Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Electrospinning of S0378-CA Fiber Mats
2.4. Preparation of Dipsticks and BA Determination
2.5. Preparation of Real Samples
3. Results and Discussion
3.1. Choice of Dye
3.2. Choice of Nanofiber Materials, Conditions of Spinning, Reaction Temperature and Time, and Fiber Morphology
3.3. Visible Color Change of Dipsticks
3.4. Assay Procedure for Quantitation of BAs
3.5. Calibration and Sensitivity
3.6. Selectivity
3.7. Quantitation of BAs in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Oliveira, J.; Mantoanelli, F.; Moreira, L.; Elisabete, G.; Pereira, A. Dansyl chloride as a derivatizing agent for the analysis of biogenic amines by CZE-UV. Chromatographia 2020, 83, 767–778. [Google Scholar] [CrossRef]
- Chong, C.Y.; Bakar, F.A.; Russly, A.R.; Jamilah, B.; Mahyudin, N.A. The effects of food processing on biogenic amines formation. Int. Food Res. J. 2011, 18, 867–876. [Google Scholar]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Kettner, L.; Seitl, I.; Fischer, L. Evaluation of porcine diamine oxidase for the conversion of histamine in food-relevant amounts. J. Food Sci. 2020, 85, 843–852. [Google Scholar] [CrossRef]
- Dong, H.; Xiao, K. Modified QuEChERS combined with ultra high performance liquid chromatography tandem mass spectrometry to determine seven biogenic amines in Chinese traditional condiment soy sauce. Food Chem. 2017, 229, 502–508. [Google Scholar] [CrossRef]
- Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103, 1475–1486. [Google Scholar] [CrossRef]
- Mohammed, G.I.; Bashammakh, A.S.; Alsibaai, A.A.; Alwael, H.; El-Shahawi, M.S. A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. TrAC Trends Anal. Chem. 2016, 78, 84–94. [Google Scholar] [CrossRef]
- Erim, F.B. Recent analytical approaches to the analysis of biogenic amines in food samples. TrAC Trends Anal. Chem. 2013, 52, 239–247. [Google Scholar] [CrossRef]
- He, L.; Xu, Z.; Hirokawa, T.; Shen, L. Simultaneous determination of aliphatic, aromatic and heterocyclic biogenic amines without derivatization by capillary electrophoresis and application in beer analysis. J. Chromatogr. A 2017, 1482, 109–114. [Google Scholar] [CrossRef]
- Li, D.W.; Liang, J.J.; Shi, R.Q.; Wang, J.; Ma, Y.L.; Li, X.T. Occurrence of biogenic amines in sufu obtained from Chinese market. Food Sci. Biotechnol. 2019, 28, 319–327. [Google Scholar] [CrossRef]
- Vanegas, D.C.; Patiño, L.; Mendez, C.; de Oliveira, D.A.; Torres, A.M.; Gomes, C.L.; McLamore, E.S. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 2018, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Huisman, H.; Wynveen, P.; Nichkova, M.; Kellermann, G. Novel ELISAs for screening of the biogenic amines GABA, glycine, β-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples. Anal. Chem. 2010, 82, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Danchuk, A.I.; Komova, N.S.; Mobarez, S.N.; Doronin, S.Y.; Burmistrova, N.A.; Markin, A.V.; Duerkop, A. Optical sensors for determination of biogenic amines in food. Anal. Bioanal. Chem. 2020, 412, 4023–4036. [Google Scholar] [CrossRef] [PubMed]
- Xiao-Wei, H.; Zhi-Hua, L.; Xiao-Bo, Z.; Ji-Yong, S.; Han-Ping, M.; Jie-Wen, Z.; Li-Min, H.; Holmes, M. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays. Food Chem. 2016, 197, 930–936. [Google Scholar] [CrossRef]
- Bueno, L.; Meloni, G.N.; Reddy, S.M.; Paixão, T.R.L.C. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines. RSC Adv. 2015, 5, 20148–20154. [Google Scholar] [CrossRef] [Green Version]
- Schaude, C.; Meindl, C.; Fröhlich, E.; Attard, J.; Mohr, G.J. Developing a sensor layer for the optical detection of amines during food spoilage. Talanta 2017, 170, 481–487. [Google Scholar] [CrossRef]
- Roales, J.; Pedrosa, J.M.; Guillén, M.G.; Lopes-Costa, T.; Pinto, S.M.A.; Calvete, M.J.F.; Pereira, M.M. Optical detection of amine vapors using ZnTriad porphyrin thin films. Sens. Actuators B Chem. 2015, 210, 28–35. [Google Scholar] [CrossRef]
- Banimuslem, H.; Hassan, A.; Basova, T.; Esenpinar, A.A.; Tuncel, S.; Durmuş, M.; Gürek, A.G.; Ahsen, V. Dye-modified carbon nanotubes for the optical detection of amines vapours. Sens. Actuators B Chem. 2015, 207, 224–234. [Google Scholar] [CrossRef]
- Steiner, M.S.; Meier, R.J.; Duerkop, A.; Wolfbeis, O.S. Chromogenic sensing of biogenic amines using a chameleon probe and the red-green-blue readout of digital camera images. Anal. Chem. 2010, 82, 8402–8405. [Google Scholar] [CrossRef]
- Khairy, G.M.; Azab, H.A.; El-Korashy, S.A.; Steiner, M.S.; Duerkop, A. Validation of a fluorescence sensor microtiterplate for biogenic amines in meat and cheese. J. Fluoresc. 2016, 26, 1905–1916. [Google Scholar] [CrossRef]
