Electrochemical Immuno- and Aptasensors for Mycotoxin Determination
Abstract
:1. Introduction
2. Mycotoxins: General Characteristics and Conventional Analytical Techniques
2.1. Mycotoxins: General Description
2.2. Conventional Analytical Methods for Determining Mycotoxins
2.2.1. Chromatography Techniques
2.2.2. Immunological Methods
2.3. Other Sensors for Mycotoxin Determination
3. Biosensors for Mycotoxin Determination
3.1. Immunosensors–General Principles and Ab Immobilization
3.1.1. Antibodies for Mycotoxin Determination
3.1.2. Electrochemical Immunosensors
4. Aptasensors
4.1. Aptamers Against Mycotoxins
4.2. Aptasensors—Assembling and Signal Transduction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit. Rev. Food Sci. Nutr. 2013, 53, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Miller, J.D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Boobis, A.; Eskola, M.; Fink-Gremmels, J.; Fürst, P.; Heppner, C.; Schlatter, J.; van Leeuwen, R. Risk assessment of contaminants in food and feed. EFSA J. 2002, 10, s1004. [Google Scholar] [CrossRef]
- Ragona, M. Mycotoxins, the unknowns: Trends in food availability and consumer perceptions. World Mycotoxin J. 2016, 9, 813–830. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazem, A.; Rodriguez, A.; Maga, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Pitt, J.I. Toxigenic fungi: Which are important? Med. Mycol. 2000, 38, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Sing, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J.R.; Cubel, C.; Castillo, J.R. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens. Bioelectron. 2013, 49, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Arduini, F.; Amine, A.; Mosconee, D.; Palleschi, G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim. Acta 2010, 170, 193–214. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Mao, X.; Yang, S.; De Ruyck, K.; Wu, Y. High sensitivity immunoassays for small molecule compounds detection – Novel noncompetitive immunoassay designs. TrAC – Trends Anal. Chem. 2018, 103, 198–208. [Google Scholar] [CrossRef]
- Peltomaa, R.; Benito-Peña, E.; Moreno-Bondi, M.C. Bioinspired recognition elements for mycotoxin sensors. Anal. Bioanal. Chem. 2018, 410, 747–771. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Bulbul, B.; Latif, U.; Hayat, A.; Li, Z.-H.; Marty, J.L. Nano-aptasensing in mycotoxin analysis: Recent updates and progress. Toxins 2017, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Goud, K.Y.; Hayat, A.; Bhand, S.; Marty, J.L. Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors 2017, 5, 1. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A. Ultrasensitive bioaffinity electrochemical sensors: Advances and new perspectives. Electroanalysis 2018, 30, 2803–2840. [Google Scholar] [CrossRef]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. WHO Bull. 1999, 77, 754–766. [Google Scholar]
- Shephard, G.S.; Berthiller, F.; Burdaspal, P.A.; Crews, C.; Jonker, M.A.; Krska, P.; Mc Donald, S.; Malone, R.J.; Maragos, C.; Sabino, M.; et al. Developments in mycotoxin analysis: An update for 2010–2011. World Mycotoxin J. 2012, 5, 3–30. [Google Scholar] [CrossRef]
- Do, J.H.; Choi, D.-K. Aflatoxins: Detection, toxicity and biosynthesis. Biotechnol. Bioprocess Eng. 2007, 12, 585–593. [Google Scholar] [CrossRef]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 2006, 161, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, O.; Ansaril, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Addiv. Contaminant. 2005, 22, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.F.; Li, R.; Yang, H.; Qi, P.P.; Xiao, Y.P.; Qian, M.R. Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China. Food Control 2017, 78, 100–107. [Google Scholar] [CrossRef]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007. [Google Scholar] [CrossRef] [PubMed]
- Mitterbauer, R.; Weindrofer, H.; Safaie, N.; Krska, R.; Lemmens, M.; Ruckenbauer, P.; Kuchler, K.; Adam, G. A sensitive and inexpensive yeast bioassay for the mycotoxin zearalenone and other compounds with estrogenic activity. Appl. Environ. Microbiol. 2003, 69, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.; Jinap, S.; Soleimany, F. Qualitative and quantitative analysis of mycotoxins. Compr. Rev. Food Sci. Food Saf. 2009, 8, 202–251. [Google Scholar] [CrossRef]
- Vidal, A.; Marín, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem. Toxicol. 2013, 53, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Bramhmbhatt, H.; Szabo-Vezsem, M.; Pomam, A.; Coker, R.; Piletsky, S.A. Analytical methods for determination of mycotoxins: An update (2009–2014). Anal. Chim. Acta 2015, 901, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Cigić, I.K.; Prosen, H. An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 2009, 10, 62–115. [Google Scholar] [CrossRef] [PubMed]
- Nardiello, D.; Magro, S.L.; Iammarino, M.; Palermo, C.; Muscarella, M.; Centonze, D. Recent advances in the post-column derivatization for the determination of mycotoxins in food products and feed materials by liquid chromatography and fluorescence detection. Curr. Anal. Chem. 2014, 10, 355–365. [Google Scholar] [CrossRef]
- Hickert, S.; Gerding, J.; Ncube, E.; Hübner, F.; Flett, B.; Cramer, B.; Humpf, H.-U. A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotoxin Res. 2015, 31, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Liang, G.; Li, A.; Pan, L. Recent advances in mycotoxin determination for food monitoring via microchip. Toxins 2017, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.J. A theory of antibody-antigen reactions. I. Theory for reactions of multivalent antigen with bivalent and univalent antibody. J. Am. Chem. Soc. 1952, 74, 5715–5725. [Google Scholar] [CrossRef]
- He, Q.; Xu, Y. Antibody developments and immunoassays for mycotoxins. Curr. Org. Chem. 2017, 21, 2622–2631. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Ricelli, A.; Fanelli, C.; Caputo, D.; Cesare, G.; Chu, V.; Aires-Barros, M.R.; Conde, J.P. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018, 143, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.R.A. Mycotoxin immunoassays (with special reference to elisas). Tetrahedron 1989, 45, 2237–2249. [Google Scholar] [CrossRef]
