Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedures
2.3. Ethics
2.4. Measures
2.4.1. Anthropometrics
2.4.2. Single-Leg CMJ Test
2.4.3. T-Drill Agility Test
2.4.4. 20-Meter Sprint Test
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Román, P.L.; Macias, F.J.V.; Pinillos, F.G. Effects of a contrast training programme on jumping, sprinting and agility performance of prepubertal basketball players. J. Sports Sci. 2018, 36, 802–808. [Google Scholar] [CrossRef]
- Koyama, T.; Rikukawa, A.; Nagano, Y.; Sasaki, S.; Ichikawa, H.; Hirose, N. Acceleration profile of high-intensity move-ments in basketball games. J. Strength Cond. Res. 2022, 36, 1715–1719. [Google Scholar] [CrossRef]
- Patti, A.; Giustino, V.; Cataldi, S.; Stoppa, V.; Ferrando, F.; Marvulli, R.; Farì, G.; Neşe, Ş.F.; Bianco, A.; Muscella, A.; et al. Effects of 5-Week of FIFA 11+ Warm-Up Program on Explosive Strength, Speed, and Perception of Physical Exertion in Elite Female Futsal Athletes. Sports 2022, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Alemdaroğlu, U. The Relationship between Muscle Strength, Anaerobic Performance, Agility, Sprint Ability and Vertical Jump Performance in Professional Basketball Players. J. Hum. Kinet. 2012, 31, 149–158. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.A.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between Unilateral Jumping Ability and Asymmetry on Multidirectional Speed in Team-Sport Athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef]
- Reina, M.; García-Rubio, J.; Esteves, P.T.; Ibáñez, S.J. How external load of youth basketball players varies according to playing position, game period and playing time. Int. J. Perform. Anal. Sport 2020, 20, 917–930. [Google Scholar] [CrossRef]
- Pehar, M.; Sekulic, D.; Sisic, N.; Spasic, M.; Uljevic, O.; Krolo, A.; Milanovic, Z.; Sattler, T. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players. Biol. Sport 2017, 34, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.-C.; Lam, W.-K.; Chen, T.L.-W.; Tan, Q.; Wang, Y.; Zhang, M. Effects of Upper-Limb, Lower-Limb, and Full-Body Compression Garments on Full Body Kinematics and Free-Throw Accuracy in Basketball Players. Appl. Sci. 2020, 10, 3504. [Google Scholar] [CrossRef]
- Köklü, Y.; Alemdaroğlu, U.; Özkan, A.; Koz, M.; Ersoz, G. The relationship between sprint ability, agility and vertical jump performance in young soccer players. Sci. Sports 2015, 30, e1–e5. [Google Scholar] [CrossRef]
- Makaraci, Y.; Soslu, R. Relationship between performance in various jump tasks, sprint and agility in basketball players. Gazi J. Phys. Educ. Sport Sci. 2022, 27, 357–374. [Google Scholar]
- Falces-Prieto, M.; González-Fernández, F.T.; García-Delgado, G.; Silva, R.; Nobari, H.; Clemente, F.M. Relationship between sprint, jump, dynamic balance with the change of direction on young soccer players’ performance. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.J.; Janeira, M.A. The effects of plyometric training followed by detraining and reduced training periods on ex-plosive strength in adolescent male basketball players. J. Strength Cond. Res. 2011, 25, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Sales, M.M.; Maciel, A.P.; Aguiar, S.d.S.; Asano, R.Y.; Motta-Santos, D.; Moraes, J.F.V.N.d.; Alves, P.M.; Santos, P.A.; Barbosa, L.P.; Ernesto, C.; et al. Vertical Jump Is Strongly Associated to Running-Based Anaerobic Sprint Test in Teenage Futsal Male Athletes. Sports 2018, 6, 129. [Google Scholar] [CrossRef] [PubMed]
