Food Chem. 2014, 62, 6898–6902. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.; de Barros Alves, H.; Mihnea, M. Mapping the Sensory Fingerprint of Swedish Beer Market through Text and Data Mining and Multivariate Strategies. Beverages 2021, 7, 74. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Figueira, F.d.S.; da Silveira, J.T.; de Morais, M.G.; Costa, J.A.V.; Kalil, S.J. Improvement of Thermal Stability of C-Phycocyanin by Nanofiber and Preservative Agents. J. Food Process. Preserv. 2016, 40, 1264–1269. [Google Scholar] [CrossRef]
- Landim Neves, M.I.; Silva, E.K.; Meireles, M.A.A.; Neves, M.I.L.; Silva, E.K.; Meireles, M.A.A. Natural Blue Food Colorants: Consumer Acceptance, Current Alternatives, Trends, Challenges, and Future Strategies. Trends Food Sci. Technol. 2021, 112, 163–173. [Google Scholar] [CrossRef]
- Rafiee, Z.; Barzegar, M.; Sahari, M.A.; Maherani, B. Nanoliposomal Carriers for Improvement the Bioavailability of High–Valued Phenolic Compounds of Pistachio Green Hull Extract. Food Chem. 2017, 220, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Prado, G.; Pierattini, I.; Villarroel, G.; Fuentes, F.; Silva, A.; Echeverria, F.; Valenzuela, R.; Bustamante, A. Bioaccessibility of Anthocyanins on in Vitro Digestion Models: Factors Implicated and Role in Functional Foods Development. Curr. Med. Chem. 2022, 29, 1124–1141. [Google Scholar] [CrossRef]
- Giaconia, M.A.; Ramos, S.d.P.; Pereira, C.F.; Lemes, A.C.; de Rosso, V.V.; Braga, A.R.C. Overcoming Restrictions of Bioactive Compounds Biological Effects in Food Using Nanometer-Sized Structures. Food Hydrocoll. 2020, 107, 105939. [Google Scholar] [CrossRef]
- Giaconia, M.A.; Ramos, S.d.P.; Fratelli, C.; Assis, M.; Mazzo, T.M.; Longo, E.; de Rosso, V.V.; Braga, A.R.C. Fermented Jussara: Evaluation of Nanostructure Formation, Bioaccessibility, and Antioxidant Activity. Front. Bioeng. Biotechnol. 2022, 10, 814466. [Google Scholar] [CrossRef]
- Ramos, S.d.P.; Giaconia, M.A.; do Marco, J.T.; Paiva, R.d.S.; de Rosso, V.V.; Lemes, A.C.; Egea, M.B.; Assis, M.; Mazzo, T.M.; Longo, E.; et al. Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids Interfaces 2020, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Jiang, Y.; Chen, H.; Li, K.; Chen, H.; Wu, Q.; Ju, A. Fabrication of 3D Ordered Needle-like Polyaniline@hollow Carbon Nanofibers Composites for Flexible Supercapacitors. Chin. Chem. Lett. 2021, 32, 2448–2452. [Google Scholar] [CrossRef]
- Schmatz, D.A.; Costa, J.A.V.; de Morais, M.G. A Novel Nanocomposite for Food Packaging Developed by Electrospinning and Electrospraying. Food Packag. Shelf Life 2019, 20, 100314. [Google Scholar] [CrossRef]
- Stie, M.B.; Jones, M.; Sørensen, H.O.; Jacobsen, J.; Chronakis, I.S.; Nielsen, H.M. Acids ‘Generally Recognized as Safe’ Affect Morphology and Biocompatibility of Electrospun Chitosan/Polyethylene Oxide Nanofibers. Carbohydr. Polym. 2019, 215, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; An, Y.; Yan, X.; McClements, D.J.; Li, B.; Li, Y. Designing Self-Nanoemulsifying Delivery Systems to Enhance Bioaccessibility of Hydrophobic Bioactives (Nobiletin): Influence Ofhydroxypropyl Methylcellulose and Thermal Processing. Food Hydrocoll. 2015, 51, 395–404. [Google Scholar] [CrossRef]
- Hoseyni, S.Z.; Jafari, S.M.; Shahiri Tabarestani, H.; Ghorbani, M.; Assadpour, E.; Sabaghi, M. Production and Characterization of Catechin-Loaded Electrospun Nanofibers from Azivash Gum- Polyvinyl Alcohol. Carbohydr. Polym. 2020, 235, 115979. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.d.P.; Giaconia, M.A.; Assis, M.; Jimenez, P.C.; Mazzo, T.M.; Longo, E.; de Rosso, V.; Braga, A.R.C. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021, 26, 1206. [Google Scholar] [CrossRef]
- Chitchumroonchokchai, C.; Failla, M.L. Bioaccessibility and Intestinal Cell Uptake of Astaxanthin from Salmon and Commercial Supplements. Food Res. Int. 2017, 99, 936–943. [Google Scholar] [CrossRef]
