The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis
Abstract
:1. Introduction
Aim and Research Questions
- RQ1: What sentiments inspire people to share monuments on social media?
- RQ2: What is the relationship between users’ reactions and sentiment regarding the Arc de Triomphe monument?
- RQ3: What is the relationship between users’ reactions and sentiment regarding the “Arc de Triomphe Wrapped” Installation art?
- RQ4: In which of the two cases were people photographed with the monument more frequently? Does this affect popularity?
2. Related work
2.1. The Concept of Aesthetic Experience
2.2. Sentiment Analysis
2.3. Spreading Popularity
2.4. Public Art on Air
3. Methodology
3.1. Data Collection
3.2. Pre-Processing and Transformation
3.3. Sentiment Classification
4. Implementation and Results
4.1. Data Exploration
4.2. Classification Task and Findings
- RQ1: What sentiments inspire people to share monuments on social media?
- RQ2: What is the relationship between users’ reactions and sentiment regarding the Arc de Triomphe monument?
- RQ3: What is the relationship between users’ reactions and sentiment regarding the “Arc de Triomphe Wrapped” Installation art?
- RQ4: In which of the two cases were the spectators photographed with the monument more frequently? Does this affect popularity?
5. Limitations
6. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manovich, L. The Language of New Media; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Manovich, L. AI and Aesthetics; Strelka Press: Moscow, Russia, 2019. [Google Scholar]
- Liebhart, K.; Bernhardt, P. Political Storytelling on Instagram: Key aspects of Alexander Van der Bellen’s succesfull 2016 presidental election campaign. Media Commun. 2017, 5, 15–25. [Google Scholar] [CrossRef] [Green Version]
- MacDowall, L.; Budge, K. Art after Instagram: Art Spaces, Audiences, Aesthetics, 1st ed.; Routledge: Oslo, Norway, 2021. [Google Scholar]
- Symons, H. 3 Expert Tips to Showcase Your Art on Twitter. 2018. Available online: https://www.agora-gallery.com/advice/blog/2018/06/27/3-expert-tips-to-showcase-your-art-on-twitter/ (accessed on 10 December 2021).
- Cleveland, S. Social Media Systems in the Workplace: Toward Understanding Employee Knowledge Creation via Microblogging within Shared Knowledge Domains. Informatics 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J. Going Viral, the Right Way: What It’s Like Running the World’s Best Museum Social Media Accounts during a Pandemic. 2021. Available online: https://www.theartnewspaper.com/2021/04/01/going-viral-the-right-way-what-its-like-running-the-worlds-best-museum-social-media-accounts-during-a-pandemic (accessed on 2 December 2021).
- Zhang, Y.; CEREAL Magazine. Daydream. 2019. Available online: https://chloedaydreams.home.blog/2019/03/12/cereal-magazine/ (accessed on 3 December 2021).
- Manovich, L. Instagram and Contemporary Image; Manovich.NET: New York, NY, USA, 2017. [Google Scholar]
- Dawson, A. Instagram Overtakes Twitter as Most Popular Platform for Museums During COVID-19 Pandemic. 2021. Available online: https://www.theartnewspaper.com/2021/03/29/instagram-overtakes-twitter-as-most-popular-platform-for-museums-during-covid-19-pandemic (accessed on 5 January 2022).
- Antara, N.; Shuvro, S.E. The impact of COVID-19 on museum and the way forward to be resilience. Uluslararası Müze Eğitimi Derg. 2020, 2, 54–61. [Google Scholar]
- Bailey, M. What It’s Like to Visit Museums Now—And How COVID-19 Has Fundamentally Changed Them Long Term. The Art Newspaper. Available online: https://www.theartnewspaper.com/2021/05/26/what-its-like-to-visit-museums-nowand-how-covid-19-has-fundamentally-changed-them-long-term (accessed on 26 May 2021).