- Vdovenko, M.M.; Lu, C.-C.; Yu, F.-Y.; Sakharov, I.Y. Development of ultrasensitive direct chemiluminescent enzyme immunoassay for determination of aflatoxin M1 in milk. Food Chem. 2014, 158, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Usleber, E.; Dade, M.; Schneider, E.; Dietrich, R.; Bauer, J.; Märtlbauer, E. Enzyme immunoassay for mycophenolic acid in milk and cheese. J. Agric. Food Chem. 2008, 56, 6857–6862. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, F.J.; Granero, A.M.; Fernández, H.; Raba, J.; Zón, M.A. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 2011, 83, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Shiu, C.-M.; Wang, J.-J.; Yua, F.-Y. Sensitive enzyme-linked immunosorbent assay and rapid one-step immunochromatographic strip for fumonisin B1 in grain-based food and feed samples. Sci. Food Agric. 2010, 90, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Basova, E.Y.; Goryacheva, I.Y.; Rusanova, T.Y.; Burmistrova, N.A.; Dietrich, R.; Märtlbauer, E.; Detavernier, C.; Van Peteghem, C.; De Saeger, S. An immunochemical test for rapid screening of zearalenone and T-2 toxin. Anal. Bioanal. Chem. 2010, 397, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hervás, M.; López, M.A.; Escarpa, A. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 2011, 136, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Eguílaz, M.; Moreno-Guzmán, M.; Campuzano, S.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosens. Bioelectron. 2010, 26, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Feng, H.; Wu, Y.; Joshi, L.; Zeng, X.; Li, J. Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens. Bioelectron. 2012, 35, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Ghindilis, A.L.; Atanasov, P.; Wilkins, E. Fast amperometric immunoassay utilizing highly dispersed electrode material. Anal. Lett. 1995, 28, 2459–2474. [Google Scholar] [CrossRef]
- Li, Y.-F.; Sun, Y.-M.; Beier, R.C.; Lei, H.-T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D.; et al. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2015, 37, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S. Determination of mycotoxins in human foods. Chem. Soc. Rev. 2008, 37, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Byun, J.-Y.; Kim, B.B.; Shin, Y.-B.; Kim, M.-G. Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence of antibodies. Biosens. Bioelectron. 2013, 42, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J. Recent advances in analytical methods for mycotoxins. Food Addit. Contamin. 1993, 10, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, C.; Economou, A.; Prodromidis, M.I. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 2016, 79, 88–105. [Google Scholar] [CrossRef]
- Pagkali, V.; Petrou, P.S.; Salapatas, A.; Makaronab, E.; Peters, J.; Haasnoot, W.; Jobst, G.; Economou, A.; Misiakos, K.; Raptis, I.; et al. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor. J. Hazard. Mater. 2017, 323, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Nabok, A.; Al-Jawdah, A.M.; Tsargorodska, A. Development of planar waveguide-based immunosensor for detection of low molecular weight molecules such as mycotoxins. Sens. Actuators B Chem. 2017, 247, 975–980. [Google Scholar] [CrossRef]
- Al-Rubaye, A.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takacs, E.; Szekacs, A. Detection of ochratoxin A in aptamer assay using total internal reflection ellipsometry. Sens. Actuators B Chem. 2018, 263, 248–251. [Google Scholar] [CrossRef]
- Al-Rubaye, A.G.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takács, E.; Székács, A. Label-free optical detection of mycotoxins using specific aptamers immobilized on gold nanostructures. Toxins 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Tsounidi, D.; Koukouvinos, G.; Petrou, P.; Misiakos, K.; Zisis, G.; Goustouridis, D.; Raptis, I.; Kakabakos, S.E. Rapid and sensitive label-free determination of aflatoxin M1 levels in milk through a White Light Reflectance Spectroscopy immunosensor. Sens. Actuators B Chem. 2019, 282, 104–111. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Haupt, K.; Feller, K.-H. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Bučko, M.; Mislovičová, M.; Nahálka, J.; Vikartovská, A.; Šefčovičová, J.; Katrlik, J.; Tkač, J.; Gemeiner, P.; Lacík, I.; Štefuca, V.; et al. Immobilization in biotechnology and biorecognition: From macro- to nanoscale systems. Chem. Pap. 2012, 66, 983–998. [Google Scholar] [CrossRef]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Haruyama, T. Design and fabrication of a molecular interface on an electrode with functional protein molecules for bioelectronic properties. Electrochemistry 2010, 78, 888–895. [Google Scholar] [CrossRef]
- Dolatabadi, J.E.N.; de la Guardia, M. Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal. Methods 2014, 6, 3891–3900. [Google Scholar] [CrossRef]
- Veetil, J.V.; Yea, K. Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 2007, 23, 517–731. [Google Scholar] [CrossRef] [PubMed]
- Chauhana, R.; Singh, I.; Solanki, P.R.; Manaka, T.; Iwamoto, M.; Basu, T.; Malhotra, B.D. Label-free piezoelectric immunosensor decorated with gold nanoparticles: Kinetic analysis and biosensing application. Sens. Actuators B Chem. 2016, 222, 804–814. [Google Scholar] [CrossRef]
- Vashist, S.K.; Lam, E.; Hrapovic, S.; Male, K.B.; Luong, J.H.T. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 2014, 114, 11083–11130. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Simón, B.; Campàs, M.; Marty, J.-L.; Noguer, T. Novel highly-performing immunosensor-based strategy for ochratoxin A detection in wine samples. Biosens. Bioelectron. 2008, 23, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Yuan, R.; Chai, Y.; Zhang, Y.; Li, X.; Wang, N.; Zhu, Q. Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface for α-1-fetoprotein determinations. Sens. Actuators B Chem. 2006, 114, 631–639. [Google Scholar] [CrossRef]
- Cosnier, S.; Holzinger, M. Electrosynthesized polymers for biosensing. Chem. Soc. Rev. 2011, 40, 2146–2156. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ahmed, N.B.; Alvarez, G.S.; Tuttolomondo, M.; Helary, C.; Desimone, M.F.; Coradin, T. Sol-gel encapsulation of biomolecules and cells for medicinal applications. Curr. Top. Med. Chem. 2015, 15, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Iijima, I.; Kuroda, S. Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens. Bioelectron. 2017, 89, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Turková, J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B 1999, 722, 11–31. [Google Scholar] [CrossRef]
- Bertok, T.; Klukova, L.; Sediva, A.; Kasák, P.; Semak, V.; Micusik, M.; Omastova, M.; Chovanová, L.; Vlček, M.; Imrich, R.; et al. Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Anal. Chem. 2013, 85, 7324–7332. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S. Immunoglobulin purification by affinity chromatography using protein a mimetic ligands prepared by combinatorial chemical synthesis. J. Mol. Cell. Immun. 2002, 31, 263–278. [Google Scholar] [CrossRef]