- LoTurco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Komatsu, W.; Cunha, R.; Arliani, G.; Ejnisman, B.; de Castro Pochini, A.; Nakamura, F.Y.; et al. Functional Screening Tests: Interrelationships and Ability to Predict Vertical Jump Performance. Int. J. Sports Med. 2018, 39, 189–197. [Google Scholar] [CrossRef]
- Sattler, T.; Hadžic, V.; Derviševic, E.; Markovic, G. Vertical jump performance of professional male and female volleyball players: Effects of playing position and competition level. J. Strength Cond. Res. 2015, 29, 1486–1493. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kameda, M.; Kageyama, M.; Kiba, K.; Kanehisa, H.; Maeda, A. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players. J. Sports Sci. Med. 2014, 13, 951–957. [Google Scholar]
- Tai, W.; Peng, H.; Lin, J.; Lo, S.; Yu, H.; Huang, J. Biomechanical Characteristics of Single Leg Jump in Collegiate Basketball Players Based on Approach Technique. Appl. Sci. 2020, 10, 309. [Google Scholar] [CrossRef]
- Stephenson, M.L.; Smith, D.T.; Heinbaugh, E.M.; Moynes, R.C.; Rockey, S.S.; Thomas, J.J.; Dai, B. Total and Lower Extremity Lean Mass Percentage Positively Correlates with Jump Performance. J. Strength Cond. Res. 2015, 29, 2167–2175. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Turner, A. Using Unilateral Strength, Power and Reactive Strength Tests to Detect the Magnitude and Direction of Asymmetry: A Test-Retest Design. Sports 2019, 7, 58. [Google Scholar] [CrossRef]
- Miras-Moreno, S.; Pérez-Castilla, A.; Rojas, F.J.; Janicijevic, D.; De la Cruz, J.C.; Cepero, M.; García-Ramos, A. Inter-limb differences in unilateral countermovement jump height are not associated with the inter-limb differences in bilateral countermovement jump force production. Sports Biomech. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Benjanuvatra, N.; Lay, B.S.; Alderson, J.A.; Blanksby, B.A. Comparison of Ground Reaction Force Asymmetry in One- and Two-legged Countermovement Jumps. J. Strength Cond. Res. 2013, 27, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Layer, J.; Vertz, C.; Hinshaw, T.; Cook, R.; Li, Y.; Sha, Z. Baseline Assessments of Strength and Balance Performance and Bilateral Asymmetries in Collegiate Athletes. J. Strength Cond. Res. 2019, 33, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.W.; Queen, R.M.; Taylor, D.; Moorman, C.T., III; Toth, A.P.; Garrett, W.E., Jr.; Butler, R.J. Functional testing differences in anterior cruciate ligament reconstruction patients released versus not released to return to sport. Am. J. Sports Med. 2015, 43, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Barber, S.D.; Mangine, R.E. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am. J. Sports Med. 1991, 19, 513–518. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Asadi, A.; Santos, E.J.; Calleja-González, J.; Padulo, J.; Chtourou, H.; Zemkova, E. Relationship of body mass status with running and jumping performances in young basketball players. Muscles Ligaments Tendons J. 2015, 5, 187. [Google Scholar] [CrossRef]