- de Rosso, V.V.; Mercadante, A.Z. HPLC–PDA–MS/MS of Anthocyanins and Carotenoids from Dovyalis and Tamarillo Fruits. J. Agric. Food. Chem. 2007, 55, 9135–9141. [Google Scholar] [CrossRef]
- Rodrigues, E.; Mariutti, L.R.B.; Faria, A.F.; Mercadante, A.Z. Microcapsules Containing Antioxidant Molecules as Scavengers of Reactive Oxygen and Nitrogen Species. Food Chem. 2012, 134, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Martins, P.L.G.; de Rosso, V.V. Thermal and Light Stabilities and Antioxidant Activity of Carotenoids from Tomatoes Extracted Using an Ultrasound-Assisted Completely Solvent-Free Method. Food Res. Int. 2016, 82, 156–164. [Google Scholar] [CrossRef]
- Biazotto, K.R.; de Souza Mesquita, L.M.; Neves, B.V.; Braga, A.R.C.; Tangerina, M.M.P.; Vilegas, W.; Mercadante, A.Z.; de Rosso, V.V. Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. J. Agric. Food Chem. 2019, 67, 1860–1876. [Google Scholar] [CrossRef]
- Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.d.S.C.; Vitali, L.; Micke, G.A.; de Gois, J.S.; de Almeida, T.S.; Borges, D.L.G.; Miller, P.R.M.; et al. Bioaccessibility of Bioactive Compounds and Antioxidant Potential of Juçara Fruits (Euterpe edulis Martius) Subjected to in Vitro Gastrointestinal Digestion. Food Chem. 2017, 228, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.E.; de Pascual-Teresa, S. Metabolism of Anthocyanins by Human Gut Microflora and Their Influence on Gut Bacterial Growth. J. Agric. Food Chem. 2012, 60, 3882–3890. [Google Scholar] [CrossRef] [PubMed]
- Santamarina, A.B.; Jamar, G.; Mennitti, L.V.; Cesar, H.d.C.; Vasconcelos, J.R.; Oyama, L.M.; de Rosso, V.V.; Pisani, L.P. Obesity-Related Inflammatory Modulation by Juçara Berry (Euterpe edulis Mart.) Supplementation in Brazilian Adults: A Double-Blind Randomized Controlled Trial. Eur. J. Nutr. 2020, 59, 1693–1705. [Google Scholar] [CrossRef] [PubMed]
- Khoshnoudi-Nia, S.; Sharif, N.; Jafari, S.M. Loading of Phenolic Compounds into Electrospun Nanofibers and Electrosprayed Nanoparticles. Trends Food Sci. Technol. 2020, 95, 59–74. [Google Scholar] [CrossRef]
- de Morais, M.G.; Stillings, C.; Dersch, R.; Rudisile, M.; Pranke, P.; Costa, J.A.V.; Wendorff, J. Preparation of Nanofibers Containing the Microalga Spirulina (Arthrospira). Bioresour. Technol. 2010, 101, 2872–2876. [Google Scholar] [CrossRef]
- Tong, Y.; Deng, H.; Kong, Y.; Tan, C.; Chen, J.; Wan, M.; Wang, M.; Yan, T.; Meng, X.; Li, L. Stability and Structural Characteristics of Amylopectin Nanoparticle-Binding Anthocyanins in Aronia Melanocarpa. Food Chem. 2019, 311, 125687. [Google Scholar] [CrossRef]
- Isik, B.S.; Altay, F.; Capanoglu, E. The Uniaxial and Coaxial Encapsulations of Sour Cherry (Prunus cerasus L.) Concentrate by Electrospinning and Their in Vitro Bioaccessibility. Food Chem. 2018, 265, 260–273. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yao, G.; Zhang, W.; Zhao, Y. Microemulsion-Based Anthocyanin Systems: Effect of Surfactants, Cosurfactants, and Its Stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In Vitro Digestion Models Suitable for Foods: Opportunities for New Fields of Application and Challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef]
- Antelo, F.S.; Costa, J.A.V.; Kalil, S.J. Thermal Degradation Kinetics of the Phycocyanin from Spirulina Platensis. Biochem. Eng. J. 2008, 41, 43–47. [Google Scholar] [CrossRef]
- Nooeaid, P.; Chuysinuan, P.; Techasakul, S. Alginate/Gelatine Hydrogels: Characterisation and Application of Antioxidant Release. Green Mater. 2017, 5, 153–164. [Google Scholar] [CrossRef]
- Locilento, D.A.; Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Luna, G.L.F.; Brassolatti, P.; Anibal, F.d.F.; Correa, D.S. Biocompatible and Biodegradable Electrospun Nanofibrous Membranes Loaded with Grape Seed Extract for Wound Dressing Application. J. Nanomater. 2019, 2019, 2472964. [Google Scholar] [CrossRef] [Green Version]
