Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins
Abstract
:1. Introduction
Why Look for Other Analytical Methods in Wine Analysis?
2. Electronic Tongues Technology
3. Principles of Detection: Electrochemical Methods
4. Distinct Materials for the Sensing Units
5. Sensor and Biosensor Construction
5.1. Classical Methods
5.2. Methods Based on Nanostructured Architectures
5.3. Methods Used for Biosensor Construction
6. Methods of Data Analysis
7. Summary of the Applications
7.1. Electronic Tongues in the Wine Industry
7.2. Major Challenges of ETs and bioETs in Wine Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Kirsanov, D.; Mednova, O.; Vietoris, V.; Kilmartin, P.A.; Legin, A. Towards reliable estimation of an “electronic tongue” predictive ability from PLS regression models in wine analysis. Talanta 2012, 90, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, P.; Casolino, M.C.; Forina, M. Chemometric brains for artificial tongues. Adv. Food Nutr. Res. 2010, 61, 57–117. [Google Scholar]
- Bachmann, T.T.; Schmid, R.D. A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution. Anal. Chim. Acta 1999, 401, 95–103. [Google Scholar] [CrossRef]
- Tonning, E.; Sapelnikova, S.; Christensen, J.; Carlsson, C.; Winther-Nielsen, M.; Dock, E.; Solna, R.; Skladal, P.; Norgaard, L.; Ruzgas, T.; et al. Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosens. Bioelectron. 2005, 21, 608–617. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L. Electronic Noses and Tongues in the Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Travassos Rosário, A.; Carmo Dias, J. How Industry 4.0 and Sensors Can Leverage Product Design: Opportunities and Challenges. Sensors 2023, 23, 1165. [Google Scholar] [CrossRef]
- LePree, J. Smart Sensors Enable Industry 4.0. 1 May 2019. Available online: https://www.chemengonline.com/smart-sensors-enable-industry-4-0/ (accessed on 1 April 2025).
- Potter, R.I.; Warren, C.A.; Lee, J.; Ross, C.F. Comparative assessment of Riesling wine fault development by the electronic tongue and a sensory panel. J. Food Sci. 2024, 89, 3006–3018. [Google Scholar] [CrossRef]
- Paup, V.D.; Cook-Barton, T.; Diako, C.; Edwards, C.G.; Ross, C.F. Detection of red wine faults over time with flash profiling and the electronic tongue. Beverages 2021, 7, 52. [Google Scholar] [CrossRef]
- Cho, S.; Shakir Moazzem, M.D. Recent applications of potentiometric electronic tongue and electronic nose in sensory evaluation. Prev. Nutr. Food Sci. 2022, 27, 354–364. [Google Scholar] [CrossRef]
- Gabrieli, G.; Muszynski, M.; Ruch, P.W. A reconfigurable integrated electronic tongue and its use in accelerated analysis of juices and wines. arXiv 2022, arXiv:2205.15018v1. [Google Scholar]
- Kutyła-Olesiuk, A.; Wesoły, M.; Wróblewski, W. Hybrid electronic tongue as a tool for the monitoring of wine fermentation and storage process. Electroanalysis 2018, 30, 1983–1989. [Google Scholar] [CrossRef]
- Branchini, C.G.; Lvova, L.; Di Natale, C.; Paolesse, R. Wine and combined electronic nose and tongue. In Electronic Noses and Tongues in Food Science; Rodríguez Méndez, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 301–307. [Google Scholar]
- Rodríguez Méndez, M.L.; De Saja, J.A.; Medina-Plaza, C.; García-Hernández, C. Electronic tongues for the organoleptic characterization of wines. In Electronic Noses and Tongues in Food Science; Rodriguez Mendez, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 265–273. [Google Scholar]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J.M. Determination of Odorants in Varietal Wines from International Grape Cultivars (Vitis vinífera) Grown in NW Spain. South Afr. J. Enol. Vitic. 2013, 34, 212–222. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chem. 2010, 123, 107–116. [Google Scholar] [CrossRef]
- Atasanova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- Gardner, S. Consumers and food safety: A food industry perspective. In Food, Nutrition and Agriculture; Albert, J.L., Ed.; Food and Agriculture Organization (FAO): Rome, Italy, 1993. [Google Scholar]
- Borbalán, A.M.A.; Zorro, L.; Guillén, D.A.; García Barroso, C. Study of the polyphenol content of red and white grape varieties by liquid chromatography–mass spectrometry and its relationship to antioxidant power. J. Chromatogr. A 2003, 1012, 31–38. [Google Scholar] [CrossRef]
- De la Cruz, A.A.; Hilbert, G.; Riviere, C.; Mengin, V.; Ollat, N.; Bordenave, L.; Decroocq, S.; Delaunay, J.C.; Delrot, S.; Merillon, J.M.; et al. Anthocyanin identification and composition of wild Vitis spp. accessions by using LC-MS and LC-NMR. Anal. Chim. Acta 2012, 732, 145–152. [Google Scholar] [CrossRef]
- Gishen, M.; Dambergs, R.G.; Coxxolino, D. Grape and wine analysis—Enhancing the power of spectroscopy with chemometrics. A review of some application in the Australian wine industry. Aust. J. Grape Wine Res. 2005, 11, 296–305. [Google Scholar] [CrossRef]
- Nóbrega, I.C.C.; Pereira, G.E.; Silva, M.; Pereira, E.V.S.; Medeiros, M.M.; Telles, D.L.; Albuquerque, E.C., Jr.; Oliveira, J.B.; Lachenmeier, D.W. Improved sample preparation for GC–MS–SIM analysis of ethyl carbamate in wine. Food Chem. 2015, 177, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Thibon, C.; Pons, A.; Mouakka, N.; Redon, P.; Méreau, R.; Darriet, P. Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2015, 1415, 123–133. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Boix, N.; Piqué, E.; Gómez-Catalan, J.; Medina-Remon, A.; Sasot, G.; Mercader-Martí, M.; Llobet, J.M.; Lamuela-Raventos, R.M. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS. Food Chem. 2015, 181, 146–151. [Google Scholar] [CrossRef]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Nardin, T.; Malacarne, M.; Larcher, R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction–ultrahigh-performance liquid chromatography–quadrupole-Orbitrap mass spectrometry. J. Chromatogr. A 2015, 1423, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Kruzlicova, D.; Fiket, Ž.; Kniewald, G. Classification of Croatian wine varieties using multivariate analysis of data obtained by high resolution ICP-MS analysis. Food Res. Int. 2013, 54, 621–626. [Google Scholar] [CrossRef]