- Zeng, X.; Shen, Z.; Mernaugh, R. Recombinant antibodies and their use in biosensors. Anal. Bioanal. Chem. 2012, 402, 3027–3038. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C.M.; Li, L.; Chen, D. Production and characterization of a single chain variable fragment (scFv) against the mycotoxin deoxynivalenol. Food Agric. Immunol. 2012, 23, 57–61. [Google Scholar] [CrossRef]
- Romanazzo, D.; Ricci, F.; Volpe, G.; Elliott, C.T.; Vesco, S.; Kroeger, K.; Moscone, D.; Stroka, J.; Van Egmond, H.; Vehniäinen, M.; et al. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens. Bioelectron. 2010, 25, 2615–2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Q.; Clarke, J.R.; Zhou, H.R.; Linz, J.E.; Pestka, J.J.; Hart, L.P. Molecular cloning, expression, and characterization of a functional single-chain Fv antibody to the mycotoxin zearalenone. Appl. Environ. Microbiol. 1997, 63, 263–269. [Google Scholar] [PubMed]
- Yan, Q.; Hu, W.; Pestka, J.J.; He, S.Y.; Hart, L.P. Expression of a functional antizearalenone single-chain Fv antibody in transgenic Arabidopsis plants. Appl. Environ. Microbiol. 2000, 66, 3499–3505. [Google Scholar] [CrossRef]
- Wang, S.-H.; Du, X.-Y.; Lin, L.; Huang, Y.-M.; Wang, Z.-H. Zearalenone (ZEN) detection by a single chain fragment variable (scFv) antibody. World J. Microb. Biotechnol. 2008, 24, 1681–1685. [Google Scholar] [CrossRef]
- Edupuganti, S.R.; Edupuganti, O.P.; O’Kennedy, R. Generation of anti-zearalenone scFv and its incorporation into surface plasmon resonance-based assay for the detection of zearalenone in sorghum. Food Control 2013, 34, 668–674. [Google Scholar] [CrossRef]
- Wang, S.-H.; Du, X.-Y.; Huang, Y.-M.; Lin, D.-S.; Hart, P.L.; Wang, Z.-H. Detection of deoxynivalenol based on a single-chain fragment variable of the antideoxynivalenol antibody. FEMS Microb. Lett. 2007, 272, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, G.-H.; Lee, D.-H.; Min, W.-K.; Cho, Y.-I.; Kweon, D.-H.; Son, D.-H.; Park, J.-H.K.; Seo, J.-H. Cloning, expression, and characterization of single-chain variable fragment antibody against mycotoxin deoxynivalenol in recombinant Escherichia coli. Protein Express. Purif. 2004, 35, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Li, Y.; He, Q.; Chen, B.; Wang, D. Development of a single-chain variable fragment antibody-based enzyme-linked immunosorbent assay for determination of fumonisin B1 in corn samples. J. Sci. Food Agric. 2013, 94, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Min, W.-K.; Cho, Y.-J.; Park, J.B.; Bae, Y.-H.; Kim, E.-J.; Park, K.; Park, Y.-C.; Seo, J.-H. Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1. Bioprocess Biosyst. Eng. 2010, 33, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-Q.; Li, H.-P.; Wu, P.; Li, Y.-B.; Zhou, Z.-Q.; Zhang, J.-B.; Liu, J.-L.; Li, Y.-C. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay. Anal. Chim. Acta 2015, 867, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Rangnoi, K.; Choowongkomon, K.; O’Kennedy, R.; Rüker, F.; Yamabhai, M. Enhancement and analysis of human antiaflatoxin b1 (AFB1) scFv antibody–ligand interaction using chain shuffling. J. Agric. Food Chem. 2018, 66, 5713–5722. [Google Scholar] [CrossRef] [PubMed]
- Min, W.-K.; Na, K.-I.; Yoon, J.-H.; Heo, Y.-J.; Lee, D.; Kim, S.-G.; Heo, J.-H. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1. Food Chem. 2016, 209, 312–317. [Google Scholar] [CrossRef]
- Min, W.-K.; Kim, S.-G.; Seo, J.-H. Affinity maturation of single-chain variable fragment specific for aflatoxin B1 using yeast surface display. Food Chem. 2015, 188, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Ye, Y.; Chen, W.; Wang, X.; Chen, F. Expression of VH-linker-VL orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli. J. Ind. Microb. Biotechnol. 2015, 42, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Min, W.-K.; Kweon, D.-H.; Park, K.; Park, Y.-C.; Seo, J.-H. Characterisation of monoclonal antibody against aflatoxin B1 produced in hybridoma 2C12 and its single-chain variable fragment expressed in recombinant Escherichia Coli. Food Chem. 2011, 126, 1316–1323. [Google Scholar] [CrossRef]
- Li, X.; Li, P.W.; Lei, J.W.; Zhang, Q.; Zhang, W.; Li, C.M. A simple strategy to obtain ultra-sensitive single-chain fragment variable antibodies for aflatoxin detection. RSC Adv. 2013, 3, 22367–22372. [Google Scholar] [CrossRef]
- Pansri, P.; Jaruseranee, N.; Rangnoi, K.; Kristensen, K.; Yamabhai, M. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol. 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Y.; Hu, C.; Wu, H.; Yang, Y.; Huang, C.; Jia, N. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chem. 2015, 176, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Basu, J.; Datta, S.; Chaudhuri, S.R. A graphene field effect capacitive immunosensor for sub-femtomolar food toxin detection. Biosens. Bioelectron. 2015, 68, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Abraham, S.; Singh, C.; Ali, M.A.; Srivastava, A.; Sumana, A.; Malhotra, B.D. Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B1 detection. RSC Adv. 2015, 5, 5406–5414. [Google Scholar] [CrossRef]
- Wang, D.; Hu, W.; Xiong, Y.; Xu, Y.; Li, C.M. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1. Biosens. Bioelectron. 2015, 63, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Yagati, A.K.; Chavan, S.G.; Baek, C.; Lee, M.-H.; Min, J. Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/Au nanoparticle electrode array. Sensors 2018, 18, 1320. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.P.; Frías, I.A.M.; Andrade, C.A.S.; Oliveira, M.D.L. Impedimetric immunoassay for aflatoxin B1 using a cysteine modified gold electrode with covalently immobilized carbon nanotubes. Microchim. Acta 2017, 184, 3205–3213. [Google Scholar] [CrossRef]
- Ma, H.; Sun, J.; Zhang, Y.; Bian, C.; Xia, S.; Zhen, T. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens. Bioelectron. 2016, 80, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Sun, J.; Zhang, Y.; Xia, S. Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B1 in wheat. Biochem. Eng. J. 2016, 115, 38–46. [Google Scholar] [CrossRef]
- Solanki, P.R.; Singh, J.; Rupavali, B.; Tiwari, S.; Malhotra, B.D. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng. C 2017, 70, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, A.; Khan, R. A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synth. Met. 2018, 235, 136–144. [Google Scholar] [CrossRef]