- Zenker, S.; Kock, F. The coronavirus pandemic–A critical discussion of a tourism research agenda. Tour. Manag. 2020, 81, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Schieman, S.; Badawy, P.J.; Milkie, A.M.; Bierman, A. Work-Life Conflict During the COVID-19 Pandemic. Socius 2021, 7, 1–19. [Google Scholar] [CrossRef]
- Lee, C.C.; Chen, M.P. The impact of COVID-19 on the travel and leisure industry returns Some international evidence. Tour. Econ. 2020, 9, 7198. [Google Scholar] [CrossRef]
- Suau-Sanchez, P.; Voltes-Dorta, A.; Cugueró-Escofet, N. An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it? J. Transp. Geogr. 2020, 88, 2749. [Google Scholar] [CrossRef]
- Hao, F.; Xiao, Q.; Chon, K. COVID-19 and China’s hotel industry: Impacts, a disaster management framework, and post-pandemic agenda. Int. J. Hosp. Manag. 2020, 90, 2636. [Google Scholar] [CrossRef]
- King, R. Revenge Travel and the Rise of the Mobile Office. 2021. Available online: https://fortune.com/2021/10/09/what-is-revenge-travel-pandemic-covid-delta-variant/ (accessed on 10 December 2021).
- Styles, D. Museums Reopen across England and Wales in “Emotionally Significant Moment for the Nation. Available online: https://advisor.museumsandheritage.com/features/museums-reopen-across-england-and-wales-in-emotionally-significant-moment-for-the-nation/ (accessed on 10 January 2022).
- Silva, C. Pockets of Resilience–the Digital Responses of Youth Collectives in Contemporary Art Museums During Lockdown. J. Mus. Educ. 2021, 46, 493–508. [Google Scholar] [CrossRef]
- Cipullo, N. Museums’ Digital Communication: The Role of the Pandemic in Accelerating the Digital Revolution in Italian Museums. In Intellectual Capital, Smart Technologies and Digitalization. SIDREA Series in Accounting and Business Administration; Chiucchi, M.S., Lombardi, R., Mancini, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Tunnikmah, N. Impact of COVID-19 on the World of Fine Arts; Between Online Exhibitions, Virtual Exhibitions in Cyberspace Appreciation. In Proceedings of the 2nd International Conference on Interdisciplinary Arts & Humanities (ICONARTIES), Yogyakarta, Indonesia, 9 March 2020. [Google Scholar]
- Wicke, P.; Bolognesi, M.M. COVID-19 Discourse on Twitter: How the Topics, Sentiments, Subjectivity, and Figurative Frames Changed Over Time. Front. Commun. 2021, 6, 1997. [Google Scholar] [CrossRef]
- Schmöcker, J.D. Estimation of city tourism flows: Challenges, new data and COVID. Trans. Rev. 2020, 41, 137–140. [Google Scholar] [CrossRef]
- Pelowski, M.; Markey, P.S.; Lauring, J.O.; Leder, H. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience. Front. Hum. Neurosci. 2016, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Leaver, T.; Highfield, T.; Abdin, C. Instagram: Visual social media cultures. Mob. Media Commun. 2020, 8, 439–440. [Google Scholar]
- Al-Rawi, A.; Alaa, A.M.; Abdelrahman, F. News Values on Instagram: A Comparative Study of International News. J. Media 2021, 2, 18. [Google Scholar] [CrossRef]
- Vraga, E.; Tully, M.; Bode, L. Assessing the relative merits of news literacy and corrections in responding to misinformation on Twitter. New Media Soc. 2021, 1–18. [Google Scholar] [CrossRef]
- Trajkova, M.; Alhakamy, A.; Cafaro, F.; Vedak, S.; Mallappa, R.; Kankara, S.R. Exploring Casual COVID-19 Data Visualizations on Twitter: Topics and Challenges. Informatics 2020, 7, 35. [Google Scholar] [CrossRef]
- Simo-Serra, E.; Fidler, S.; Moreno-Noguer, F.; Urtasun, R. Neuroaesthetics in fashion: Modeling the perception of fashionability. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Han, J.; Chen, Q.; Jin, X.; Xu, W.; Yang, W.; Kumar, S.; Zhao, L.; Sundaram, H.; Kumar, R. FITNet: Identifying Fashion Influencers on Twitter. Proc. ACM Hum. Comput. Interact. 2021, 5, 153. [Google Scholar] [CrossRef]