- Lee, B.; Scopelliti, R.; Severin, K. A molecular probe for the optical detection of biogenic amines. Chem. Commun. 2011, 47, 9639–9641. [Google Scholar] [CrossRef] [PubMed]
- Mohr, G.J. A tricyanovinyl azobenzene dye used for the optical detection of amines via a chemical reaction in polymer layers. Dye Pigment. 2004, 62, 77–81. [Google Scholar] [CrossRef]
- Mastnak, T.; Lobnik, A.; Mohr, G.J.; Finšgar, M. Indicator layers based on ethylene-vinyl acetate copolymer (EVA) and dicyanovinyl azobenzene dyes for fast and selective evaluation of vaporous biogenic amines. Sensors 2018, 18, 4361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siripongpreda, T.; Siralertmukul, K.; Rodthongkum, N. Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide. Food Chem. 2020, 329, 127165. [Google Scholar] [CrossRef]
- Yu, H.; Zhuang, D.; Hu, X.; Zhang, S.; He, Z.; Zeng, M.; Fang, X.; Chen, J.; Chen, X. Rapid determination of histamine in fish by thin-layer chromatography-image analysis method using diazotized visualization reagent prepared with: P -nitroaniline. Anal. Methods 2018, 10, 3386–3392. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Tsagkaris, A.S.; Dillon, M.J.; Hajslova, J.; Elliott, C.T. Smartphone-based optical assays in the food safety field. TrAC Trends Anal. Chem. 2020, 129, 115934. [Google Scholar] [CrossRef]
- Wojnowski, W.; Kalinowska, K.; Majchrzak, T.; Płotka-Wasylka, J.; Namieśnik, J. Prediction of the biogenic amines index of poultry meat using an electronic nose. Sensors 2019, 19, 1580. [Google Scholar] [CrossRef] [Green Version]
- Basavaraja, D.; Dey, D.; Varsha, T.L.; Thodi, F.; Salfeena, C.; Panda, M.K.; Somappa, S.B. Rapid Visual Detection of Amines by Pyrylium Salts for Food Spoilage Taggant. ACS Appl. Bio Mater. 2020, 3, 772–778. [Google Scholar] [CrossRef]
- Yurova, N.S.; Danchuk, A.; Mobarez, S.N.; Wongkaew, N.; Rusanova, T.; Baeumner, A.J.; Duerkop, A. Functional electrospun nanofibers for multimodal sensitive detection of biogenic amines in food via a simple dipstick assay. Anal. Bioanal. Chem. 2018, 410, 1111–1121. [Google Scholar] [CrossRef]
- Fazial, F.F.; Tan, L.L.; Zubairi, S.I. Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sens. Actuators B Chem. 2018, 269, 36–45. [Google Scholar] [CrossRef]
- AOAC Official. Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Gorris, H.H.; Saleh, S.M.; Groegel, D.B.M.; Ernst, S.; Reiner, K.; Mustroph, H.; Wolfbeis, O.S. Long-wavelength absorbing and fluorescent chameleon labels for proteins, peptides, and amines. Bioconjug. Chem. 2011, 22, 1433–1437. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.C. Quantitative Chemical Analysis, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2003; ISBN 0-7167-4464-3. [Google Scholar]
- Hwang, D.F.; Chang, S.H.; Shiau, C.Y.; Cheng, C. Biogenic amines in the flesh of sailfish (Istiophorus platypterus) responsible for scombroid poisoning. Food Sci. 1996, 60, 926–928. [Google Scholar] [CrossRef]
- Azab, H.; El-Korashy, S.A.; Anwar, Z..; Khairy, G.M.; Steiner, M.S.; Duerkop, A. High-throughput sensing microtiter plate for determination of biogenic amines in seafood using fluorescence or eye-vision. R. Soc. Chem. 2011, 136, 4492–4499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BA | LOD (mM) | Dynamic Range (mM) |
---|---|---|
SPR | 0.030 | 0.040–0.60 |
TYR | 0.030 | 0.080–0.60 |
PUT | 0.080 | 0.10–0.60 |
HIS | 0.090 | 0.10–1.0 |
635 nm | Dilution Factor | Intercept | Slope | TAC (µmol/g) | SD of TAC (%) | R2 |
---|---|---|---|---|---|---|
day 0 | 1:10 | 11.97 | 79.38 | 7.54 ± 0.96 | 12.7 | 0.969 |
day 1 | 1:10 | 18.21 | 71.37 | 12.8 ± 0.8 | 6.02 | 0.986 |
day 6 | 1:20 | 12.52 | 57.61 | 21.7 ± 3.2 | 14.7 | 0.962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobarez, S.N.; Wongkaew, N.; Simsek, M.; Baeumner, A.J.; Duerkop, A. Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines. Chemosensors 2020, 8, 99. https://doi.org/10.3390/chemosensors8040099
Mobarez SN, Wongkaew N, Simsek M, Baeumner AJ, Duerkop A. Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines. Chemosensors. 2020; 8(4):99. https://doi.org/10.3390/chemosensors8040099
Chicago/Turabian StyleMobarez, Sarah N., Nongnoot Wongkaew, Marcel Simsek, Antje J. Baeumner, and Axel Duerkop. 2020. "Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines" Chemosensors 8, no. 4: 99. https://doi.org/10.3390/chemosensors8040099
APA StyleMobarez, S. N., Wongkaew, N., Simsek, M., Baeumner, A. J., & Duerkop, A. (2020). Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines. Chemosensors, 8(4), 99. https://doi.org/10.3390/chemosensors8040099