- Azri, F.A.; Selamat, J.; Sukor, R. Electrochemical immunosensor for the detection of aflatoxin B1 in palm kernel cake and feed samples. Sensors 2017, 17, 2776. [Google Scholar] [CrossRef] [PubMed]
- Malvano, F.; Albanese, D.; Crescitelli, A.; Pilloton, R.; Esposito, E. Impedimetric label-free immunosensor on disposable modified screen-printed electrodes for ochratoxin A. Biosensors 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Chrouda, A.; Sbartai, A.; Bessueille, F.; Renaud, L.; Maarefa, A.; Jaffrezic-Renault, N. Electrically addressable deposition of diazonium-functionalized antibodies on boron-doped diamond microcells for the detection of ochratoxin A. Anal. Methods 2015, 7, 2444–2451. [Google Scholar] [CrossRef]
- Jodra, A.; Hervás, M.; Lopez, M.Á.; Escarpa, A. Disposable electrochemical magneto immunosensor for simultaneous simplified calibration and determination of Ochratoxin A in coffee samples. Sens. Actuators B Chem. 2015, 221, 777–783. [Google Scholar] [CrossRef]
- Badea, M.; Floroian, L.; Restani, P.; Codruta, S.; Cobzac, A.; Moga, M. Ochratoxin A detection on antibody immobilized on BSA-functionalized gold electrodes. PLoS ONE 2016, 11, e0160021. [Google Scholar] [CrossRef] [PubMed]
- Bougrini, V.; Baraket, A.; Jamshaid, T.; El Aissari, A.; Bausells, J.; Zabala, M.; El Bari, N.; Bouchikhi, B.; Jaffrezic-Renault, N.; Abdelhamid, E.; et al. Development of a novel capacitance electrochemical biosensor based on silicon nitride for ochratoxin A detection. Sens. Actuators B Chem. 2016, 234, 446–452. [Google Scholar] [CrossRef]
- Gupta, P.K.; Pachauri, N.; Khan, Z.H.; Solanki, P.R. One pot synthesized zirconia nanoparticles embedded in amino functionalized amorphous carbon for electrochemical immunosensor. J. Electroanal. Chem. 2017, 807, 59–69. [Google Scholar] [CrossRef]
- Liu, L.; Chao, Y.; Cao, W.; Wang, Y.; Luo, C.; Pang, X.; Fan, D.; Wei, Q. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal. Chim. Acta 2014, 847, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Nie, D.; Tan, Y.; Zhao, Z.; Liao, Y.; Wang, H.; Sun, C.; Wu, A. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim. Acta 2017, 184, 147–153. [Google Scholar] [CrossRef]
- Xu, W.; Qing, Y.; Chen, S.; Chen, J.; Qin, Z.; Qiu, J.F.; Li, C.R. Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Microchim. Acta 2017, 184, 3339–3347. [Google Scholar] [CrossRef]
- Regiart, M.; Fernández, O.; Vicario, A.; Villarroel-Rocha, J.; Sapag, K.; Messina, G.A.; Raba, J.; Bertolino, F.A. Mesoporous immunosensor applied to zearalenone determination in Amaranthus cruentus seeds. Microchem. J. 2018, 141, 388–394. [Google Scholar] [CrossRef]
- Sunday, C.E.; Masikini, M.; Wilson, L.; Rassie, C.; Waryo, T.; Baker, P.C.L.; Iwuoha, E.I. Application on gold nanoparticles-dotted 4-nitrophenylazo graphene in a label-free impedimetric deoxynivalenol immunosensor. Sensors 2015, 15, 3854–3871. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Seenivasan, R.; Wang, Y.-C.; Yu, J.-H.; Gunasekaran, S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim. Acta 2016, 213, 89–97. [Google Scholar] [CrossRef]
- Qing, Y.; Li, C.R.; Yang, X.X.; Zhou, X.P.; Xue, J.; Luo, M.; Xu, X.; Chen, S.; Qiu, J.F. Electrochemical immunosensor using single-walled carbon nanotubes/chitosan for ultrasensitive detection of deoxynivalenol in food samples. J. Appl. Electrochem. 2016, 46, 1049–1057. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Peng, D.; Xie, S.; Chen, D.; Pan, Y.; Tao, Y.; Yuan, Z. Construction of electrochemical immunosensor based on gold-nanoparticles/carbon nanotubes/chitosan for sensitive determination of T-2 toxin in feed and swine meat. Int. J. Mol. Sci. 2018, 19, 3895. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.S.; Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647. [Google Scholar] [CrossRef] [PubMed]
- You, K.M.; Lee, S.H.; Im, A.; Lee, S.B. Aptamers as functional nucleic acids: In vitro selection and biotechnological applications. Biotechnol. Bioprocess Eng. 2003, 8, 64–75. [Google Scholar] [CrossRef]
- Gopinath, S.C.B. Methods developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171–182. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules. Talanta 2012, 99, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Seok, Y.; Byun, J.-Y.; Shim, W.-B.; Kim, M.G. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal. Chim. Acta 2015, 886, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Setlem, K.; Mondal, B.; Ramlal, S.; Kingston, J. Immuno affinity SELEX for simple, rapid, and cost-effective aptamer enrichment and identification against aflatoxin B1. Front. Microbiol. 2016, 7, 1909. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Hayatl, A.; Catanatel, G.; Satyanarayanal, M.; Gobil, K.V.; Martyl, J.L. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim. Acta 2017, 244, 96–103. [Google Scholar] [CrossRef]
- Goud, K.Y.; Sharma, A.; Hayat, A.; Catanante, G.; Gobi, K.W.; Gurban, A.M.; Marty, J.L. Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: Analytical performance comparison of two aptamers. Anal. Biochem. 2016, 508, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, W.; Chen, X.; Xia, Y.; Duan, N.; Wu, S.; Whang, Z. Selection, characterization and application of aptamers targeted to Aflatoxin B2. Food Control 2015, 47, 545–551. [Google Scholar] [CrossRef]
- Joo, M.; Baek, S.H.; Cheon, S.A.; Chun, H.S.; Choi, S.-W.; Park, T.J. Development of aflatoxin B1 aptasensor based on wide-range fluorescence detection using graphene oxide quencher. Colloids Surf. B 2017, 154, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Catanante, G.; Hayat, A.; Istamboulie, G.; Rejeb, I.B.; Bhand, S.; Marty, J.L. Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta 2016, 158, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hamula, C.L.A.; Guthrie, J.W.; Zhang, H.; Li, X.F.; Le, X.C. Selection and analytical applications of aptamers. Trends Anal. Chem. 2006, 25, 681–691. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Penner, G. Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 2008, 56, 10456–10461. [Google Scholar] [CrossRef] [PubMed]
- Chrouda, A.; Sbartai, A.; Baraket, A.; Renaud, L.; Maaref, A.; Jaffrezic-Renault, N. An aptasensor for ochratoxin A based on grafting of polyethylene glycol on a boron-doped diamond microcell. Anal. Biochem. 2015, 488, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ren, J.; Wang, J.; Wang, E. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 2011, 85, 2517–2521. [Google Scholar] [CrossRef] [PubMed]