- Leban, M.; Thomsen, T.U.; von Wallpach, S.; Voyer, M.B. Constructing Personas: How High-Net-Worth Social Media Influencers Reconcile Ethicality and Living a Luxury Lifestyle. J. Bus. Ethics 2021, 169, 225–239. [Google Scholar] [CrossRef]
- Kováčová, D. Becoming #Instafamous: The analysis of (in)formality in self-presentation on Instagram. Internet Pragmat. 2021, 5, 1. [Google Scholar] [CrossRef]
- Budge, K.; Burness, A. Museum objects and Instagram: Agency and communication in digital engagement. Continuum 2018, 32, 137–150. [Google Scholar] [CrossRef]
- Piancatelli, C.M.; Vocino, M.A. #artoninstagram: Engaging with art in the era of the selfie. Int. J. Mark. Res. 2021, 63, 134–160. [Google Scholar]
- Johnston, J. How to Micro-Blog Twitter Like a Pro. Available online: https://medium.com/@JennaJo63237273/how-to-microblog-on-twitter-like-a-pro-fc815ef642c6 (accessed on 12 December 2021).
- Dudley, C. Micro-Influencers and where to Find Them. Available online: https://business.twitter.com/en/blog/micro-influencers-and-where-to-find-them.html. (accessed on 3 March 2022).
- Brdesee, H.; Alsaggaf, W. An Evaluation Study in Social Media Research: Key Aspects to Enhancing the Promotion of Efficient Organizations on Twitter. Informatics 2021, 8, 78. [Google Scholar] [CrossRef]
- Senft, T.M. Camgirls: Celebrity and Community in the Age of Social Networks; Peter Lang: New York, NY, USA, 2008. [Google Scholar]
- Marwick, A.E. Status Update: Celebrity, Publicity, and Branding in the Social Media Age; Yale University Press: New Heaven, CT, USA, 2013. [Google Scholar]
- Dewey, J. Art as Experience; Penguin Putnam: New York, NY, USA, 1980. [Google Scholar]
- Brighouse, G. A study of aesthetic apperception. Psychol. Monogr. 1939, 51, 1–22. [Google Scholar] [CrossRef]
- Winston, A.S.; Cupchik, G.C. The Evaluation of High Art and Popular Art by Naive and Experienced Viewers. Vis. Arts Res. 1992, 18, 1–14. Available online: http://www.jstor.org/stable/20715763. (accessed on 10 March 2022).
- Yayak, A. Stendhal (Florence) Syndrome as an Unclassified Disorder. Stud. Ethno Med. 2019, 13, 190–197. [Google Scholar] [CrossRef]
- Palacios-Sánchez, L.; Botero-Meneses, J.; Plazas, R.; Piñeros-Hernández, L.; Triana-Melo, J.; Ramírez-Rodríguez, S. Stendhal syndrome: A clinical and historical overview. Arq. Neuro Psiquiatr. 2018, 76, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Magherini, G. El Síndrome de Stendhal; Espasa Calpe: Madrid, Spain, 1990. [Google Scholar]
- Magherini, G. I’ve Fallen in Love with a Statue. Beyond the Stendhal Syndrome; Nicomp: Firenze, Italy, 2007. [Google Scholar]
- Guerrero, A.L.; Barceló Rosselló, A.; Ezpeleta, D. Stendhal syndrome: Origin, characteristics and presentation in a group of neurologists. Neurología 2010, 25, 349–356. [Google Scholar] [CrossRef]
- Silvia, P.J. Looking past pleasure: Anger confusion disgust pride surprise and other unusual aesthetic emotions. Psychol. Aesthet. Creat. Arts 2009, 3, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Cupchik, G.C.; Winston, A.S. Confluence and diver- gence in empirical aesthetics, philosophy, and mainstream psy-chology. In Handbook of Perception Andcognition, Cognitive Ecology; Carterette, E.C., Friedman, M.P., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 62–85. [Google Scholar]
- Boccia, M.; Barbetti, S.; Margiotta, R.; Guariglia, C.; Ferlazzo, F.; Giannini, A.M. Why do you like Arcimboldo’s portraits? Effect of perceptual style on aesthetic appreciation of ambiguous artworks. Atten. Percept. Psychophys. 2014, 76, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Csíkszentmihályi, M. Beyond Boredom and Anxiety; Jossey- Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Csíkszentmihályi, M.; Rathunde, K. The measurement of flow in everyday life: Towards a theory of emergent motivation. In Nebraska Symposium on Motivation, 1993, Developmental Perspectives on Motivation; Jacobs, J.E., Ed.; University of Nebraska Press: Lincoln, NE, USA, 1993; Volume 40, pp. 57–98. [Google Scholar]
