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Abstract: The biogenic amines index of fresh chicken meat samples during refrigerated storage
was predicted based on the headspace analysis using an electronic nose equipped with an array of
electrochemical sensors. The reference biogenic amines index values were obtained using dispersive
liquid–liquid microextraction–gas chromatography–mass spectrometry. A prototype electronic nose
with modular construction and a dedicated sample chamber was used to rapidly analyze the volatile
fraction of chicken meat samples, with a single measurement time of five minutes. Back-propagation
artificial neural network was used to estimate the biogenic amines index of the samples with a
determination coefficient of 0.954 based on ten-fold stratified cross-validation. The results indicate
that the determination of the biogenic amines index is a good reference method for studies in which
the freshness of meat products is assessed based on headspace analysis and fingerprinting, and that
the described electronic device can be used to assess poultry meat freshness based on this value with
high accuracy.

Keywords: electronic nose; meat; neural networks; DLLME-GC-MS; headspace analysis; electronic
olfaction; biogenic amines

1. Introduction

The use of the electronic nose technique has several advantages in regard to the assessment of
meat products’ freshness. It is non-destructive, allows for rapid analysis (several minutes), and the
cost of the instrument is relatively low, especially when compared to chromatographic techniques
and mass spectrometry [1,2]. Furthermore, since headspace analysis of meat samples using electronic
olfaction is based on a holistic ‘fingerprinting’ approach, the results are more closely related to the
way humans perceive spoilage through sensory analysis. For this reason, a number of studies have
focused on the use of these devices for the assessment of shelf life and freshness of meat stored under
refrigeration [3–6].

However, the sensory quality of meat ‘freshness’ is rather subjective, and as such leaves much
to be desired in the context of the evaluation of meat spoilage based on the analysis of the sample’s
volatile fraction. One obvious threshold would be the shelf-life provided by the distributor, with
classification simply based on the duration of storage. In such an approach it is difficult to account for
independent variables such as storage conditions, meat origin or even the composition of feed given to
the animals [7]. The determination of the total viable bacteria is a common reference technique [8],
despite it being relatively labor-intensive and time-consuming (up to 72 h). It is also less applicable to
the evaluation of frozen or refrigerated products, as it favors the proliferation of mesophilic bacteria,
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as opposed to psychrotrophic organisms which are better adapted to lower temperatures [9]. Moreover,
the presence of bacteria alone is not necessarily a clear indication of spoilage, and bacteriological
analysis cannot be used to assess the effects of chemical spoilage, which is an important factor in the
overall deterioration of meat products [10]. As an alternative, several meat freshness indices based on
the concentration of biogenic amines have been proposed [11,12]. In particular, the biogenic amines
index (BAI) [13] is the total concentration of tyramine, putrescine, cadaverine, and histamine in a
sample, and the concentration of these amines in the sample has been shown to be a reliable indicator
of poultry meat freshness [14]. Biogenic amines (BAs) can be determined in meat samples using several
instrumental analytical techniques, with high-performance liquid chromatography (HPLC) and gas
chromatography (GC) being among the most popular methods [15]. The latter in particular, when
coupled with adequate sample preparation and derivatization method such as dispersive liquid–liquid
microextraction–gas chromatography–mass spectrometry (DLLME-GC-MS), has the potential for
application in routine tests due to the relatively short time of a single analysis and high sensitivity [16].

The use of the BAI value as a reference in a holistic headspace analysis of chicken meat has several
advantages. Firstly, the determination of BAs using instrumental methods is significantly faster than
the bacteriological analysis. Moreover, the BAI score is an objective, absolute value that can be easily
referenced, and is a continuous variable which enables the use of regression machine learning models.
Artificial neural networks (ANN) in particular seem to be applicable in such a scenario due to their
flexibility and potential for gradual re-training with the increasing data sets, which is to be expected in
real-world deployments.