- Shallaby, H.K. The effect of plyometric exercises use on the physical and skillful performance of basketball players. World J. Sport Sci. 2010, 3, 316–324. [Google Scholar]
- Conte, D.; Favero, T.G.; Lupo, C.; Francioni, F.M.; Capranica, L.; Tessitore, A. Time-motion analysis of Italian elite women’s basketball games: Individual and team analyses. J. Strength Cond. Res. 2015, 29, 144–150. [Google Scholar] [CrossRef]
- Karpowicz, K.; Karpowicz, M.; Strzelczyk, R. Structure of Physical Fitness among Young Female Basketball Players (Trends of Changes in 2006–2013). J. Strength Cond. Res. 2015, 29, 2745–2757. [Google Scholar] [CrossRef]
- Mokou, E.; Nikolaidis, P.T.; Padulo, J.; Apostolidis, N. The acute effect of exercise intensity on free throws in young basketball players. Sport Sci. Health 2016, 12, 227–232. [Google Scholar] [CrossRef]
- Thomas, E.; Alesi, M.; Tabacchi, G.; Silva, C.M.d.; Sturm, D.J.; Şahin, F.N.; Güler, Ö.; Gómez-López, M.; Pajaujiene, S.; Basile, M.; et al. Cognitive and Physical Activity-Related Aspects of Children Associated to the Performance of the Crunning Movement. J. Funct. Morphol. Kinesiol. 2021, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.; van Cingel, R.E. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed]
- Sarabon, N. Development of software for comprehensive analyses of force plate measurements. Kinesiology 2011, 43, 204–212. [Google Scholar]
- Pérez-Castilla, A.; García-Ramos, A.; Janicijevic, D.; Delgado-García, G.; De la Cruz, J.C.; Rojas, F.J.; Cepero, M. Between-session reliability of performance and asymmetry variables obtained during unilateral and bilateral counter-movement jumps in basketball players. PLoS ONE 2021, 16, e0255458. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Turner, A.N.; Jeffreys, I. The Stretch-Shortening Cycle: Proposed Mechanisms and Methods for Enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Blanco, P.; Nimphius, S.; Seitz, L.B.; Spiteri, T.; Haff, G.G. Countermovement jump and drop jump performances are related to grand jeté leap performance in dancers with different skill levels. J. Strength Cond. Res. 2019, 35, 3386–3393. [Google Scholar] [CrossRef]
- Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 495–504. [Google Scholar]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Deklerk, M. Single-Leg Lateral, Horizontal, and Vertical Jump Assessment: Reliability, Interrelationships, and Ability to Predict Sprint and Change-of-Direction Performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Gual, G.; Romero-Rodriguez, D.; Unnitha, V. Lower Limb Neuromuscular Asymmetry in Volleyball and Basketball Players. J. Hum. Kinet. 2016, 50, 135–143. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Nulty, C.; Vanrenterghem, J.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. The neuromuscular determinants of unilateral jump performance in soccer players are direction-specific. Int. J. Sports Physiol. Perform. 2018, 13, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M.D.; Ostojic, S.M.; Calleja-Gonzalez, J.; Milosevic, Z.; Mikic, M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sports Med. Phys. Fit. 2012, 52, 375–381. [Google Scholar]