- Skogerson, K.; Runnebaum, R.; Wohlgemuth, G.; de Ropp, J.; Heymann, H.; Fiehn, O. Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body. J. Agric. Food Chem. 2009, 57, 6899–6907. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, C.; Kokkotou, K.; Zoumpoulakis, P.; Zervou, M. NMR metabolite fingerprinting in grape derived products: An overview. Food Res. Int. 2013, 54, 1184–1194. [Google Scholar] [CrossRef]
- Raco, B.; Dotsika, E.; Poutoukis, D.; Battaglini, R.; Chantzi, P. O–H–C isotope ratio determination in wine in order to be used as a fingerprint of its regional origin. Food Chem. 2015, 168, 588–594. [Google Scholar] [CrossRef]
- Versini, G.; Camin, F.; Ramponi, M.; Dellacassa, E. Stable isotope analysis in grape products: 13C-based internal standardization methods to improve the detection of some types of adulterations. Anal. Chim. Acta 2006, 563, 325–330. [Google Scholar] [CrossRef]
- Dordevic, N.; Camin, F.; Marianella, R.M.; Postma, G.J.; Buydens, L.M.C.; Wehrens, R. Detecting the addition of sugar and water to wine. Aust. J. Grape Wine Res. 2013, 19, 324–330. [Google Scholar] [CrossRef]
- Johnson, A.J.; Hirson, G.D.; Ebeler, S.E. Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry. PLoS ONE 2012, 7, e42693. [Google Scholar] [CrossRef]
- Di Egidio, V.; Sinelli, N.; Giovanelli, G.; Moles, A.; Casiraghi, E. NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur. Food Res. Technol. 2010, 230, 947–955. [Google Scholar] [CrossRef]
- Oliva, J.; Martinez, G.; Cermeno, S.; Motas, M.; Barba, A.; Camara, M.A. Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. Eur. Food Res. Technol. 2018, 244, 1083–1090. [Google Scholar] [CrossRef]
- Prusisz, B.; Mulica, K.; Pohl, P. Ion exchange and ion exclusion chromatographic characterization of wines using conductivity detection. J. Food Drug Anal. 2008, 16, 95–103. [Google Scholar] [CrossRef]
- Riul, A., Jr.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N., Jr. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of electronic tongue for fresh foods quality evaluation: A review. Food Rev. Int. 2018, 34, 746–769. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic noses and tongues to assess food authenticity and adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef]
- Bakker, E.; Qin, Y. Electrochemical Sensors. Anal. Chem. 2006, 78, 3965–3983. [Google Scholar] [CrossRef]
- Sandulescu, R.; Tertis, M.; Cristea, C.; Bodoki, E. New Materials for the Construction of Electrochemical Biosensors in Biosensors—Micro and Nanoscale Applications; Rinken, T., Ed.; IntechOpen: London, UK, 2015. [Google Scholar]
- Rudnitskaya, A.; Schmidtke, L.M.; Reis, A.; Domingues, M.R.M.; Delgadillo, I.; Debus, B.; Kirsanov, D.; Legin, A. Measurements of the effects of wine maceration with oak chips using an electronic tongue. Food Chem. 2017, 229, 20–27. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Rodriguez-Mendez, M.L.; Mohtasebi, S.S.; Apetrei, C.; Lozano, J.; Ahmadi, H.; Razavi, S.H.; de Saja, J.A. Monitoring the aging of beers using a bioelectronic tongue. Food Control 2012, 25, 216–224. [Google Scholar] [CrossRef]
- Novakowski, W.; Bertotti, M.; Paixao, T.R.L.C. Use of copper and gold electrodes as sensitive elements for fabrication of an electronic tongue: Discrimination of wines and whiskies. Microchem. J. 2011, 99, 145–151. [Google Scholar] [CrossRef]
- Winquist, F.; Olsson, J.; Eriksson, M. Multicomponent analysis of drinking water by a voltammetric electronic tongue. Anal. Chim. Acta 2011, 683, 192–197. [Google Scholar] [CrossRef]
- Hood White, M.R.; Heymann, H. Assessing the sensory profiles of sparkling wine over time. Am. J. Enol. Vitic. 2015, 66, 156–163. [Google Scholar] [CrossRef]
- Lucherk, L.W.; O’Quinn, T.G.; Legako, J.F.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Consumer and trained panel evaluation of beef strip steaks of varying marbling and enhancement levels cooked to three degrees of doneness. Meat Sci. 2016, 122, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.S.; Ahn, B.H.; Kim, H.R.; Lee, S.Y. Identification of sensory attributes that drive the likeability of Korean rice wines by American panelists. J. Food Sci. 2015, 80, 161–170. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Rosenvald, S.; Laaksonen, O.; Vanag, A.; Ollikka, T.; Vene, K.; Yang, B.R. Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. Food Chem. 2018, 246, 351–359. [Google Scholar] [CrossRef]
- McKay, M.; Bauer, F.F.; Panzeri, V.; Buica, A. Testing the sensitivity of potential panelists for wine taint compounds using a simplified sensory strategy. Foods 2018, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, M.; Etaio, I.; Guerrero, L.; Fernandez-Gil, M.P.; Perez-Elortondo, F.J. Does consumer liking fit the sensory quality assessed by trained panelists in traditional food products? A study on PDO Idiazabal cheese. J. Sens. Stud. 2018, 33, e12318. [Google Scholar] [CrossRef]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic tongue for brand uniformity control: A case study of Apulian red wines recognition and defects evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef]