The most straightforward approach to chicken meat freshness assessment using electronic
olfaction is to predict discretized features such as duration of storage [17–19] or threshold values
(e.g., 6.0 log10 CFU/g (CFU—colony forming units)) [20]. Electronic noses have also been previously
used to predict non-discretized values of the bacterial population or total volatile basic nitrogen in
chicken samples based on supervised machine learning algorithms [21,22]. As an alternative approach,
in this study we propose to relate the electronic nose measurements to the concentration of spoilage
indicators in the samples, as determined using a relatively rapid instrumental analytical method.
Furthermore, most other studies on the use of electronic olfaction for poultry freshness evaluation have
involved metal oxide semiconductor (MOS) sensors. These have several advantages such as robustness,
low cost, and sensitivity to a wide range of chemicals; however, due to high power consumption and
susceptibility to humidity, they are not ideal for the use in portable and hand-held devices. Instead,
we propose the use of modern electrochemical sensors with low energy consumption and resilience
towards humidity changes [23], which might facilitate the development of compact, battery-powered
units for field use. The aim of this study was to assess the possibility to predict the value of the biogenic
amines index of fresh chicken breast muscle samples stored under refrigeration using an electronic
nose device. The electronic nose was equipped with an array of electrochemical gas sensors and was
purposefully configured with a headspace analysis of meat samples in mind. The BAI values were
determined using a validated DLLME-GC-MS method for quantitative analysis of biogenic amines in
animal muscle samples. The predictions were made using a model based on artificial neural networks.

2. Materials and Methods

2.1. Samples

Samples of fresh chicken breast muscle (pectoralis major) were obtained from various local
distribution centers in Gdańsk, Poland in order to test the robustness of the analysis with respect to
samples sourced from different outlets. The birds were slaughtered and dismembered one day prior to
the first day of the analysis of each batch, and the meat was stored at 2.4 ◦C. On the first day of analysis,
0.5 kg of breast muscle meat was ground and transported under refrigeration to the laboratory, where
samples of 4 g each, intended for e-nose and DLLME-GC-MS analysis, were placed in 20 cm3 glass
headspace vials and covered with food cling film made of polyvinylidene chloride to emulate real



Sensors 2019, 19, 1580 3 of 10

storage conditions. Samples were then stored at 4 ◦C. On each day of the experiment, 9 samples
from each batch were analyzed using the electronic nose, and 3 samples using GC-MS. Prior to the
electronic nose analysis, the headspace vials were sealed with a metal cap lined with a silicon-PTFE
membrane. Samples from each batch were analyzed for five consecutive days since it had previously
been established that beyond that the consumers deem poultry meat as unacceptable based on sensory
analysis alone [24]. From each batch 12 samples were analyzed every day, with a total of 60 samples
per batch and 180 samples throughout the experiment.

2.2. Electronic Nose

The prototype electronic nose used in this study had been developed in order to analyze the
volatile fraction of food products and, in particular, meat. It is equipped with an array of eight
electrochemical gas sensors, each partially selective to a different group of chemical compounds.
The sensors were chosen based on their longevity (up to 10 years lifespan) and resilience to changes
in relative humidity [25]. The DGS-CO 968-034, DGS-EtOH 968-035, DGS-H2S 968-036, DGS-NO2