- Suarez-Arrones, L.; Gonzalo-Skok, O.; Carrasquilla, I.; Asián-Clemente, J.; Santalla, A.; Lara-Lopez, P.; Núñez, F.J. Relationships between Change of Direction, Sprint, Jump, and Squat Power Performance. Sports 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Arcos, A.L.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Los Arcos, A.; Mendiguchia, J.; Brughelli, M. Relationships between sprinting, agility, one-and two-leg vertical and horizontal jump in soccer players. Kinesiology 2014, 46, 194–201. [Google Scholar]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do Bilateral Power Deficits Influence Direction-Specific Movement Patterns? Res. Sports Med. 2007, 15, 125–132. [Google Scholar] [CrossRef]
- Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports 2019, 7, 103. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force–Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and Horizontal Asymmetries Are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players. J. Strength Cond. Res. 2018, 35, 56–63. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Šarabon, N. Inter-limb asymmetries in volleyball players: Differences between testing approaches and association with performance. J. Sports Sci. Med. 2020, 19, 745. [Google Scholar] [PubMed]
Variables | n = 35 |
---|---|
Age (years) | 15.06 ± 2.62 |
Body mass (kg) | 76.46 ± 18.69 |
Body height (cm) | 180.17 ± 31.02 |
Body mass index (kg·m−2) | 23.46 ± 2.54 |
Sports experience (years) | 4.67 ± 1.05 |
20 m sprint (s) | 3.41 ± 0.26 |
T-drill agility (s) | 12.33 ± 1.04 |
JH (m) | RMP (W/kg) | AC (m/sn2) | VTOV (m/s) | MP (W) | MF (N) | MV (m/s) | FT (s) | ||
---|---|---|---|---|---|---|---|---|---|
DL | 20 m sprint (s) | −0.705 | −0.671 | −0.419 | −0.630 | −0.487 | −0.166 | −0.626 | −0.666 |
0.000 *** | 0.000 *** | 0.014 ** | 0.000 *** | 0.004 ** | 0.348 | 0.000 *** | 0.000 *** | ||
T-Drill agility (s) | −0.685 | −0.646 | −0.384 | −0.645 | −0.480 | −0.147 | −0.634 | −0.669 | |
0.000 *** | 0.000 *** | 0.023 * | 0.000 *** | 0.004 ** | 0.407 | 0.000 *** | 0.000 *** | ||
NDL | 20 m sprint (s) | −0.643 | −0.577 | −0.458 | −0.496 | −0.494 | −0.189 | −0.603 | −0.492 |
0.000 *** | 0.000 *** | 0.007 ** | 0.003 ** | 0.003 ** | 0.285 | 0.000 *** | 0.003 ** | ||
T-Drill agility (s) | −0.610 | −0.548 | −0.469 | −0.420 | −0.484 | −0.158 | −0.578 | −0.419 | |
0.000 *** | 0.001 ** | 0.005 ** | 0.013 * | 0.004 ** | 0.373 | 0.000 *** | 0.014 * |
JH (m) | RMP (W/kg) | AC (m/sn2) | VTOV (m/s) | MP (W) | MF (N) | MV (m/s) | FT (s) | ||
---|---|---|---|---|---|---|---|---|---|
DL | Body mass (kg) | −0.131 | −0.031 | −0.088 | −0.174 | 0.471 | 0.843 | −0.180 | −0.159 |
0.460 | 0.863 | 0.619 | 0.324 | 0.005 ** | 0.000 *** | 0.309 | 0.368 | ||
Body height (cm) | 0.015 | 0.087 | 0.194 | 0.081 | 0.464 | 0.566 | 0.028 | 0.077 | |
0.935 | 0.626 | 0.271 | 0.647 | 0.006 ** | 0.000 *** | 0.876 | 0.665 | ||
BMI (kg·m−2) | −0.121 | −0.038 | −0.064 | −0.163 | 0.389 | 0.694 | −0.154 | −0.160 | |
0.497 | 0.833 | 0.720 | 0.358 | 0.023 * | 0.000 *** | 0.386 | 0.365 | ||
NDL | Body mass (kg) | 0.119 | 0.130 | 0.082 | 0.160 | 0.466 | 0.793 | −0.041 | 0.138 |