- Taladrid, D.; Lorente, L.; Bartolome, B.; Moreno-Arribas, M.V.; Laguna, L. An integrative salivary approach regarding palate cleansers in wine tasting. J. Texture Stud. 2019, 50, 75–82. [Google Scholar] [CrossRef]
- Di Natale, C.; Davide, F.; D’Amico, A.; Legin, A.; Rudinitskaya, A.; Selezenev, B.L.; Vlasov, Y. Applications of an electronic tongue to the environmental control. In Proceedings of the The 10th European Conference on Solid-State Transducers (Eurosensors X), Leuven, Belgium, 8–11 September 1996; pp. 1345–1348. [Google Scholar]
- Toko, K. Taste sensor with global selectivity. Mater. Sci. Eng. C 1996, 4, 69–82. [Google Scholar] [CrossRef]
- Winquist, F.; Wide, P.; Lundstrom, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357, 21–31. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Toko, K.; Matsuno, T.; Yamafuji, K.; Hayashi, K.; Ikezaki, H.; Sato, K.; Toukubo, R.; Kawarai, S. Multichannel taste sensor using electric potential changes in lipid membranes. Biosens. Bioelectron. 1994, 9, 359–364. [Google Scholar] [CrossRef]
- Toko, K.; Murata, T.; Matsuno, T.; Kikkawa, Y.; Yamafuji, K. Taste map of beer by a multichannel taste sensor. Sens. Mater. 1992, 4, 145–151. [Google Scholar]
- Toko, K. A taste sensor. Meas. Sci. Technol. 1998, 9, 1919–1936. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues—A review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; De Saja, J.A.; Gonzales-Anton, R.; Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, M. Sensor arrays and electronic tongue systems. Int. J. Electrochem. 2012, 2012, 986025. [Google Scholar] [CrossRef]
- Wide, P.; Winquist, F.; Bergsten, P.; Petriu, E.M. The Human-based multisensor fusion method for artificial nose and tongue sensor data. IEEE Trans. Instrum. Meas. 1998, 47, 1072–1077. [Google Scholar] [CrossRef]
- Winquist, F.; Holmin, S.; Krantz-Rulcker, C.; Wide, P.; Lundstrom, I. A hybrid electronic tongue. Anal. Chim. Acta 2000, 406, 147–157. [Google Scholar] [CrossRef]
- Winquist, F.; Rydberg, E.; Holmin, S.; Krantz-Rulcker, C.; Lundstrom, I. Flow injection analysis applied to a voltammetric electronic tongue. Anal. Chim. Acta 2002, 471, 159–172. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sens. Actuators B 1997, 44, 532–537. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Davide, F.; D’Amico, A. Tasting of beverages using an electronic tongue. Sens. Actuators B 1997, 44, 291–296. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Davide, F.; D’Amico, A.; Legin, A.; Vlasov, Y.; Rudnitskaya, A.; Selezenev, B. Multicomponent analysis on polluted waters by means of an electronic tongue. Sens. Actuators B 1997, 44, 423–428. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Lvova, L.; Vlasov, Y.; Di Natale, C.; D’Amico, A. Evaluation of Italian wine by the electronic tongue: Recognition, quantitative analysis and correlation with human sensory perception. Anal. Chim. Acta 2003, 484, 33–34. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Seleznev, B.; Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie. Anal. Chim. Acta 2005, 534, 129–135. [Google Scholar] [CrossRef]
- Parra, V.; Hernando, T.; Rodriguez-Mendez, M.L.; de Saja, J.A. Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines. Electrochim. Acta 2004, 49, 5177–5185. [Google Scholar] [CrossRef]
- Arrieta, A.; Rodriguez-Mendez, M.L.; De Saja, J.A. Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sens. Actuators B 2003, 95, 357–365. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Voltammetric e-tongue for the quantification of total polyphenol content in olive oils. Food Res. Int. 2013, 54, 2075–2082. [Google Scholar] [CrossRef]
- Ghosh, A.; Tudu, B.; Tamuly, P.; Bhattacharyya, N.; Bandyopadhyay, R. Prediction of theaflavin and thearubigin content in black tea using a voltammetric electronic tongue. Chemometr. Intell. Lab. Syst. 2012, 116, 57–66. [Google Scholar] [CrossRef]
- Buratti, S.; Ballabio, D.; Giovanelli, G.; Zuluanga Dominguez, C.M.; Moles, A.; Benedetti, S.; Sinelli, N. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Anal. Chim. Acta 2011, 697, 67–74. [Google Scholar] [CrossRef]
- Cetó, X.; Céspedes, F.; del Valle, M. BioElectronic Tongue for the quantification of total polyphenol content in wine. Talanta 2012, 99, 544–551. [Google Scholar] [CrossRef]
- Gil, L.; Barat, J.M.; Baigts, D.; Martínez-Máñez, R.; Soto, J.; Garcia-Breijo, E.; Aristoy, M.C.; Toldrá, F.; Llobet, E. Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chem. 2011, 126, 1261–1268. [Google Scholar] [CrossRef]
- Gutierrez-Capitan, M.; Santiago, J.L.; Vila-Planas, J.; Llobera, A.; Boso, S.; Gago, P.; Martinez, M.C.; Jimenez-Jorquera, C. Classification and characterization of different white grape juices by using a hybrid electronic tongue. J. Agric. Food Chem. 2013, 61, 9325–9332. [Google Scholar] [CrossRef]
- Lvova, L.; Denis, S.; Barra, A.; Mielle, P.; Salles, C.; Vergoignan, C.; Di Natale, C.; Paolesse, R.; Temple-Boyer, P.; Feron, G. Salt release monitoring with specific sensors in “in vitro” oral and digestive environments from soft cheeses. Talanta 2012, 97, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Peres, A.M.; Dias, L.G.; Veloso, A.C.A.; Meirinho, S.G.; Morais, J.S.; Machado, A.A.S.C. An electronic tongue for gliadins semi-quantitative detection in foodstuffs. Talanta 2011, 83, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.A.; De la Fuente, R.; Caballero, I.; Rodriguez-Mendez, M.L. Beer discrimination using a portable electronic tongue based on screen-printed electrodes. J. Food Eng. 2015, 157, 57–62. [Google Scholar] [CrossRef]