- McKeague, M.; Bradley, C.R.; De Girolamo, A.; Visconti, A.; Miller, D.; De Rosa, M.C. Screening and initial binding assessment of fumonisin B1 aptamers. Int. J. Mol. Sci. 2010, 11, 4864–4881. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Hayat, A.; Satyanarayana, M.; Kumar, V.S.; Gobi, K.V.; Marty, J.-L. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Microchim. Acta 2017, 184, 4401–4408. [Google Scholar] [CrossRef]
- Chen, X.; Bai, X.; Li, H.; Zhang, B. Aptamer-based microcantilever array biosensor for detection of fumonisin B1. RSC Adv. 2015, 5, 35448–35452. [Google Scholar] [CrossRef]
- Khan, I.M.; Zhao, S.; Niazi, S.; Mohsin, A.; Shoaib, M.; Duan, N.; Wu, S.; Wang, Z. Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin. Sens. Actuators B Chem. 2018, 277, 328–335. [Google Scholar] [CrossRef]
- Werner, A.; Konarev, P.V.; Svergun, D.I.; Hahn, U. Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering. Anal. Biochem. 2009, 389, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; Huang, X.; Chen, Y.; Gao, W. Combining a loop-stem aptamer sequence with methylene blue: A simple assay for thrombin detection by resonance light scattering technique. RSC Adv. 2015, 38, 30268–30274. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Stoikov, I. Electrochemical DNA sensors based on spatially distributed redox mediators: Challenges and promises. Pure Appl. Chem. 2017, 89, 1471–1490. [Google Scholar] [CrossRef]
- Deng, C.; Pi, X.; Qian, P.; Chen, X.; Wu, W.; Xiang, J. High-performance ratiometric electrochemical method based on the combination of signal probe and inner reference probe in one hairpin-structured DNA. Anal. Chem. 2017, 89, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, Y.; Liu, G.; Du, L.; Wang, S. Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Adv. 2017, 7, 16290–16294. [Google Scholar] [CrossRef]
- Sharma, A.; Hayat, A.; Mishra, R.K.; Catanante, G.; Bhand, S.; Marty, J.L. Titanium dioxide nanoparticles (TiO2) quenching based aptasensing platform: Application to ochratoxin A detection. Toxins 2015, 7, 3771–3784. [Google Scholar] [CrossRef] [PubMed]
- Rapini, R.; Marrazza, G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.W.; Zhang, Q.; Li, P.W. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins 2016, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Evtugyn, G.; Porfireva, A.; Stepanova, V.; Sitdikov, R.; Stoikov, I.; Nikolelis, D.; Hianik, T. Electrochemical aptasensor based on polycarboxylic macrocycle modified with Neutral red for aflatoxin B1 detection. Electroanalysis 2014, 26, 2100–2109. [Google Scholar] [CrossRef]
- Wu, L.; Ding, F.; Yin, W.; Ma, J.; Wang, B.; Nie, A.; Han, H. From electrochemistry to electroluminescence: Development and application in a ratiometric aptasensor for aflatoxin B1. Anal. Chem. 2017, 89, 7578–7585. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Teng, J.; Cheng, L.; Ye, Y.; Pan, D.; Wu, J.; Xue, F.; Liu, G.; Chen, W. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosens. Bioelectron. 2016, 80, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Catanate, G.; Hayat, A.; Satyanarayana, M.; Gobi, K.V.; Marty, J.-L. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sens Actuators B Chem. 2016, 235, 466–473. [Google Scholar] [CrossRef]
- Geleta, G.S.; Zhao, Z.; Wang, Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1. Analyst 2018, 143, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Li, X.; Cui, F.; Qiu, Q.; Chen, X.; Huang, H. Aflatoxin B1 electrochemical aptasensor based on tetrahedral DNA nanostructures functionalized three dimensionally ordered macroporous MoS2-AuNPs film. ACS Appl. Mater. Interfaces 2018, 10, 17551–17559. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, J.; An, K.; Ren, C.; Lu, X.; Hao, N.; Liu, Q.; Li, H.; Huang, X.; Wang, K. Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosens. Bioelectron. 2018, 108, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Istamboulié, G.; Paniel, N.; Zara, L.; Granados, L.R.; Barthelmebs, L.; Noguer, T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 2016, 146, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Smolko, V.; Shurpik, D.; Porfireva, A.; Evtugyn, G.; Stoikov, I.; Hianik, T. Electrochemical aptasensor based on poly(Neutral red) and carboxylated pillar[5]arene for sensitive determination of aflatoxin M1. Electroanalysis 2018, 30, 486–496. [Google Scholar] [CrossRef]
- Jalalian, S.H.; Ramezani, M.; Danesh, N.M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode. Biosens. Bioelectron. 2018, 117, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Rajput, Y.S.; Sharma, R.; Singh, D. Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1. Appl. Nanosci. 2017, 7, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Karapetis, S.; Nikolelis, D.; Hianik, T. Label-free and redox markers-based electrochemical aptasensors for aflatoxin M1 detection. Sensors 2018, 18, 4218. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Qian, J.; Yang, X.; Yan, Y.; Liu, Q.; Wang, K.; Wang, K. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Anal. Chim. Acta 2014, 806, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Jiang, L.; Yang, X.; Yan, Y.; Mao, H.; Wang, K. Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst 2014, 139, 5587–5593. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Li, X.; Chen, S.; Zhou, X.P.; Luo, M.; Xu, X.; Li, C.R.; Qiu, J.F. Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Microchim. Acta 2017, 184, 863–870. [Google Scholar] [CrossRef]
- Wang, C.; Qian, J.; An, K.; Huang, X.; Zhao, L.; Liu, Q.; Hao, N.; Wang, K. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens. Bioelectron. 2017, 89, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.-L.; Zhang, Y.-F.; Sun, G.-P.; Wang, X.-N.; Tang, D. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer–graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens. Bioelectron. 2017, 89, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M. Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Microchim. Acta 2017, 184, 1151–1159. [Google Scholar] [CrossRef]
- Wei, M.; Feng, S. A signal-off aptasensor for the determination of ochratoxin A by differential pulse voltammetry at a modified Au electrode using methylene blue as an electrochemical probe. Anal. Methods 2017, 9, 5449–5454. [Google Scholar] [CrossRef]