- Pelowski, M. Tears and transformation: Feeling like crying as an indicator of insightful or “aesthetic” experience with art. Front. Psychol. 2015, 6, 1006. [Google Scholar] [CrossRef] [Green Version]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 2004, 95, 489–508. [Google Scholar] [CrossRef] [PubMed]
- Zeki, S. The representation of colours in the cerebral cortex. Nature 1980, 284, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Hirstein, W. The science of art. J. Conscious. Stud. 1999, 6, 15–51. [Google Scholar]
- Julesz, B. Foundations of Cyclopean Perception; Chicago University Press: Chicago, IL, USA, 1971. [Google Scholar]
- Berlyne, D.E. Novelty, complexity and hedonic value. Percept. Psychophys. 1970, 8, 279–286. [Google Scholar] [CrossRef]
- Berlyne, D.E. Studies in the New Experimental Aesthetics; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Frith, C.D.; Nias, D.K.B. What determines aesthetic preferences? J. Gen. Psychol. 1974, 91, 163–173. [Google Scholar]
- Bornstein, R.F. Exposure and affect: Overview and meta-analysis of research, 1968–1987. Psychol. Bull. 1989, 106, 265–289. [Google Scholar] [CrossRef]
- Kruglanski, A.W.; Freund, T.; Bar, T.D. Motivational effects in the mere-exposure paradigm. Eur. J. Soc. Psychol. 1996, 26, 479–499. [Google Scholar] [CrossRef]
- Kunst-Wilson, W.R.; Zajonc, R.B. Affective discrimination of stimuli that cannot be recognized. Science 1980, 207, 557–558. [Google Scholar] [CrossRef] [Green Version]
- Zajonc, R.B. Attitudinal effects of mere exposure. J. Personal. Soc. Psychol. Monogr. Suppl. 1968, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Pelowski, M.; Forster, M.; Tinio, P. Beyond the lab: An examination of key factors influencing interaction with ‘real’ and museum-based art. Psychol. Aesthetics Creat. Arts 2017, 11, 245–264. [Google Scholar] [CrossRef]
- Parsons, M.J. How We Understand Art: A Cognitive Developmental Account of Aesthetic Experience; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Saif, M.; Kiritchenko, S. Understanding Emotions: A Dataset of Tweets to Study Interactions between Affect Categories. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, Miyazaki, Japan, 7–12 May 2018. [Google Scholar]
- Elbagir, S.S.; Yang, J. Twitter Sentiment Analysis Based on Ordinal Regression. IEEE Access 2019, 7, 163677–163685. [Google Scholar]
- Hassan, S.U.; Saleem, A.; Soroya, S.H.; Safder, I.; Iqbal, S.; Jamis, S.; Bukhari, F.; Aljohani, N.R.; Nawaz, R. Sentiment analysis of tweets through Altmetrics: A machine learning approach. J. Inf. Sci. 2021, 47, 712–726. [Google Scholar] [CrossRef]
- Illendula, A.; Sheth, A. Multimodal Emotion Classification. In Proceedings of the 2019 World Wide Web Conference (WWW ‘19); Association for Computing Machinery: New York, NY, USA, 2019; pp. 439–449. [Google Scholar] [CrossRef] [Green Version]
- Karimvand, A.N.; Chegeni, R.S.; Basiri, M.E.; Nemati, S. Sentiment Analysis of Persian Instagram Post: A Multimodal Deep Learning Approach. In Proceedings of the 7th International Conference on Web Research (ICWR), Online, 19 May 2021; pp. 137–141. [Google Scholar] [CrossRef]
- Naseem, U.; Razzak, I.; Khushi, M.; Eklund, W.P.; Jinman, K. COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis. IEEE Trans. Comput. Soc. Syst. 2021, 30, 976–988. [Google Scholar] [CrossRef]
- Spiegel, A. Good art is Popular Because its Good Right? Available online: https://www.npr.org/2014/02/27/282939233/good-art-is-popular-because-its-good-right?t=1638813079611 (accessed on 11 January 2022).