- Gay, M.; Diez-Arevalo, E.; Rodriguez-Mendez, M.L.; De Saja, J.A. Electrochemical quartz crystal microbalance analysis of the oxidation reaction of phenols found in wines at lutetium bisphthalocyanine electrodes. Sens. Actuators B 2013, 185, 24–31. [Google Scholar]
- Medina-Plaza, C.; Revilla, G.; Munoz, R.; Fernandez-Escudero, J.A.; Barajas, E.; Medrano, G.; De Saja, J.A.; Rodriguez-Mendez, M.L. Electronic tongue formed by sensors and biosensors containing phthalocyanines as electron mediators. Application to the analysis of red grapes. J. Porphyr. Phthalocyanines 2014, 18, 76–86. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D.W. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Tahara, Y.; Nakashi, K.; Ji, K.; Ikeda, A.; Toko, K. Development of a portable taste sensor with a lipid/polymer membrane. Sensors 2013, 13, 1076–1084. [Google Scholar] [CrossRef]
- Dias, L.G.; Peres, A.M.; Barcelos, T.P.; Morais, J.S.; Machado, A.A.S.C. Semi-quantitative and quantitative analysis of soft drinks using an electronic tongue. Sens. Actuators B 2011, 154, 111–118. [Google Scholar] [CrossRef]
- Kutyla-Olesiuk, A.; Nowacka, M.; Wesoly, M.; Ciosek, P. Evaluation of organoleptic and texture properties of dried apples by hybrid electronic tongue. Sens. Actuators B 2013, 187, 234–240. [Google Scholar] [CrossRef]
- Ceto, X.; Gutierrez, J.M.; Mimendia, A.; Cespedes, F.; del Valle, M. Voltammetric electronic tongue for the qualitative analysis of beers. Electroanalysis 2013, 25, 1635–1644. [Google Scholar] [CrossRef]
- Del Valle, M. Electronic tongues employing electrochemical sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Sliwinska, M.; Wisniewska, P.; Dymerski, T.; Namiesnik, J.; Wardencki, W. Food analysis using artificial senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, P.; Wróblewski, W. Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 2011, 11, 4688–4701. [Google Scholar] [CrossRef] [PubMed]
- Scampicchio, M.; Ballabio, D.; Arecchi, A.; Cosio, S.M.; Mannino, S. Amperometric electronic tongue for food analysis. Microchim. Acta 2008, 163, 11–21. [Google Scholar] [CrossRef]
- Cavanillas, S.; Winquist, F.; Eriksson, M. A self-polishing platinum ring voltammetric sensor and its application to complex media. Anal. Chim. Acta 2015, 859, 29–36. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; Parra, V.; Apetrei, C.; Villanueva, S.; Gay, M.; Prieto, N.; De Saja, J.A. Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Applications. Microchim. Acta 2008, 163, 23–31. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Rodriguez-Mendez, M.L.; De Saja, J.A. Voltametric electronic tongue application to wines classification and correlation study with the chemical and sensory characterization. Quím. Nova 2010, 33, 787–793. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Schmidtke, L.M.; Delgadillo, I.; Legin, A.; Scollary, G. Study of the influence of micro-oxygenation and oak chip maceration on wine composition using an electronic tongue and chemical analysis. Anal. Chim. Acta 2009, 642, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Gay, M.; Apetrei, C.; Nevares, I.; del Alamo, M.; Zurro, J.; Prieto, N.; De Saja, J.A.; Rodríguez-Mendez, M.L. Application of an electronic tongue to study the effect of the use of pieces of wood and micro-oxygenation in the aging of red wine. Electrochim. Acta 2010, 55, 6782–6788. [Google Scholar] [CrossRef]
- Kutyła-Olesiuk, A.; Zaborowski, M.; Prokaryn, P.; Ciosek, P. Monitoring of beer fermentation based on hybrid electronic tongue. Bioelectrochemistry 2012, 87, 104–113. [Google Scholar] [CrossRef]
- Yoshida, M.; Shinohara, H.; Sugiyama, T.; Kumagai, M.; Muto, H.; Kodama, H. Taste of milk from inflamed breasts of breastfeeding mothers with mastitis evaluated using a taste sensor. Breastfeed. Med. 2014, 9, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, J.; Zhang, X. Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue. Electrochim. Acta 2013, 88, 231–239. [Google Scholar] [CrossRef]
- Esbensen, K.; Kirsanov, D.; Legin, A.; Rudnitskaya, A.; Mortensen, J.; Pedersen, J.; Vognsen, L.; Makarychev-Mikhailov, S.; Vlasov, Y. Fermentation monitoring using multisensor systems: Feasibility study of the electronic tongue. Anal. Bioanal. Chem. 2004, 378, 391–395. [Google Scholar] [CrossRef]
- Gil, L.; Barat, J.M.; Escriche, I.; Garcia-Breijo, E.; Martínez-Mañeez, R.; Soto, J. An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Microchim. Acta 2008, 163, 121–129. [Google Scholar] [CrossRef]
- Gil, L.; Barat, J.M.; Garcia-Breijo, E.; Ibañez, J.; Martínez-Mañeez, R.; Soto, J.; Llobet, E.; Brezemes, J.; Aristoy, J.C.; Toldra, F. Fish freshness analysis using metallic potentiometric electrodes. Sens. Actuators B 2008, 131, 362–370. [Google Scholar] [CrossRef]
- Rodríguez-Mendez, M.L.; Gay, M.; Apetrei, C.; De Saja, J.A. Biogenic amines and fish freshness assessment using a multisensory system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochim. Acta 2009, 54, 7033–7041. [Google Scholar] [CrossRef]
- Winquist, F.; Krantz-Rulcker, C.; Wide, P.; Lundström, I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas. Sci. Technol. 1998, 9, 1937–1946. [Google Scholar] [CrossRef]
- Tran, T.U.; Suzuki, K.; Okadome, H.; Homma, S.; Ohtsubo, K. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chem. 2004, 88, 557–566. [Google Scholar] [CrossRef]