0.504 | 0.462 | 0.644 | 0.367 | 0.006 ** | 0.000 *** | 0.819 | 0.437 | ||
Body height (cm) | 0.134 | 0.166 | 0.146 | 0.112 | 0.464 | 0.633 | 0.202 | 0.085 | |
0.450 | 0.349 | 0.411 | 0.529 | 0.006 ** | 0.000 *** | 0.252 | 0.631 | ||
BMI (kg·m−2) | 0.162 | 0.155 | 0.165 | 0.139 | 0.425 | 0.664 | −0.028 | 0.115 | |
0.361 | 0.381 | 0.352 | 0.433 | 0.012 * | 0.000 *** | 0.877 | 0.518 |
Leg | Model | Unstandardized Coefficients | CB | t | p | R2 (Adjusted R2) | ||
---|---|---|---|---|---|---|---|---|
B | SE | |||||||
20 m sprint (s) | DL | (Constant) | 4.457 | 0.228 | −0.636 | 19.562 | 0.000 | 0.636 (0.404) |
FT (s) | −3.239 | 0.694 | −4.657 | 0.000 | ||||
NDL | (Constant) | 3.884 | 0.108 | −0.637 | 36.117 | 0.000 | 0.637 (0.406) | |
JH (m) | −4.387 | 0.938 | −4.675 | 0.000 | ||||
T-drill agility (s) | DL | (Constant) | 16.350 | 0.938 | −0.608 | 17.422 | 0.000 | 0.608 (0.370) |
FT (s) | −12.418 | 2.864 | −4.335 | 0.000 | ||||
NDL | (Constant) | 15.066 | 0.666 | −0.597 | 22.608 | 0.000 | 0.597 (0.356) | |
MV (m/s) | −2.771 | 0.659 | −4.208 | 0.000 | ||||
(Constant) | 15.129 | 0.634 | −0.358 | 23.850 | 0.000 | 0.660 (0.436) | ||
JH (m) | −9.873 | 4.709 | −2.097 | 0.044 |
Parameters | Leg | n | Mean | SD | 95% CI | p | ES |
---|---|---|---|---|---|---|---|
Jump height (m) | DL | 35 | 0.12 | 0.06 | 0.10 to 0.14 | 0.534 | 0.19 |
NDL | 0.11 | 0.04 | 0.09 to 0.12 | ||||
Relative maximum power (W/kg) | DL | 35 | 26.68 | 7.56 | 24.27 to 29.28 | 0.874 | 0.03 |
NDL | 26.45 | 9.14 | 23.42 to 29.48 | ||||
Acceleration (m/sn2) | DL | 35 | 1.77 | 0.95 | 1.45 to 2.08 | 0.304 | 0.22 |
NDL | 1.54 | 1.14 | 1.16 to 1.92 | ||||
Vertical take-off velocity (m/s) | DL | 35 | 1.55 | 0.42 | 1.41 to 1.69 | 0.133 | 0.30 |
NDL | 1.43 | 0.38 | 1.30 to 1.55 | ||||
Mean power (W) | DL | 35 | 1069.50 | 383.45 | 942.46 to 1196.53 | 0.545 | 0.10 |
NDL | 1030.29 | 391.48 | 900.59 to 1159.98 | ||||
Mean force (N) | DL | 35 | 1113.15 | 219.58 | 1040.40 to 1185.90 | 0.842 | 0.09 |
NDL | 1092.12 | 219.40 | 1019.43 to 1164.80 | ||||
Mean velocity (m/s) | DL | 35 | 1.04 | 0.24 | 0.96 to 1.12 | 0.356 | 0.07 |
NDL | 1,02 | 0.30 | 0.92 to 1.12 | ||||
Flight time (s) | DL | 35 | 0.32 | 0.09 | 0.29 to 0.35 | 0.133 | 0,35 |
NDL | 0.29 | 0.08 | 0.26 to 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamuk, Ö.; Makaracı, Y.; Ceylan, L.; Küçük, H.; Kızılet, T.; Ceylan, T.; Kaya, E. Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players. Children 2023, 10, 427. https://doi.org/10.3390/children10030427
Pamuk Ö, Makaracı Y, Ceylan L, Küçük H, Kızılet T, Ceylan T, Kaya E. Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players. Children. 2023; 10(3):427. https://doi.org/10.3390/children10030427
Chicago/Turabian StylePamuk, Ömer, Yücel Makaracı, Levent Ceylan, Hamza Küçük, Tuba Kızılet, Tülay Ceylan, and Erdi Kaya. 2023. "Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players" Children 10, no. 3: 427. https://doi.org/10.3390/children10030427
APA StylePamuk, Ö., Makaracı, Y., Ceylan, L., Küçük, H., Kızılet, T., Ceylan, T., & Kaya, E. (2023). Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players. Children, 10(3), 427. https://doi.org/10.3390/children10030427