- Aceituno-Medina, M.; Mendoza, S.; Rodríguez, B.A.; Lagaron, J.M.; López-Rubio, A. Improved Antioxidant Capacity of Quercetin and Ferulic Acid during In-Vitro Digestion through Encapsulation within Food-Grade Electrospun Fibers. J. Funct. Foods 2015, 12, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.J.; Lee, J.S.; Lee, H.G. Nanoencapsulation of Synergistic Antioxidant Fruit and Vegetable Concentrates and Their Stability during in Vitro Digestion. J. Sci. Food Agric. 2020, 100, 1056–1063. [Google Scholar] [CrossRef]
- de Dicastillo, C.L.; Piña, C.; Garrido, L.; Arancibia, C.; Galotto, M.J. Enhancing Thermal Stability and Bioaccesibility of Açaí Fruit Polyphenols through Electrohydrodynamic Encapsulation into Zein Electrosprayed Particles. Antioxidants 2019, 8, 464. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, Y.; Fang, R.; Lei, C.; Li, Y.; Li, B.; Pei, Y.; Luo, X.; Liu, S. Application of Nanocellulose as Particle Stabilizer in Food Pickering Emulsion: Scope, Merits and Challenges. Trends Food Sci. Technol. 2021, 110, 573–583. [Google Scholar] [CrossRef]
- Ma, Z.; Jing, P. Stabilization of Black Rice Anthocyanins by Self-Assembled Silk Fibroin Nanofibrils: Morphology, Spectroscopy and Thermal Protection. Int. J. Biol. Macromol. 2020, 146, 1030–1039. [Google Scholar] [CrossRef]
Digestion Steps | Anthocyanins (mg/100 g of Sample) | |||||
---|---|---|---|---|---|---|
JP | Remain (%) | JPP | Remain (%) | JN | Remain (%) | |
Initial | 215.20 a ± 10.89 | 100.0 | 5.97 a ± 0.05 | 100.0 | 4.92 a ± 0.21 | 100.0 |
Oral | 58.44 b ± 4.75 | 27.2 | 1.16 b ± 0.01 | 19.5 | 1.64 b ± 0.21 | 33.4 |
Gastric | 39.29 c ± 13.97 | 18.3 | 0.87 c ± 0.03 | 14.6 | 1.04 c ± 0.19 | 21.2 |
Intestinal | 30.18 d ± 2.65 | 14.0 | 0.61 d ± 0.01 | 10.2 | 0.88 c ± 0.30 | 17.9 |
Samples | Digestion Steps | |||||
---|---|---|---|---|---|---|
Initial | Oral | Gastric | Intestinal | Remain AA (%) | ||
ABTS (µM TE/g) | JP | 121.5 a,A ± 8.1 | 86.0 a,C ± 5.7 | 104.7 a,B ± 4.3 | 72.3 a,D ± 2.9 | 59.5 b |
JPP | 79.6 b,A ± 2.8 | 46.9 b,D ± 6.6 | 71.2 b,B ± 0.9 | 66.1 b,C ± 3.7 | 82.9 a | |
JN | 84.73 b,A ± 3.4 | 79.5 a,A,B ± 14.1 | 77.5 b,B,C ± 12.3 | 72.2 a,b,C ± 10.1 | 85.3 a | |
ORAC (µM TE/g) | JP | 204.9 a,B ± 34.6 | 248.6 a,A ± 20.8 | 209.7 a,B ± 46.9 | 111.8 a,C ± 27.0 | 54.6 b |
JPP | 199.8 a,A ± 29.2 | 210.1 b,A ± 28.5 | 189.7 b,A ± 30.1 | 135.7 a,B ± 30.1 | 64.4 a | |
JN | 201.0 a,A ± 28.5 | 153.6 c,C ± 22.8 | 182.7 b,B ± 12.9 | 151.0 a,C ± 25.9 | 75.1 a |
Samples | Parameters | Temperature (°C) | |
---|---|---|---|
60 | 90 | ||
Jussara pulp | Kd(min−1) | 0.000008 | 0.00008 |
R2 | 1 | 1 | |
Jussara pulp and PEO solution | t1/2(min) | 86,643.4 | 8664.3 |
Kd(min−1) | 0.000004 | 0.000038 | |
Jussara nanofibers | R2 | 1 | 1 |
t1/2(min) | 173,286.8 | 18,240.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giaconia, M.A.; Ramos, S.d.P.; Neves, B.V.; Almeida, L.; Costa-Lotufo, L.; de Rosso, V.V.; Braga, A.R.C. Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes 2022, 10, 2343. https://doi.org/10.3390/pr10112343
Giaconia MA, Ramos SdP, Neves BV, Almeida L, Costa-Lotufo L, de Rosso VV, Braga ARC. Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes. 2022; 10(11):2343. https://doi.org/10.3390/pr10112343
Chicago/Turabian StyleGiaconia, Michele Amendoeira, Sergiana dos Passos Ramos, Bruna Vitoria Neves, Larissa Almeida, Letícia Costa-Lotufo, Veridiana Vera de Rosso, and Anna Rafaela Cavalcante Braga. 2022. "Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion" Processes 10, no. 11: 2343. https://doi.org/10.3390/pr10112343
APA StyleGiaconia, M. A., Ramos, S. d. P., Neves, B. V., Almeida, L., Costa-Lotufo, L., de Rosso, V. V., & Braga, A. R. C. (2022). Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes, 10(11), 2343. https://doi.org/10.3390/pr10112343