- Parra, V.; Arrieta, A.A.; Fernandez-Escudero, J.A.; Rodríguez-Mendez, M.L.; De Saja, J.A. Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sens. Actuators B 2006, 118, 448–453. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D’Amico, A.; Ubigli, M.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sens. Actuators B 2000, 69, 342–347. [Google Scholar] [CrossRef]
- Riul, A.; de Sousa, H.C.; Malmegrim, R.R.; dos Santos, D.S.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Mattoso, L.H.C. Wine classification by taste sensors made from ultra-thin films and using neural networks. Sens. Actuators B 2004, 98, 77–82. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Haddi, Z.; Amari, A.; Bouchikhi, B.; Mimendia, A.; Ceto, X.; del Valle, M. Hybrid electronic tongue based on multisensor data fusion for discrimination of beers. Sens. Actuators B 2013, 177, 989–996. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Polshin, E.; Kirsanov, D.; Lammertyn, J.; Nicolai, B.; Saison, D.; Delvaux, F.R.; Delvaux, F.; Legin, A. Instrumental measurement of beer taste attributes using an electronic tongue. Anal. Chim. Acta 2009, 646, 111–118. [Google Scholar] [CrossRef]
- Polshin, E.; Rudnitskaya, A.; Kirsanov, D.; Legin, A.; Saison, D.; Delvaux, F.; Delvaux, F.R.; Nicolai, B.; Lammertyn, J. Electronic tongue as a screening tool for rapid analysis of beer. Talanta 2010, 81, 88–94. [Google Scholar] [CrossRef]
- Sliwinska, M.; García-Hernández, C.; Koscinski, M.; Dymerski, T.; Wardencki, W.; Namiesnik, J.; Sliwinska-Bartkowiak, M.; Jurga, S.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Discrimination of apple liqueurs (Nalewka) using a voltammetric electronic tongue, UV-Vis and Raman spectroscopy. Sensors 2016, 16, 1654. [Google Scholar] [CrossRef]
- Paixao, T.R.L.C.; Bertotti, M. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sens. Actuators B 2009, 137, 266–273. [Google Scholar] [CrossRef]
- Dias, L.A.; Peres, A.M.; Veloso, A.C.A.; Reis, F.S.; Vilas-Boas, M.; Machado, A.A.S.C. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sens. Actuators B 2009, 136, 209–217. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Jin, W. Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms. Sens. Actuators B 2013, 177, 684–694. [Google Scholar] [CrossRef]
- Major, N.; Markovic, K.; Krpan, M.; Šaric, G.; Hruškar, M.; Vahčić, N. Rapid honey characterization and botanical classification by an electronic tongue. Talanta 2011, 85, 569–574. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Domenech, E.; Gil-Sanchez, L. A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. J. Food Eng. 2012, 109, 449–456. [Google Scholar] [CrossRef]
- Ciosek, P.; Maminska, R.; Dybko, A.; Wroblewski, W. Potentiometric electronic tongue based on integrated array of microelectrodes. Sens. Actuators B 2007, 127, 8–14. [Google Scholar] [CrossRef]
- He, W.; Hu, X.; Zhao, L.; Liao, X.; Zhang, Y.; Zhang, M.; Wu, J. Evaluation of Chinese tea by the electronic tongue: Correlation with sensory properties and classification according to geographical origin and grade level. Food Res. Int. 2009, 42, 1462–1467. [Google Scholar] [CrossRef]
- Ivarsson, P.; Holmin, S.; Hojer, N.E.; Krantz-Rulcker, C.; Winquist, F. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sens. Actuators B 2001, 76, 449–454. [Google Scholar] [CrossRef]
- Apetrei, C.; Apetrei, I.M.; Villanueva, S.; De Saja, J.A.; Gutierrez-Rosales, F.; Rodríguez-Mendez, M.L. Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oil with different degree of bitterness. Anal. Chim. Acta 2010, 663, 91–97. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Kirsanov, D.; Legin, A.; Beullens, K.; Lammertyn, J.; Nicolai, B.; Irudayaraj, J. Analysis of apples varieties–comparison of electronic tongue with different analytical techniques. Sens. Actuators B 2006, 116, 23–28. [Google Scholar] [CrossRef]
- Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Yoon, H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 2013, 3, 524–549. [Google Scholar] [CrossRef]
- Wang, W.; Xu, G.; Cui, X.T.; Sheng, G.; Luo, X. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron. 2014, 58, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subramanyam, S.; Piletska, E.V.; Piletsky, S.A. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal. Chem. 2009, 81, 3576–3584. [Google Scholar] [CrossRef]
- Gao, Y.S.; Xu, J.K.; Lu, L.M.; Wu, L.P.; Zhang, K.X.; Nie, T.; Zhu, X.F.; Wu, Y. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens. Bioelectron. 2014, 52, 90–95. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, A.; Sun, Y.; Ru, X.; Ge, D.; Shi, W. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor. Electrochim. Acta 2012, 70, 278–285. [Google Scholar] [CrossRef]
- Kergoat, L.; Piro, B.; Simon, D.T.; Pham, M.C.; Noel, V.; Berggren, M. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites. Adv. Mater. 2014, 26, 5658–5664. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, G.; Armelin, E.; Aleman, C. Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys. Chem. B 2014, 118, 4669–4682. [Google Scholar] [CrossRef]
- Zagal, J.; Bedioui, F.; Dodelet, J.P. N4-Macrocyclic Metal Complexes; Springer: New York, NY, USA, 2006. [Google Scholar]
- Dini, D.; Hanack, M. Physical properties of phthalocyanine-based materials. In The Porphyrin Handbook, Phthalocyanines: Properties and Materials; Kadish, K., Smith, K., Guilard, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 17. [Google Scholar]