968-037, DGS-SO2 968-038, and DGS-RESPIRR 968-041 volatile organic compounds (VOC) sensors
were manufactured by SPEC Sensors, Newark, CA, USA, while the 2E 50 tert-butyl mercaptan (TBM)
and 3E 100 SE(NH3) sensors were manufactured by City Technology, Portsmouth, UK. They have
been factory calibrated to the designated chemical compounds [26,27]; however, the complex nature
of the headspace of meat samples precludes their use for qualitative or quantitative determination.
Instead, they were used for holistic fingerprinting. The device is also equipped with an additional
humidity sensor to monitor the changes of relative humidity, and a pressure sensor to signal blockages
in the pneumatic assembly. The sensors are paired in four interchangeable blocks connected in-line.
The samples are incubated in a thermostated block which can accommodate the 20 cm3 headspace
vials. Ambient air passed through a VOC filter is used both as a carrier gas when directed through
the sample’s headspace as shown in Figure 1, and for purging the sensors and pneumatic setup
after each subsequent analysis. The flow rate during both purging and sampling was fixed at
100 cm3min−1. The raw signals from the EC sensors are processed by an integrated microprocessor and
the device’s operation is controlled via a PC-class computer with dedicated software and automatically
compensated for temperature. During each analysis, the baseline for the carrier gas was registered and
automatically subtracted from the sensors’ responses in the sampling mode. After prolonged periods
of disuse, the sensors require a zero calibration and stabilization upon powering the device. This is
ensured by sampling clean air for at least an hour in continuous mode. For a more detailed description
of the device’s construction and operation, the reader is directed to a previous article [28].
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The incubation temperature was set to 37 ◦C in order to facilitate the transfer of volatile chemical
compounds into the sample’s headspace whilst avoiding the denaturation of protein. A single analysis
consisted of three stages: 100 s of incubation, during which the sensors were purged with ambient
air, followed with 100 s of sampling with the carrier gas directed through the sample’s headspace
(Figure 1) and 100 s of subsequent purging, with a total of 300 s per sample.

2.3. Dispersive Liquid–Liquid Microextraction Combined with Gas Chromatography–Mass Spectrometry

The development and validation of the DLLME-GC-MS analytical method for the in situ
determination of biogenic amines in fresh animal muscle samples has been described in detail
elsewhere [29]. The use of this method enables rapid derivatization and extraction of the BAs.
It is characterized by good recoveries, intra- and inter-day repeatability, and linearity. Its limits
of quantification range from 0.009 µg·g−1 to 0.029 µg·g−1 for particular BAs.

In brief, an appropriate volume of sodium hydroxide solution was added to each sample, and
they were homogenized, centrifuged, and sonicated. This was followed by another centrifugation, and
the supernatant was made up to 50 cm3, with 5 cm3 of the supernatant subjected to derivatization
and extraction procedure. The 4 g samples of ground chicken breast muscle were spiked with internal
standard (50 mm3 aquatic solution at 100 mgdm−3) and a mixture of pyridine: HCl (1:1, v/v), methanol
(210 mm3), chloroform (300 mm3), and isobutyl chloroformate (100 mm3) was rapidly injected into
the sample vial and kept for 10 min. Afterwards, 1 cm3 of chloroform was added and the sample
was hand-shaken for 5 min. The bottom layer of the separated solution was sampled (200 mm3) for
subsequent GC-MS analysis.

All the reagents and standards were obtained from Sigma Aldrich (Steinheim, Germany) and
were of analytical grade. The BAs (cadaverine, putrescine, histamine, and tyramine) were in the
form of hydrochloride salts, and the standard solutions (1.0 mg cm3) were prepared by dissolution in
deionized water and stored in silanized vials sealed with PTFE-lined caps. The ultrapure water was
obtained using a Milli-Q water purification system (Millipore, Bedford, MA, USA).

The analysis was performed using the Agilent 7890A gas chromatograph (Agilent Technologies,
Santa Clara, CA, USA) with the Zebron ZB-5MS capillary column (30 m × 0.25 mm I.D., 0.25 µm film
thickness) (Phenomenex, Torrance, CA, USA), and coupled with the Agilent 5975C mass-selective
detector with an electron ionization chamber (Agilent Technologies, Santa Clara, CA, USA). The column
is well-suited for high-sensitivity GC-MS analyses and is recommended for use with amines.
The injection was performed in splitless mode at 32 psi and 240 ◦C. Helium at 30 psi was used
as carrier gas. The data was collected using Agilent ChemStation software.