- Rivas, L.; Mayorga-Martinez, C.C.; Quesada-González, D.; Zamora-Gálvez, A.; de la Escosura-Muñiz, A.; Merkoçi, A. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal. Chem. 2015, 87, 5167–5172. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Ocaña, C.; Marty, J.-L. A label free aptasensor for ochratoxin A detection in cocoa beans: An application to chocolate industries. Anal. Chim. Acta 2015, 889, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Istamboulie, G.; Marty, J.-L. Sensitive quantitation of ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem. 2016, 192, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Mejri-Omrani, N.; Miodek, A.; Zribi, B.; Marrak, M.; Hamdi, M.; Marty, J.-L.; Korri-Youssoufi, H. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal. Chim. Acta 2016, 920, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, X.; Ma, Y.; Deng, Y.; Hu, R.; Yang, Y. Preparation of an OTA aptasensor based on a metal-organic framework. Anal. Methods 2018, 10, 3273–3279. [Google Scholar] [CrossRef]
- Zejli, K.; Goud, K.Y.; Marty, J.L. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta 2018, 185, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ning, G.; Bi, H.; Wu, Y.; Liu, G.; Zhao, Y. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochim. Acta 2018, 285, 120–127. [Google Scholar] [CrossRef]
- Chen, W.; Yan, C.; Cheng, L.; Yao, L.; Xue, F.; Xu, J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens. Bioelectron. 2018, 117, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Y.; Zheng, Y.T.; Zhang, H.B.; He, C.H.; Wu, W.D.; Zhang, H.B. DNA Electrochemical aptasensor for detecting fumonisins B1 based on graphene and thionine nanocomposite. Electroanalysis 2015, 27, 1097–1103. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Ma, X.; Jia, F.; Guo, X.; Wang, Z. Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchim. Acta 2015, 182, 1709–1714. [Google Scholar] [CrossRef]
- He, B.; Dong, X. Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Microchim. Acta 2018, 185, 462. [Google Scholar] [CrossRef] [PubMed]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging applications of label-free optical biosensors. Nanophotonics 2017, 6, 627–645. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
Mycotoxin | Production Protocol | Affinity | Ref. |
---|---|---|---|
Zearalenone | Variable region genes selected from hybridoma cells and cloned into a phagemid | IC50 14 ng/mL | [79] |
DNA fragment first cloned in phage display vector and then introduced into immature Arabidopsis seeds via Agrobacterium tumefaciens mediation | IC50 11.2 ng/mL | [80] | |
Expression of a single clone of scFv gene and E-tag fusion gene in E. coli | LOD 1 mg/L (ELISA) | [81] | |
scFv cloned into pComb 3XSS vector and expressed in E. coli | IC50 80 ng/mL, LOD 10 ng/mL (ELISA) | [82] | |
DON | Expression of a single clone of scFv gene and E-tag fusion gene in E. coli | IC50 8.2 ng/mL (ELISA) K 9.6 × 1010 M−1 | [83] |
Expressed from hybridoma cell line used for monoclonal Ab production | IC50 36.1 ng/mL (ELISA) and 68.3 ng/mL (interferometry) | [77] | |
Cloned from hybridoma 3G7 and produced in recombinant E. coli | KD 8.8 × 10−8 M | [84] | |
Fumonisin B1 | scFv DNA fragments cloned into the phagemid pHEN1 by phage display to construct prokaryotic expression vector pET22b-scFv | IC50 220 ppb, LOD 8.32 μg/kg (ELISA, corn samples) | [85] |
Coding gene was derived from monoclonal Ab, cloned from hybridoma DV9, expressed in E. coli, structure was then optimized for refolding | - | [86] | |
Aflatoxins | scFv screened from phage-displayed Ab library derived from monoclonal Ab | IC50 0.11 (AFB1), 0.04 (AFB2), 0.10 (AFB3) μM | [87] |
Selected from a naive human phage-displayed scFv library | IC50 0.02–0.06 μg/mL | [88] | |
scFv formed in recombinant E. coli after cloning the scFv-coding gene from hybridoma 2C12. The scFv formed inclusion bodies in the cytoplasm of E. coli required in vitro refolding. | K (8.5−27) × 108 M−1 | [89] | |
Mutant scFv from yeast mutant library, expression via E. coli periplasmic secretion | KD 82.7 × 10−8 M | [90] | |
scFv derived from hybridoma lines with different VH/VL orientation and then expression in E. coli in form of inclusion body | IC50 50 μg/mL (ELISA) | [91] | |
scFv gene cloned from hybridoma 2C12 and expressed in E. coli forming inclusion bodies in the cytoplasm | IC50 1.16 × 10−7 M | [92] | |
Selection of scFv from positive phage-display library produced from 20 hybridoma cell lines | IC50 down to 0.01 ng/mL (AFB1, ELISA) | [93] | |
Human scFv library constructed from a high variety of donors by overlapping extension PCR, cloned to pMod1 phagemid vector, electroporated in the E. coli | IC50 less than 1 μg/mL (ABF1, competitive ELISA) | [94] |
Immunosensor Assembly | Measurement Protocol | LOD/Dynamic Range, Sample | Ref. |
---|---|---|---|
AFB1 | |||
physical entrapment in the layer of carbon nanotubes and ionic liquid on glassy carbon electrode | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.03 ng/mL, conc. range 0.1–10 ng/mL; olive oil | [95] |
ab immobilization in poly(l-lysine) layer deposited onto reduced graphene oxide on conducting glass | field effect capacitor, capacitance change | LOD 0.1 fg/mL, conc. range 0.1 fg/mL – 1 pg/mL | [96] |
Au/reduced graphene oxide layer on indium-tin oxide (ITO) electrode, Ab carbodiimide binding of monoclonal Ab | DC, electrocatalytic current | LOD 0.1 ng/ml, conc. range 0.1–12 ng/mL | [97] |
polypyrrole-polypyrrolpropionic acid electropolymerized onto reduced graphene oxide on glassy carbon electrode, Ab bonded by carbodiimide binding | DC with [Fe(CN)6]3−/4− redox probe | LOD 10 fg/mL, conc. range 10 fg/mL–10 pg/mL; corn | [98] |
polyaniline nanofibers and Au nanoparticles on ito electrode, Ab cross-linked with glutaraldehyde | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.05 ng/mL, conc. range 0.1–100 ng/mL; corn | [99] |
Au electrode with self-assmebled monolayer (SAM) of cysteine, carbon nanotubes with covalently attached Ab | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.79 pg/g, conc. range 0.1–20 pg/g; corn flour | [100] |
chitosan-Au nanoparticles on Au microelectrode, Ab covalently bonded via carbodiimide binding | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.06 ng/mL, conc. range 0.1–1, 1–30 ng/mL, maize | [101] |
chitosan-Au nanoparticles on Au microelectrode, Ab covalently bonded via carbodiimide binding | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.12 ng/mL, conc. range 0.2–2, 2–30 ng/mL, wheat | [102] |