- Sivalingam, Y.; Pudi, R.; Lvova, L.; Pomarico, G.; Basoli, F.; Catini, A.; Legin, A.; Paolesse, R.; Di Natale, C. The light modulation of the interaction of L-cysteine with porphyrins coated ZnO nanorods. Sens. Actuators B 2015, 209, 613–621. [Google Scholar] [CrossRef]
- Legin, A.; Makarychev-Mikhailov, S.; Goryacheva, O.; Kirsanov, D.; Vlasov, Y. Cross-sensitive chemical sensors based on tetraphenylporphyrin and phthalocyanine. Anal. Chim. Acta 2002, 457, 297–303. [Google Scholar] [CrossRef]
- Lvova, L.; Paolesse, R.; Di Natale, C.; D’Amico, A. Detection of alcohols in beverages: An application of porphyrin-based Electronic tongue. Sens. Actuators B 2006, 118, 439–447. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; Medina-Plaza, C.; de Saja, J.A.; Apetrei, C.; Muñoz, R. Sensor arrays based on phthalocyanines: New developments on nanostructured and biomimetic electrochemical sensors. In Multisensor Systems for Chemical Analysis: Materials and Sensors; Lvova, L., Kirsanov, D., Di Natale, C., Legin, A., Eds.; Pan Stanford Publishing: Singapore, 2012; pp. 70–109. [Google Scholar]
- Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791. [Google Scholar] [CrossRef]
- Kalimuthu, P.; Sivanesan, A.; John, S.A. Fabrication of optochemical and electrochemical sensors using thin films of porphyrin and phthalocyanine derivatives. J. Chem. Sci. 2012, 124, 1315–1325. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; Gay, M.; de Saja, J.A. New insights into sensors based on radical bisphthalocyanines. J. Porphyr. Phthalocyanines 2009, 13, 1159–1167. [Google Scholar] [CrossRef]
- Hou, K.Y.; Huang, L.; Qi, Y.B.; Huang, C.X.; Pan, H.B.; Du, M.A. Bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. Mater. Sci. Eng. C 2015, 49, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185, 258. [Google Scholar] [CrossRef]
- Campbell, F.W.; Compton, R.G. The use of nanoparticles in electroanalysis: An updated review. Anal. Bioanal. Chem. 2010, 396, 241–259. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim. Acta 2009, 165, 1–22. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004, 16, 19–44. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; de Saja, J.A.; Rodríguez-Méndez, M.L. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles. Anal. Chim. Acta 2015, 853, 572–578. [Google Scholar] [CrossRef]
- Alizadeh, T.; Mirzagholipur, S. A nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles—Graphene nanocomposite. Sens. Actuators B 2014, 198, 438–447. [Google Scholar] [CrossRef]
- Fouladgar, M.; Karimi-Maleh, H.; Gupta, V. Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J. Mol. Liq. 2015, 208, 78–83. [Google Scholar] [CrossRef]
- Alencar, W.S.; Crespilho, F.N.; Martins, M.V.A.; Zucolotto, V.; Oliveira, O.N.; Silva, W.C. Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: Evidence of constitutional dynamic chemistry (CDC). Phys. Chem. Chem. Phys. 2009, 11, 5086–5091. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Ganesan, V. Zinc phthalocyanine and silver/gold nanoparticles incorporated MCM-41 type materials as electrode modifiers. Langmuir 2009, 25, 13264–13272. [Google Scholar] [CrossRef]
- Hou, C.; Liu, H.; Zhang, D.; Yang, C.; Zhang, M. Synthesis of ZnO nanorods- Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid. J. Alloys Compd. 2016, 666, 178–184. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Zhang, G.; Yu, G. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef]
- Zeravik, J.; Hlavacek, A.; Lacina, K.; Skládal, P. State of the art in the field of electronic and bioelectronic tongues—Towards the analysis of wines. Electroanalysis 2009, 21, 2509–2520. [Google Scholar] [CrossRef]
- Toko, K. Biochemical Sensors: Mimicking Gustatory and Olfactory Senses; Jenny Standford Publishing: New York, NY, USA, 2013. [Google Scholar]
- Medina-Plaza, C.; de Saja, J.A.; Rodríguez-Méndez, M.L. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens. Bioelectron. 2014, 57, 276–286. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Yang, L.L.; Yan, S.L.; Wang, M.M.; Cheng, D.; Chen, Q.; Dong, Y.L.; Liu, P.; Cai, W.Q.; et al. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 2015, 899, 57–65. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J. Food Eng. 2015, 149, 1–8. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples. Sens. Actuators B 2013, 178, 40–46. [Google Scholar] [CrossRef]
- Apetrei, C.; Rodríguez-Méndez, M.L.; De Saja, J.A. Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochim. Acta 2011, 56, 8919–8925. [Google Scholar] [CrossRef]
- Wang, K.; Dai, L.N.; Liu, Q.; Li, H.N.; Ju, C.; Wu, J.; Li, H.M. Electrodeposition of unsubstituted iron phthalocyanine nano-structure film in a functionalized ionic liquid and its electrocatalytic and electroanalysis applications. Analyst 2011, 136, 4344–4349. [Google Scholar] [CrossRef] [PubMed]
- Ponce, I.; Silva, J.F.; Oñate, R.; Rezende, M.C.; Paez, M.A.; Pavez, J.; Zagal, J.H. Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem. Commun. 2011, 13, 1182–1186. [Google Scholar] [CrossRef]
- Han, J.B.; Xu, X.Y.; Rao, X.Y.; Wei, M.; Evans, D.G.; Duan, X.J. Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. J. Mater. Chem. 2011, 21, 2126–2130. [Google Scholar] [CrossRef]
- Aoki, P.H.B.; Volpati, D.; Riul, A., Jr.; Caetano, W.; Constantino, C.J.L. Layer-by-Layer technique as a new approach to produce nanostructured films containing phospholipids as transducers in sensing applications. Langmuir 2009, 25, 2331–2338. [Google Scholar] [CrossRef]
- Volpati, D.; Alessio, P.; Zanfolim, A.A.; Storti, F.C.; Job, A.E.; Ferreira, M.; Riul, A.; Oliveira, O.N.; Constantino, C.J.L. Exploiting distinct molecular architectures of ultrathin films made with iron phthalocyanine for sensing. J. Phys. Chem. B 2008, 112, 15275–15282. [Google Scholar] [CrossRef]