- Miller, J. What Makes Art Popular? Science Says It’s Luck, And the Opinion of Others. 2014. Available online: https://www.fastcompany.com/3027193/what-makes-art-popular-science-says-its-luck-and-the-opinion-of-others (accessed on 2 February 2022).
- Mitali, B.; Ingram, P.L. Fame as an Illusion of Creativity: Evidence from the Pioneers of Abstract Art; HEC Research Papers Series 1305; HEC: Paris, France, 2018; pp. 18–74. [Google Scholar] [CrossRef]
- Wang, V.; Wang, D. The Impact of the Increasing Popularity of Digital Art on the Current Job Market for Artists. Art Des. Rev. 2021, 9, 242–253. [Google Scholar] [CrossRef]
- Coie, J.D.; Dodge, K.A.; Coppotelli, H. Dimensions and types of sta- tus: A cross-age perspective. Dev. Psychol. 1982, 18, 557–570. [Google Scholar] [CrossRef]
- Kang, X.; Chen, W.; Kang, J. Art in the Age of Social Media: Interaction Behavior Analysis of Instagram Art Accounts. Informatics 2020, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Motoyama, Y.; Hanyu, K. Does public art enrich landscapes? The effect of public art on visual properties and affective appraisals of landscapes. J. Environ. Psychol. 2014, 40, 14–25. [Google Scholar] [CrossRef]
- Tang, J.; Yan, L.; Xu, J.B. Tourists’ experience of iconic public art in Macau. J. Tour. Cult. Chang. 2020, 19, 79–96. [Google Scholar] [CrossRef]
- Stylianou-Lambert, T. Photographing in the Art Museum: Visitor Attitudes and Motivations. Visit. Stud. 2017, 20, 114–137. [Google Scholar] [CrossRef]
- Mohammad, S.; Kiritchenko, S. Using Hashtags to Capture Fine Emotion Categories from Tweets. Comput. Intel. 2014, 31. [Google Scholar] [CrossRef]
- Cudny, W.; Appelblad, H. Monuments and their functions in urban public space. Nor. Geogr. Tidsskr. –Nor. J. Geogr. 2020, 16, 4976. [Google Scholar] [CrossRef]
- Zebracki, M.; van der Vaart, R.; van Aalst, I. Deconstructing public artopia: Situating public-art claims within practice. Geoforum 2010, 41, 786–795. [Google Scholar] [CrossRef]
- Mitchell, K. Monuments, memorials, and the politics of memory. Urban Geogr. 2003, 24, 442–459. [Google Scholar] [CrossRef]
- Johnson, N. Cast in stone: Monuments, geography, and nationalism. Environ. Plan. D Soc. Space 1995, 13, 51–65. [Google Scholar] [CrossRef]
- Johnson, N. Mapping monuments: The shaping of public space and cultural identities. Vis. Commun. 2002, 1, 293–298. [Google Scholar] [CrossRef]
- Forest, B.; Johnson, J. Unraveling the threads of history: Soviet-era monuments and post-Soviet national identity in Moscow. Annu. Assoc. Am. Geogr. 2002, 92, 524–547. [Google Scholar] [CrossRef] [Green Version]
- Hilal, A. Muslim Political Discourse in Postcolonial India: Monuments, Memory, Contestation; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Kavaratzis, M. From city marketing to city branding: Towards a theoretical framework for developing city brands. Place Brand. 2004, 1, 58–73. [Google Scholar] [CrossRef]
- Tuan, Y.F. Sign and metaphor. Annu. Assoc. Am. Geogr. 1978, 68, 363–372. [Google Scholar] [CrossRef]
- Hall, T.; Robertson, I. Public art and urban regeneration: Advocacy, claims and critical debates. Landsc. Res. 2001, 26, 5–26. [Google Scholar] [CrossRef]