2.4. Statistical Analysis and Machine Learning

The output of the e-nose device in the form of comma-separated values was processed using
the Orange Python package. The sensor response values were normalized (centered by mean and,
since they do not follow the normal distribution, scaled by span). Instead of assigning an average BAI
value to batches of 9 samples analyzed using the electronic nose, the three BAI values obtained for
each batch during the DLLME-GC-MS analysis were instead assigned to sub-groups of three e-nose
measurements. This was not done due to an affinity between these particular samples since they
all came from the same batch, but to prevent overfitting during the subsequent machine learning
stage. The missing data (concentrations of particular BAs below the limit of quantitation (LOQ)) were
substituted with the limit of detection (LOD)/3 values. Four sensors, the responses of which had the
greatest impact on the estimation of the BAI, were then selected based on the analysis of variance
using the RReliefF algorithm [30]. Since the number of variables was relatively low compared to the
number of instances, there was no need to further reduce the dimensionality of the data set using,
for example, the principal component analysis. The machine learning regression model was based
on a back-propagation artificial neural network and was performed using the SciKit Learn v.0.20.2
Python package. The network was comprised of four nodes in the input layer, two hidden layers each



Sensors 2019, 19, 1580 5 of 10

with four nodes, and a single node in the output layer, with a stochastic gradient-based optimizer
(Adam). Rectified linear unit function (ReLu) was used for activation, and the regularization strength
(learning rate) was set to 0.01. The training was iterated until convergence was reached. The model
was validated using a 10-fold stratified cross-validation. Additionally, 75% of the data set, randomly
selected, was used for training, and the remaining 25% of the dataset was used for testing, with the
random sampling/training/testing repeated 10 times, and the scores averaged.

3. Results and Discussion

3.1. Determination of the Biogenic Amines Index

Based on the DLLME-GC-MS analysis it can be observed that the marked increase of the BAI value
after the second day of refrigerated storage is mostly due to the increased concentration of cadaverine.
The appearance of poultry meat spoilage indicators after the second day of refrigerated storage is
supported by both sensory analysis [24] and bacteriological analysis [31], and also corroborates with
the results obtained earlier using the same method [29]. Although in the referenced study the samples
were stored under slightly different conditions (different containers). The rapid progression of spoilage
is partly the result of the bacteria entering the logarithmic growth phase after the initial lag phase,
and in the case of BAs in poultry meat samples occurs earlier than in other types of meat due to the
presence of shorter protein chains, which leads the generation of amino acid precursors of amines [32].
An example of the results of the determination of the four BAs in the poultry meat samples is shown
in Table 1, while the averaged results for all three batches are shown in Table 2. Since the BAs were
determined in the sample, while the e-nose measurements are limited to the sample’s headspace in
which these amines are likely present at concentration levels below the sensors’ LOD due to their
limited volatility, the post-hoc analysis of the correlation between the results of both measurements
was not undertaken.

Table 1. Concentration (mg/kg, average ± mean square error (MSE)) of cadaverine (CAD), histamine
(HIST), putrescine (PUT), and tyramine (TYR) in three samples from the first batch of chicken breast
muscle, analyzed daily, and the corresponding value of the biogenic amines index (BAI).

Sample Day CAD HIST PUT TYR BAI

1

1 <LOQ 1 1.484 ± 0.045 0.991 ± 0.022 <LOQ 2.475
2 1.921 ± 0.037 1.434±0.037 1.011±0.045 0.567±0.021 4.933
3 8.11 ± 0.52 4.29 ± 0.15 1.134 ± 0.023 3.32 ± 0.16 16.85
4 9.01 ± 0.61 4.09 ± 0.18 1.354 ± 0.030 3.83 ± 0.19 18.28
5 10.45 ± 0.28 3.84 ± 0.14 1.799 ± 0.031 4.16 ± 0.20 20.25

2

1 <LOQ 1.472 ± 0.040 0.979 ± 0.018 <LOQ 2.451
2 1.924 ± 0.035 1.429 ± 0.032 1.011 ± 0.044 0.577 ± 0.009 4.941
3 8.58 ± 0.23 4.27 ± 0.15 1.128 ± 0.027 3.19 ± 0.18 17.17
4 9.11 ± 0.63 4.11 ± 0.19 1.404 ± 0.034 3.79 ± 0.20 18.41
5 10.51 ± 0.31 3.76 ± 0.10 1.812 ± 0.031 4.13 ± 0.19 20.21