- Santos, A.C.; Zucolotto, V.; Constantino, C.J.L.; Cunha, H.N.; dos Santos, J.R., Jr.; Eiras, C. Electroactive LBL films of metallic-phthalocyanines and poly (o-methoxyaniline) for sensing. J. Solid State Electrochem. 2007, 11, 1505–1510. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; Furini, L.N.; Constantino, C.J.L.; de Saja, J.A.; Rodríguez-Méndez, M.L. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines. Anal. Chim. Acta 2014, 851, 95–102. [Google Scholar] [CrossRef]
- Furini, L.N.; Feitosa, E.; Alessio, P.; Shimabukuro, M.H.; Riul, A., Jr.; Constantino, C.J.L. Tuning the nanostructure of DODAB/nickel tetrasulfonated phthalocyanine bilayers in LbL films. Mat. Sci. Eng. C-Mater. 2013, 33, 2937–2946. [Google Scholar] [CrossRef]
- Ferreira, M.; Zucolotto, V.; Oliveira, O.N., Jr.; Wohnrath, K. Encyclopedia of Nanoscience and Nanotechnology 4. H.S; Nalwa, H.S., Ed.; American Scientific Publishers: Los Angeles, CA, USA, 2003; pp. 441–460. [Google Scholar]
- Ahmad, R.; Wolfbeis, O.S.; Hahn, Y.B.; Alshareef, H.N.; Torsi, L.; Salama, K.N. Deposition of nanomaterials: A crucial step in biosensor fabrication. Mater. Today Commun. 2018, 17, 289–321. [Google Scholar] [CrossRef]
- Ariga, K.; Nakanishi, T.; Michinobu, T. Immobilization of biomaterials to nano-assembled films (Self-Assembled Monolayers, Langmuir-Blodgett Films, and Layer-by-Layer Assemblies) and their related functions. J. Nanosci. Nanotechnol. 2006, 6, 2278–2301. [Google Scholar] [CrossRef]
- Apetrei, C.; Alessio, P.; Constantino, C.J.L.; De Saja, J.A.; Rodriguez-Mendez, M.L.; Pavinatto, F.; Fernandes, E.G.R.; Zucolotto, V.; Oliveira, O.N. Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants. Biosens. Bioelectron. 2011, 26, 2513–2519. [Google Scholar] [CrossRef] [PubMed]
- Aoki, P.H.B.; Alessio, P.; Volpati, D.; Paulovich, F.V.; Riul, A., Jr.; Oliveira, O.N., Jr.; Constantino, C.J.L. On the distinct molecular architectures of dipping- and spray-LbL films containing lipid vesicles. Mater. Sci. Eng. C 2014, 41, 363–371. [Google Scholar] [CrossRef]
- Alessio, P.; Martin, C.S.; de Saja, J.A.; Rodriguez-Mendez, M.L. Mimetic biosensors composed by layer-by-layer films of phospholipid, phthalocyanine and silver nanoparticles to polyphenol detection. Sens. Actuators B 2016, 233, 654–666. [Google Scholar] [CrossRef]
- Pavinatto, F.J.; Fernandes, E.G.R.; Alessio, P.; Constantino, C.J.L.; de Saja, J.A.; Zucolotto, V.; Apetrei, C.; Oliveira, O.N., Jr.; Rodriguez-Mendez, M.L. Optimized architecture for Tyrosinase-containing Langmuir–Blodgett films to detect pyrogallol. J. Mater. Chem. 2011, 21, 4995–5003. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L. Nanostructured thin films as electrochemical sensors and biosensors for milk analysis. Sens. Actuators Rep. 2023, 6, 100179. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomed. Anal. 2010, 51, 497–506. [Google Scholar] [CrossRef]
- Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoły, M.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wróblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 114, 321–329. [Google Scholar] [CrossRef]
- Lvova, L.; Martinelli, E.; Dini, F.; Bergamini, A.; Paolesse, R.; Di Natale, C.; D’Amico, A. Clinical analysis of human urine by means of potentiometric electronic tongue. Talanta 2009, 77, 1097–1104. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Kartsova, L.; Sidorova, A.; Borisova, I.; Legin, A. Determination of urine ionic composition with potentiometric multisensor system. Talanta 2015, 131, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.E.; Grassi, V.; Scagion, V.P.; Mattoso, L.H.C.; Glenn, G.M.; Medeiros, E.S. Sensor array for water analysis based on interdigitated electrodes modified with fiber films of poly(lactic acid)/multiwalled carbon nanotubes. IEEE Sens. J. 2013, 13, 759–766. [Google Scholar] [CrossRef]
- Zadorozhnaya, O.; Kirsanov, D.; Buzhinsky, I.; Tsarev, F.; Abramova, N.; Bratov, A.; Muñoz, F.J.; Ribó, J.; Bori, J.; Riva, M.C.; et al. Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria. Sens. Actuators B 2015, 207, 1069–1075. [Google Scholar] [CrossRef]
- Fujita, A.; Isogai, A.; Endo, M.; Utsunomiya, H.; Nakano, S.; Iwata, H. Effects of sulfur dioxide on formation of fishy off-odor and undesirable taste in wine consumed with seafood. J. Agric. Food Chem. 2010, 58, 4414–4420. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, T.; Hayashi, N.; Ikezaki, H. Objective evaluation of astringent and umami taste intensities of Matcha using a taste sensor system. Food Sci. Technol. Res. 2013, 19, 1099–1105. [Google Scholar] [CrossRef]
- Akitomi, H.; Tahara, Y.; Yasuura, M.; Kobayashi, Y.; Ikezaki, H.; Toko, K. Quantification of tastes of amino acids using taste sensors. Sens. Actuators B 2013, 179, 276–281. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 2010, 10, 3411–3443. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A comparative study on two electronic tongues for pharmaceutical formulation development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Zhang, X. Discrimination of preserved licorice apricot using electronic tongue. Math. Comput. Model. 2013, 58, 737–745. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Baldwin, E.A.; Plotto, A.; Rosskopf, E.; Hong, J.C.; Bai, J. Electronic tongue discrimination of four tomato cultivars harvested at six maturities and exposed to blanching and refrigeration treatments. Postharvest Biol. Technol. 2018, 136, 42–49. [Google Scholar] [CrossRef]