- Senie, H.F.; Webster, S. Introduction. In Critical Issues in Public Art: Content, Context, and Controversy; Senie, H.F., Webster, S., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2014. [Google Scholar]
- Massey, D. Space, Place and Gender; Polity Press: Cambridge, UK, 1992. [Google Scholar]
- Anver, B.A. Two Neoclassical Monuments in Modern France: The Panthéon and Arc de Triomphe. Cult. Commem. War Meml. Anc. Modern 2013, 160, 85–108. [Google Scholar]
- Raymond, G. Historical Dictionary of France; Scarecrow Press: Lanhand, MD, USA, 2008. [Google Scholar]
- Chappell, B. Here’s Why the Arc De Triomphe Was Just Wrapped in Fabric. 2021. Available online: https://www.npr.org/2021/09/17/1038287275/arc-de-triomphe-christo-jeanne-claude-wrapped (accessed on 5 February 2022).
- Christo; Jeanne-Claude. L’ Arc de Triomphe Wrapped. 2021. Available online: https://christojeanneclaude.net/artworks/arc-de-triomphe-wrapped/ (accessed on 17 November 2021).
- Hruska, L.; Maresova, P. Use of social media platforms among adults in the United States–behavior on social media. Societies 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Instaloader. Instaloader. Available online: https://github.com/instaloader/instaloader (accessed on 12 April 2022).
- Summers, E.; Binkley, P.; Nick Ruest, H.; Costa, S.; Phetteplace, E. The Gitter Badger, Mx A. Matienzo, Blakk, L.; Chudnov, D.; Nelson, C. twarc: V0.2.7 (v0.2.7). 2015. Available online: https://zenodo.org/record/17385#.YnhzJVRBxPY (accessed on 10 July 2021).
- Verborgh, R.; De Wilde, M. Using OpenRefine, 1st ed.; Packt Publishing: Birmigham, UK, 2013. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 15–18 September 2013. [Google Scholar]
- Crossley, S.A.; Kyle, K.; McNamara, D.S. Sentiment analysis and social cognition engine (SEANCE): An automatic tool for sentiment, social cognition, and social order analysis. Behav. Res. Methods 2017, 49, 803–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutto, C.J.; Gilbert, E.E. VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. In Proceedings of the Eighth International Conference on Weblogs and Social Media (ICWSM-14), Ann Arbor, MI, USA, 23–25 June 2014. [Google Scholar]
- Shaver, P.; Schwartz, J.; Kirson, D.; O’Connor, C. Emotion knowledge: Further exploration of a prototype approach. J. Personal. Soc. Psychol. 1987, 52, 6. [Google Scholar] [CrossRef]
- Parrott, W. Emotions in Social Psychology. Key Readings in Social Psychology; Psychology Press: Philadelphia, PA, USA, 2001. [Google Scholar]
- Robinson, D. Brain function, emotional experience and personality. Neth. J. Psychol. 2008, 64, 152–168. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Haibo, H.; Yunqian, M. Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley-IEEE Press: New York, NY, USA, 2013. [Google Scholar]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science; Huang, D.S., Zhang, X.P., Huang, G.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 1984. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Sokolova, Μ.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Montesquieu, D.; Essai sur le Gout. Encyclopedie ou Dictionnaire Raisonne des Sciences, des Arts et des Métiers. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k50533b/f10.item.texteImage (accessed on 17 November 2021).