3

1 <LOQ 1.481 ± 0.047 0.987 ± 0.021 <LOQ 2.468
2 1.927 ± 0.030 1.424 ± 0.034 1.015 ± 0.047 0.570 ± 0.011 4.936
3 8.31 ± 0.51 4.21 ± 0.16 1.129 ± 0.022 3.32 ± 0.18 16.97
4 9.20 ± 0.61 4.16 ± 0.16 1.414 ± 0.030 3.76 ± 0.22 18.53
5 10.47 ± 0.33 3.90 ± 0.17 1.832 ± 0.030 4.19 ± 0.19 20.39

1 LOQ—limit of quantitation.
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Table 2. Averaged EC sensor response values ± standard deviationand corresponding averaged
biogenic amines index (BAI) values obtained usingdispersive liquid–liquid microextraction–gas
chromatography–mass spectrometry (DLLME-GC-MS) for three batches of chicken breast muscle
refrigerated over a period of five days.

Batch Day DGS 968-037 DGS 968-038 DGS 968-036 3E100SE BAI

1

1 −415.0 ± 11.2 391.4 ± 12.8 126.8 ± 4.8 −143.0 ± 8.1 2.465
2 −554.8 ± 10.9 527.2 ± 13.3 169.0 ± 4.0 −280.2 ± 7.1 4.937
3 −511.6 ± 19.9 483.0 ± 16.6 160.0 ± 4.2 −203.2 ± 9.4 17.00
4 −565.6 ± 15.7 540.2 ± 12.6 178.0 ± 5.9 −189.0 ± 5.9 18.41
5 −652.4 ± 6.9 621.6 ± 3.3 202.2 ± 2.6 −179.8 ± 5.8 20.28

2

1 −458.4 ± 4.6 435.2 ± 6.4 139.2 ± 1.4 −175.2 ± 5.1 2.472
2 −589.8 ± 4.7 556.0 ± 4.1 179.8 ± 2.6 −306.6 ± 5.3 5.070
3 −561.4 ± 6.9 542.4 ± 6.7 178.0 ± 3.5 −234.2 ± 4.3 17.58
4 −634.4 ± 6.4 603.0 ± 6.7 195.2 ± 2.9 −205.0 ± 3.1 18.91
5 −662.0 ± 5.2 640.4 ± 7.2 210.4 ± 2.0 −189.6 ± 2.8 20.31

3

1 −453.0 ± 10.7 426.0 ± 11.0 136.4 ± 2.5 −182.6 ± 6.1 2.471
2 −610.4 ± 4.5 571.2 ± 8.2 187.4 ± 4.2 −323.2 ± 2.3 5.003
3 −595.2 ± 9.5 570.8 ± 6.8 190.4 ± 4.0 −255.8 ± 9.7 17.43
4 −648.4 ± 7.3 618.8 ± 5.1 204.0 ± 2.8 −201.4 ± 6.3 18.85
5 −665.4 ± 1.6 641.4 ± 4.9 213.2 ± 1.3 −159.4 ± 4.7 20.20

3.2. Electronic Nose Measurements

The main advantage of the e-nose technique compared to other instrumental methods of food
freshness assessment, apart from its relatively low cost, is the short time of a single analysis. In order
to capitalize on this advantage, the entire measurement cycle for a single sample, including incubation,
was constrained to five minutes. Based on the analysis of variance it was determined, that the response
signals of the DGS 968-037, DGS 968-038, DGS 968-036, and 3E100SE sensors had the greatest impact
on the regression with respect to BAI. This confirms previous findings [28] and is also to be expected
since the increase of the concentration of nitric and sulfuric compounds is generally associated with
meat spoilage. The averaged sensor response values after subtracting the background signal are
listed in Table 2. It is important to note that the particular sensors are only partially selective to
the indicated chemical compounds, and so their response value is not directly correlated with the
concentration of these particular volatiles in the samples headspace. The response signals of the four
EC gas sensors during sampling and purging, converted by the integrated analog to digital converter
microprocessor, are shown in Figure 2. The initial spikes of the signal in each sampling mode are the
result of pressure change caused by the turning of the ball valve which switches between the purging
and sampling pneumatic circuits, and by the passing reaction to the humidity change due to exposure
to the sample’s headspace. For the actual readout, the sensor responses during the final 10 s of each
mode were averaged after the steady state of the signal was reached. The humidity in the sampling
mode increased uniformly to approximately 81% and did not affect the sensors’ response at the data
registration stage.
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Figure 2. (A) Response of the four electrochemicalsensors to the change from purging to sampling
mode when analyzing a sample of poultry meat after 5 days of refrigerated storage; the change of
sampling modes occurs after 100 s, and the axis denotes time expressed in seconds. The spikes are
the result of temporary pressure changes caused by valve operation; (B) radar plot of the normalized
measurements of the four EC sensors when analyzing the headspace of poultry meat samples on the
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3.3. Multivariate Statistical Analysis and ANN Regression