Bi oxide nanorods onto the ITP electrode, Ab adsorption | DC and EIS with [Fe(CN)6]3−/4− redox probe | LOD 8.715 ng/dL, conc. range 1–70 ng/dL; | [103] |
poly(ethylenedioxythiophene) and reduced graphene oxide deposited on Au nanoparticles on glassy carbon electrode, monoclonal Ab immobilized by carbodiimide binding | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.109 ng/mL, conc. range 0.5–20 and 20–60 ng/mL, maize | [104] |
chitosan–multiwalled carbon nanotubes with covalently attached conjugate of AFB1 with BSA; HRP as label with tetramethylbenzidine as substrate | indirect competitive ELISA, DPV of tetramethylbenzidine | LOD.1 pg/mL, conc. range 0.0001–10 ng/mL; palm kernel cake, corn kernels, soy beans | [105] |
OTA | |||
screen-printed carbon electrode modified with Au nanoparticles covered with cystamine, Ab immobilized by glutaraldehyde | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.25 ng/mL, conc. range 0.3–20 ng/mL; red wine | [106] |
planar boron doped diamond electrode with covalently attached Ab via diazonium salt binding | DC and EIS with [Fe(CN)6]3−/4− redox probe | LOD 7 pg/mL; conc. range 7 pg/mL–25 ng/mL; coffee beans | [107] |
screen-printed carbon electrode, magnetic immobilization of Ab, HRP as tracer | DC (hydroquinone signal of HRP activity) | LOD 0.32 μg/L, instant coffee | [108] |
Au electrode covered with BSA and Ab covalently linked by carbodiimide binding | EIS with [Fe(CN)6]3−/4− redox probe | conc. range 2.5–100 ng/mL, plant extracts | [109] |
capacitance sensor based on Si/SiO2/Si3N4 coating and carboxylated magnetic nanoparticles with attached Ab via γ-aminopropyltriethoxysilane (APTES) so-gel method | capacitance measurements | LOD 4.57 pm, conc. range 2.47–49.52 pm | [110] |
amino functionalized amorphous carbon with embedded zirconia nanoparticles on ITO electrode, Ab immobilization in BSA matrix by carbodiimide binding | DPV and EIS with [Fe(CN)6]3−/4− redox probe | conc. range 1–5, 5−10 ng/mL, coffee | [111] |
Zearalenone | |||
glassy carbon electrode covered with dispersion of mesoporous carbon and Au@AgPt nanoparticles. ab physically adsorbed | SWV with [Fe(CN)6]3− ions | LOD 1.7 pg/mL, conc. range 0.005–15 ng/mL, milk | [112] |
glassy carbon electrode covered with polyethylene imine–carbon nanotubes layer modified with Au-Pt nanoparticles, monoclonal Ab immobilized in BSA matrix | DPV with [Fe(CN)]3−/4− redox probe | LOD 0.5 pg/mL, conc. range 0.005–50 ng/mL; cereal and feed samples | [113] |
carboxylated carbon nanotubes/chitosan film, conjugate of zearalenone with BSA; alkaline phosphatase label with naphtylphosphate substrate | indirect competitive assay, DPV signal of naphtol oxidation | LOD 4.7 pg/mL, conc. range 10 pg/mL–1000 ng/mL, cereal and foodstuffs samples | [114] |
screen-printed carbon electrode modified with aminated mesoporous silica containing Fe2O3; HRP label with tetrabutylcatechol as substrate | sandwich ELISA assay, DPV signal of tetrabutylcatechol oxidation | LOD 0.57 ng/mL, conc. range 1.88–45 ng/mL; amaranthus cruentus seeds | [115] |
DON | |||
glassy carbon electrode modified with nafion with Au nanoparticles dotted graphene functionalized with 4-nitrophenylazo | EIS with tris-bipyridine Ru(II) chloride as redox probe | LOD 0.3 ng/mL, conc. range 6–30 ng/mL; wheat, corn, roasted coffee | [116] |
screen-printed electrode covered with Au nanoparticles and polypyrrole–reduced graphene oxide composite, Ab immobilized by physical adsorption | DPV with [Fe(CN)6]3−/4− redox probe | LOD 8.6 ppb, conc. range 0.05–1 ppm; corn | [117] |
Fumonisin B1 | |||
screen-printed electrode covered with Au nanoparticles and polypyrrole–reduced graphene oxide composite, Ab immobilized by physical adsorption | DPV with [Fe(CN)6]3−/4− redox probe | LOD 4.2 ppb, conc. range 0.2–4.5 ppm; corn | [117] |
glassy carbon electrode covered with single-walled carbon nanotubes, chitosan and DON-BSA conjugate, elisa with alkaline phosphatase and 1-naphtylphosphate as substrate | indirect competitive assay, DPV signal of α-naphtol oxidation | LOD 5 pg/mL conc. range 0.01–1000 ng/mL | [118] |
T-2 toxin | |||
glassy carbon electrode covered with single-walled carbon nanotubes, chitosan and DON-BSA conjugate, ELISA with alkaline phosphatase and 1-naphtylphosphate as substrate | indirect competitive assay, DPV signal of α-naphtol oxidation | LOD 0.13 μg/mL, conc. range 0.01–100 μg/mL, feed and swine meat | [119] |
Mycotoxin | Aptamer Structure | Sensitivity | Ref. |
---|---|---|---|
AFB1 | 5′-GTT GGG CAC GTG TT GTC TCT CTG TGT CTC GTG C CCT TCG CTA GGC CCA C-3′ | LOD 0.1 ng/mL | [124] |
5′-CTC GTC TCG TTC TGT CAG TGT TCT TCT GGC TTG GTG GTT GGT GTG GTG GCT TGA TTT GGT AGA CAC GAA GAA GAA GGA AGG A-3′ | KD 50.4 nM, LOD 20 ng/mL | [125] | |
5′-TGG GGT TTT GGT GGC GGG TGG TGT ACG GGC GAG GG-3′ | LOD 0.2 ng/mL | [126] | |
5′-GTT GGG CAC GTG TTG TCT CTC TGT GTC TCG TGC CCT TCG CTA GGC CCA CA-3′ | [127] | ||
AFB2 | 5′-AGC AGC ACA GAG GTC AGA TGC TGA CAC CCT GGA CCT TGG GAT TCC GGA AGT TTT CCG GTA CCT ATG CGT GCT ACC GTG AA-3′ | KD 9.8 nM, | [128] |
5′-AAA AAA AAA AGT TGG GCA CGT GTT GTC TCT CTG TGT CTC GTG CCC TTC GCT AGG CCC ACA-3′ | LOD 4.5 ppb | [129] | |
AFM1 | 5′-ACT GCT AGA GAT TTT CCA CAT-3′ | LOD 5 ng/kg | [130] |
5′-GTT GGG CAC GTG TTG TCT CTC TGT GTC TCG TGC CCT TCG CTA GGC CCA CA-3′ | KD 10 nM | [131] | |
OTA | 5′-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3′ | LOD 0.8 ng/mL | [132] |
5′-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3′ | LOD 0.01 ng/L | [133] | |
5′-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3′ | LOD 24.1 nM | [134] | |
Fumonisin B1 | 5′-AAT CGC ATT ACC TTA TAC CAG CTT ATT CAA TTA CGT CTG CAC ATA CCA GCT TAT TCA ATT-3′ | KD 100 nM | [135] |
5′-ATA CCA GCT TAT TCA ATT AAT CGC ATT ACC TTA TAC CAG CTT ATT CAA TTA CGT CTG CAC ATA CCA GCT TAT TCA ATT AGA TAG TAA GTG CAA TCT-3 | LOD 33 ng/mL | [136] | |
Zearalenone | 5′-AGC AGC ACA GAG GTC AGA TGT CAT CTA TCT ATG GTA CAT TAC TAT CTG TAA TGT GAT ATG CCT ATG CGT GCT ACC GTG AA-3′ | LOD 0.5 ng/mL | [137] |
T-2 toxin | 5′-CAG CTC AGA AGC TTG ATC CTG TAT ATC AAG CAT CGC GTG TTT ACA CAT GCG AGA GGT GAA GAC TCG AAG TCG TGC ATC TG-3′ | LOD 0.93 pg/mL | [138] |
Aptasensor Assembly | Measurement Protocol | LOD/Dynamic Range, Sample | Ref. |
---|---|---|---|
AFB1 | |||
Poly(Neutral red) with carboxylated macrocycles as supports for mediator and aptamer | DC, EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.05 nM, conc. range 0.1–100 nM; nuts, wine, soy sauce | [147] |