- Pelowski, M.; Leder, H.; Mitschke, V.; Specker, E.; Gerger, G.; Tinio, P.P.L.; Vaporova, E.; Bieg, T.; Husslein-Arco. A Capturing Aesthetic Experiences with Installation Art: An Empirical Assessment of Emotion, Evaluations, and Mobile Eye Tracking in Olafur Eliasson’s “Baroque, Baroque!”. Front. Psychol. 2018, 9, 1255. [Google Scholar] [CrossRef] [Green Version]
- Pelowski, M.; Specker, E.; Gerger, G.; Leder, H.; Weingarden, L.S. Do you feel like I do? A study of spontaneous and deliberate emotion sharing and understanding between artists and perceivers of installation art. Psychol. Aesthet. Creat. Arts 2020, 14, 276–293. [Google Scholar] [CrossRef]
- Morreale, F.; De Angeli, A. Evaluating Visitor Experiences with Interactive Art. In Proceedings of the 11th Biannual Conference on Italian SIGCHI Chapter (CHItaly 2015); Association for Computing Machinery: New York, NY, USA, 2015; pp. 50–57. [Google Scholar] [CrossRef] [Green Version]
- Gartus, A.; Klemer, N.; Leder, L. The effects of visual context and individual differences on perception and evaluation of modern art and graffiti art. Acta Psychol. 2015, 156, 64–76. [Google Scholar] [CrossRef]
Arc de Triomphe Unwrapped, Instagram Dataset 1 (Ν = 1058) | ||||
---|---|---|---|---|
Features | Minimum | Maximum | Mean | Std.Deviation |
Likes | 1.00 | 7202.00 | 225.95 | 772.66 |
Comments | 1.00 | 111.00 | 8.20 | 18.27 |
Media count | 1.00 | 10.00 | 1.99 | 2.18 |
Arc de Triomphe Wrapped, Instagram Dataset 2 (Ν = 6020) | ||||
Features | Minimum | Maximum | Mean | Std.Deviation |
Likes | 1.00 | 90992.00 | 2037.08 | 7455.34 |
Comments | 0.00 | 905.00 | 25.61 | 64.78 |
Media count | 1.00 | 10.00 | 2.72 | 2.82 |
Arc de Triomphe Unwrapped, Instagram Dataset 1 (Ν = 1058) | ||||
---|---|---|---|---|
Features | TRUE | % | FALSE | % |
Has more comments | 413 | 0.39 | 645 | 0.61 |
Saved to collection | 385 | 0.36 | 673 | 0.64 |
Photo-content | 859 | 0.81 | 199 | 0.19 |
Arc de Triomphe Wrapped, Instagram Dataset 2 (N = 6020) | ||||
Features | TRUE | % | FALSE | % |
Has more comments | 3503 | 0.58 | 2517 | 0.42 |
Saved to collection | 3547 | 0.59 | 2473 | 0.41 |
Photo-content | 3212 | 0.53 | 2808 | 0.47 |
Arc de Triomphe Unwrapped, Twitter Dataset 1 (N = 1868) | ||||
---|---|---|---|---|
Features | Minimum | Maximum | Mean | Std.Deviation |
Likes | 1.00 | 11261.00 | 121.04 | 678.92 |
Replies | 1.00 | 364.00 | 6.82 | 21.22 |
Retweets | 1.00 | 8888.00 | 61.04 | 344.36 |
Followers | 1.00 | 25824210.00 | 45058.89 | 640936.30 |
Following | 1.00 | 94615.00 | 2178.13 | 6020.01 |
Tweet count | 4.00 | 1114423.30 | 16544.69 | 59584.77 |
Arc de Triomphe Wrapped, Twitter Dataset 2 (N = 1908) | ||||
Features | Minimum | Maximum | Mean | Std.Deviation |
Likes | 0.00 | 2587126.00 | 4833.00 | 63761.42 |
Replies | 1.00 | 3973.00 | 33.44 | 201.14 |