As mentioned in the previous sub-section, based on the analysis of variance using the RReliefF
algorithm it was determined that the response signals of the DGS 968-037, DGS 968-038, DGS 968-036,
and 3E100SE sensors contributed the most to the prediction of BAI values based on the results of
e-nose analysis. The RReliefF scores for particular sensors were as follows: 3E 100 SE (0.287); DGS
968-036 (0.147); DGS 968-037 (0.145), DGS 968-038 (0.139); 2E 50 (0.132); DGS 968-034 (0.131); DGS
968-041 (0.120); DGS 968-035 (0.091). A FreeViz linear projection of the four variables, which shows
their contribution to the separation of data instances into different classes [33], is shown in Figure 3.
A back-propagation artificial neural network was then trained to estimate the BAI values based on the
output signals of these four electrochemical sensors registered using an electronic nose. Based on the
validation results, the coefficient of determination was 0.954 (p < 0.01), as shown in Figure 4, and the
root mean square error (RMSE which might be interpreted as the standard deviation of the unexplained
variance) was 1.65. These are satisfactory results, and only a single instance of gross underestimation
was obtained during the cross-validation. The average classification accuracy when testing on the
separate test set was 0.947 (p < 0.01), with a RMSE of 1.66. Due to the rapid increase of the BAI value
after the second day of refrigerated storage of fresh poultry meat samples, no intermediate BAI values
were determined. This is due to the nature of the chemical and biological spoilage of chicken meat;
however, it did not adversely affect the performance of the model. The reason for choosing the ANN
model and not one of the other regression machine learning models, such as support vector machines
(SVM) or random forest (RF), is that in the future real application of it will scale well with incremental
re-training as additional data points are added during routine operation. With just four nodes in
the input layer, the proposed architecture of the network (two hidden layers each with four nodes)
will likely be able to perform well even with a significant increase of the size of the dataset without
drastically increasing the computational power demands.
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learning algorithm, was capable of producing good classification accuracy. Despite the fact that the 
samples were sourced from different distributors the results were reproducible, demonstrating that 
the proposed approach is to an extent resilient to unaccounted-for independent variables. Based on 
the results it can be also concluded that electronic noses with sensor arrays and construction tailored 
to the specific application of meat freshness evaluation can be used to obtain reliable results rapidly 
and at a relatively low cost, and that the potential commercial use of this type of device is not a far-
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4. Conclusions

The determination of the biogenic amines index is a good reference method for studies in which
the freshness of meat products is assessed based on headspace analysis and fingerprinting. Using the
results of DLLMA-GC-MS analysis it is possible to validate the results of electronic nose measurements
and provide a basis for a regression machine learning model with higher real-world application
potential than discrete classification approaches. The prototype modular electronic nose equipped with
electrochemical sensors, coupled with artificial neural networks-based machine learning algorithm,
was capable of producing good classification accuracy. Despite the fact that the samples were sourced
from different distributors the results were reproducible, demonstrating that the proposed approach
is to an extent resilient to unaccounted-for independent variables. Based on the results it can be also
concluded that electronic noses with sensor arrays and construction tailored to the specific application
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of meat freshness evaluation can be used to obtain reliable results rapidly and at a relatively low cost,
and that the potential commercial use of this type of device is not a far-fetched idea.
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