Glassy carbon electrode modified with graphene and Au nanoparticles bearing luminol and HRP. Aptamer modified with methylene blue | Target reaction removed methylene blue label and increased luminescence due to release of quencher from the electrode | LOD 0.43 (DC mode) and 0.12 pM (electrochemiluminescence mode); conc. range 5 pM–10 nM, | [148] |
Aptamer bearing Au nanoparticles and methylene blue | SWV, methylene blue signal | LOD 0.6 × 10−4 ppt | [149] |
Screen-printed carbon electrode, aptamer immobilized via diazonium salt coupling | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.12 ng/mL, conc. range 0.125–16 ng/mL; beer, wine | [150] |
Glassy carbon electrode modified with Au nanoparticles and graphene oxide | DPV of Methylene blue as label in the aptamer assembly | LOD 0.05 ng/mL, conc. range 0.05–6.0 ng/mL; beer, wine | [126] |
Glassy carbon electrode covered with reduced graphene oxide, polyaniline, Au nanoparticles and MoS2 sheets | DPV, EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.003 fg/mL, conc. range 0.01–1.0 fg/mL; wine | [151] |
Au electrode with tetrahedral DNA molecules bearing sequences complementary to aptamers. ELISA with HRP label | DC current of thionine as HRP substrate | LOD 0.01 fg/mL, conc. range 0.1 fg/mL–0.1 μg/mL; rice, wheat | [152] |
Screen-printed carbon electrode with magnetic Fe3O4@Au nanoparticles coupled to thiolated aptamer | EIS with [Fe(CN)6]3−/4− redox probe | LOD 15 pg/mL, conc. range 20 pg/mL–50 ng/mL; peanut | [153] |
AFM1 | |||
Glassy carbon electrode, aptamer immobilized via diazonium salt binding | DC, EIS with [Fe(CN)6]3−/4− redox probe | LOD 1.15 ng/mL, conc. range 2–150 ng/mL; milk | [154] |
Poly(Neutral red) with carboxylated macrocycles as supports for mediator and aptamer | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.5 ng/mL, conc. range 5–120 ng/L; milk products | [155] |
Au screen-printed electrode with hairpin aptamer bearing Au nanoparticles | DPV of diffusionally free Methylene blue added | LOD 0.9 ng/L, conc. range 2–600 ng/L; human serum, milk | [156] |
Au electrode modified with streptavidin and biotinylated aptamer | SWV signal | Conc. range 1–100 000 ppt | [157] |
Au electrode covered with chemisorbed neutravidin or cystamine SAM-bearing poly(amidoamine) (PAMAM) with biotinylated aptamer | DPV signal of ferrocene as neutravidin label | LOD 8.47 (PAMAM) and 8.62 (neutravidin support); milk | [158] |
OTA | |||
Au electrode with capture DNA probe; reduced graphene oxide and Au nanoparticles as labels of signaling DNA probe | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.3 pg/mL, conc. range 1 pg/mL–50 ng/mL; wine | [159] |
Au electrode covered with cystamine and reduced graphene oxide with nanoAu particles | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.03 ng/mL, conc. range 1.0–200 ng/mL | [160] |
Au electrode with covalently attached aptamer hybridized with pinhole DNA probes bearing alkaline phosphatase as label | DPV signal of α-naphtol as the product of enzyme reaction | LOD 2 pg/mL, conc. range 0.005–100 ng/mL; wine | [161] |
Aptamers on magnetic beads modified with CdTe and PbS | DPV signal of Cd(II) and Pb(II) ions after magnetic separation and dissolution of the aptamer-analyte complexes | Conc. range 10 pg/mL–10 ng/mL; maize | [162] |
Thionine labeled aptamers on graphene oxide | DPV of thionine signal | LOD 5.6 pg/mL; wheat | [163] |
Au electrode with thiolated aptamer, carbon nanotubes with methylene blue as signal amplifier | DPV of Methylene blue signal | LOD 134 (serum) and 58 (grape) pM | [164] |
Au electrode modified with cystamine SAM, porous carbon and Au nanoparticles bearing aptamer | DPV of Methylene blue signal | LOD 5 fg/mL, conc. range 5 fg/mL–0.05 ng/mL; corn | [165] |
Screen-printed carbon electrode modified with polythionine and IrO2 particles with attached aptamer | EIS with [Fe(CN)6]3−/4− redox probe | LOD 14 pM, conc. range 0.01–100 nM; wine | [166] |
Screen-printed carbon electrode with aptamer immobilized via diazonium salt coupling | DPV, EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.15 ng/mL, 0.15–2.5 ng/mL; Cocoa beans | [167,168] |
Aptamer covalently attached to PAMAM dendrimer on the polypyrrole film deposited on the Au electrode | EIS without redox probe | LOD 2 ng/L, conc. range up to 5 μg/L | [169] |
Glassy carbon electrode modified with Au nanoparticles with attached aptamer, Cd-containing metal-organic framework particles as labels | DPV signal of Cd(II) ions in the label structure | LOD 10 pg/mL, conc. range 0.05–100 ng/mL; wine | [170] |
Screen-printed carbon electrode covered with polythiophene-carboxylic acid with covalently attached aptamer | EIS with [Fe(CN)6]3−/4− redox probe | LOD 0.125 ng/mL, conc. range 0.125–20.0 ng/mL; Coffee | [171] |
Au electrode covered with β-cyclodextrin on the MoS2 layer with Au nanoparticles; aptamer is attached to the surface via supramolecular interaction with terminal methylene blue group | DPV signals of both Methylene blue and ferrocene (changing synchronously) | LOD 0.06 nM, conc. range 0.1–50 nM; wine | [172] |
Au electrode with covalently attached thiolated DNA complementary to aptamer. Signaling probe covalently attached to Au nanoparticles bearing ferrocene label | DPV signal of ferrocene | LOD 0.001 ppb, conc. range 0.001–500 ppb; wine | [173] |
Fumonisin F1 | |||
Glassy carbon electrode modified with Au nanoparticles and DNA complementary to the aptamer; signaling DNA probe is modified with reduced graphene oxide/thionine | DC thionine signal | LOD 1 pg/mL, conc. range 1–106 pg/mL; wheat | [174] |
Glassy carbon electrode modified with Au nanoparticles bearing thiolated aptamer | EIS with no redox probe | LOD 2 pM, conc. range 0.1 nM–100 μM; wheat | [175] |
Patulin | |||
Glassy carbon electrode modified with ZnO nanorods and Au nanoparticles | DPV with [Fe(CN)6]3−/4− redox probe | LOD 0.25 pg/mL, conc. range 0.50 pg/mL–50 ng/mL; apple | [176] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evtugyn, G.; Hianik, T. Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors 2019, 7, 10. https://doi.org/10.3390/chemosensors7010010
Evtugyn G, Hianik T. Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors. 2019; 7(1):10. https://doi.org/10.3390/chemosensors7010010
Chicago/Turabian StyleEvtugyn, Gennady, and Tibor Hianik. 2019. "Electrochemical Immuno- and Aptasensors for Mycotoxin Determination" Chemosensors 7, no. 1: 10. https://doi.org/10.3390/chemosensors7010010
APA StyleEvtugyn, G., & Hianik, T. (2019). Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors, 7(1), 10. https://doi.org/10.3390/chemosensors7010010