Retweets | 0.00 | 2010119.00 | 3942.56 | 50319.84 |
Followers | 2.00 | 50786600.00 | 46954.20 | 1185350.00 |
Following | 0.00 | 38801.00 | 1406.94 | 2539.91 |
Tweet count | 2.00 | 1383877.00 | 25547.89 | 74661.78 |
Arc de Triomphe Instagram Datasets | Arc de Triomphe Twitter Datasets | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sentiment | N | Frequency Unwrapped | N | Frequency Wrapped | Setniment | N | Frequency Wrapped | N | Frequency Wrapped |
Triumph | 1058 | 254 | 6020 | 927 | Triumph | 1868 | 432 | 1908 | 351 |
Attraction | 1058 | 514 | 6020 | 2022 | Attraction | 1868 | 968 | 1908 | 436 |
Surprise | 1058 | 290 | 6020 | 3071 | Surprise | 1868 | 468 | 1908 | 1121 |
Valid N | 1058 | 6020 | Valid N | 1868 | 1908 |
Instagram Dataset of Arc de Triomphe Unwrapped 1 | ||||
---|---|---|---|---|
Sentiment | Precision | Recall | f1-score | Support |
Attraction | 0.81 | 0.71 | 0.76 | 96 |
Surprise | 0.76 | 0.86 | 0.80 | 77 |
Triupmh | 0.80 | 0.82 | 0.81 | 90 |
accuracy | 0.79 | 263 | ||
macro avg | 0.79 | 0.80 | 0.79 | 263 |
weighted avg | 0.79 | 0.79 | 0.79 | 263 |
Twitter Dataset of Arc de Triomphe Unwrapped 2 | ||||
Sentiment | Precision | Recall | f1-score | Support |
Attraction | 0.50 | 0.93 | 0.65 | 119 |
Surprise | 0.88 | 0.58 | 0.70 | 130 |
Triupmh | 0.81 | 0.41 | 0.54 | 123 |
accuracy | 0.64 | 372 | ||
macro avg | 0.73 | 0.64 | 0.63 | 372 |
weighted avg | 0.73 | 0.64 | 0.63 | 372 |
Instagram Dataset of Arc de Triomphe Wrapped 1 | ||||
---|---|---|---|---|
Sentiment | Precision | Recall | f1-score | Support |
Attraction | 0.76 | 0.74 | 0.75 | 200 |
Surprise | 0.78 | 0.82 | 0.80 | 197 |
Triupmh | 0.84 | 0.81 | 0.83 | 203 |
accuracy | 0.79 | 600 | ||
macro avg | 0.79 | 0.79 | 0.79 | 600 |
weighted avg | 0.79 | 0.79 | 0.79 | 600 |
Twitter Dataset of Arc de Triomphe Wrapped 2 | ||||
Sentiment | Precision | Recall | f1-score | Support |
Attraction | 0.80 | 0.89 | 0.84 | 119 |
Surprise | 0.93 | 0.98 | 0.95 | 123 |
Triupmh | 0.91 | 0.75 | 0.82 | 118 |
accuracy | 0.88 | 360 | ||
macro avg | 0.88 | 0.87 | 0.87 | 360 |
weighted avg | 0.88 | 0.88 | 0.87 | 360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, S.; Panagopoulos, M. The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis. Informatics 2022, 9, 41. https://doi.org/10.3390/informatics9020041
Vlachou S, Panagopoulos M. The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis. Informatics. 2022; 9(2):41. https://doi.org/10.3390/informatics9020041
Chicago/Turabian StyleVlachou, Sofia, and Michail Panagopoulos. 2022. "The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis" Informatics 9, no. 2: 41. https://doi.org/10.3390/informatics9020041
APA StyleVlachou, S., & Panagopoulos, M. (2022). The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis. Informatics, 9(2), 41. https://doi.org/10.3390/informatics9020041