- Jung, H.Y.; Kwak, H.S.; Kim, M.J.; Kim, Y.; Kim, K.O.; Kim, S.S. Comparison of a descriptive analysis and instrumental measurements (electronic nose and electronic tongue) for the sensory profiling of Korean fermented soybean paste (doenjang). J. Sens. Stud. 2017, 32, 12282. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, P.; Chen, W.J.; Chen, H.M. Monitoring the quality change of fresh Coconut milk using an electronic tongue. J. Food Process. Preserv. 2017, 41, e13110. [Google Scholar]
- Ciosek, P.; Wróblewski, W. Sensor arrays for liquid sensing—Electronic tongue systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef]
- Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Ahmad, M.N.; Adom, A.H.; Jaafar, M.N.; Ghani, S.A.; Abdullah, A.H.; Aziz, A.H.A.; Kamarudin, L.M.; et al. A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors 2011, 11, 7799–7822. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Gay, M.; Vidal, S.; Aagaards, O.; de Saja, J.A.; Rodriguez-Mendez, M.L. Analysis of the influence of the type of closure in the organoleptic characteristics of a red wine by using an electronic panel. Food Chem. 2011, 129, 589–594. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Anal. Chim. Acta 2010, 662, 82–89. [Google Scholar] [CrossRef]
- Parra, V.; Arrieta, A.; Fernández-Escudero, J.A.; Iñiguez, M.; de Saja, J.A.; Rodríguez-Méndez, M.L. Monitoring of the ageing of red wines in oak barrels by means of a hybrid electronic tongue. Anal. Chim. Acta 2006, 563, 229–237. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT-Food Sci. Technol. 2020, 118, 108785. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Salvo Comino, C.; Martín-Pedrosa, F.; Rodríguez-Méndez, M.L.; Garcia-Cabezon, C. Impedimetric electronic tongue based on nanocomposites for the analysis of red wines. Improving the variable selection method. Sens. Actuators B Chem. 2018, 277, 365–372. [Google Scholar] [CrossRef]
- Cetó, X.; Capdevilla, J.; Minguez, S.; del Valle, M. Voltammetric bioelectronic tongue for the analysis of phenolic compounds in rosé cava wines. Food Res. Int. 2014, 55, 455–461. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; Rodríguez-Mendez, M.L. Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator. Food Chem. 2019, 289, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Gil-Sanchez, L.; Soto, J.; Martinez-Mañez, R.; Garcia-Breijo, E.; Ibañez, J.; Llobet, E. A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine. Sens. Actuators A 2011, 171, 152–158. [Google Scholar] [CrossRef]
- Verrelli, G.; Francioso, L.; Paolesse, R.; Siciliano, P.; Di Natale, C.; D’Amico, A.; Logrieco, A. Development of silicon-based potentiometric sensors: Towards a miniaturized electronic tongue. Sens. Actuators B 2007, 123, 191–197. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Richtera, L. Preparation and characterization of carbon paste electrode bulk-modified with multiwalled carbon nanotubes and its application in a sensitive assay of antihyperlipidemic Simvastatin in biological samples. Molecules 2019, 24, 2215. [Google Scholar] [CrossRef]
- Švancara, I.; Kalcher, K. Carbon paste electrodes. In Advances in Electrochemical Sciences and Engineering; Alkire, R.C., Bartlett, P.N., Lipkowski, J., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2015; pp. 379–423. [Google Scholar]
- Sarakatsanou, C.; Karastogianni, S.; Girousi, S. Promising electrode surfaces, modified with nanoparticles, in the sensitive and selective electroanalytical determination of antibiotics: A review. Appl. Sci. 2023, 13, 5391. [Google Scholar] [CrossRef]
- Gautam, V.; Singh, K.P.; Yadav, V.L. Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: Application to real sample (cow milk). Anal. Bioanal. Chem. 2018, 410, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Rahmadhani, S.; Setiyanto, H.; Zulfikar, M.A. Fabrication of carbon paste electrode modified with phenol imprinted polyaniline as a sensor for phenol analysis by potentiometric. Mater. Sci. Forum 2018, 936, 71–76. [Google Scholar] [CrossRef]
- Horta, D.G.; Bevilaqua, D.; Acciari, H.A.; Garcia, O., Jr.; Benedetti, A.V. Optimization of the use of carbon paste electrodes (CPE) for electrochemical study of the chalcopyrite. Quim. Nova 2009, 32, 1734–1738. [Google Scholar] [CrossRef]
- Materon, E.M.; Wong, A.; Gomes, L.M.; Ibáñez-Redín, G.; Joshi, N.; Oliveira, O.N., Jr.; Faria, R.C. Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. J. Mater. Chem. C 2021, 9, 5633–5642. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, J.; Qiao, J.; Ge, F.; Yang, Y.; Zhang, Q. Advancements in Electrochemical Sensing Technology for Heavy Metal Ions Detection. Food Chem. X 2025, 25, 102204. [Google Scholar]
- Mohan, J.M.; Amreen, K.; Javed, A.; Dubey, S.K.; Goel, S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Curr. Opin. Electrochem. 2022, 33, 100930. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Zhu, B.; Su, B. An Overview of Antifouling Strategies for Electrochemical Analysis. Electroanalysis 2022, 34, 966–975. [Google Scholar] [CrossRef]
- Lin, P.H.; Li, B.R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, B.L.; Siraj, S.; Wong, D.K.Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 2016, 35, 1–28. [Google Scholar] [CrossRef]
- Chea, V.; Paolucci-Jeanjean, D.; Belleville, M.P. Optimization and charac-terization of an enzymatic membrane for the degradation of phenolic compounds. Catal. Today 2012, 193, 49–56. [Google Scholar] [CrossRef]
- Vasilescu, A.; Fanjul-Bolado, P.; Titoiu, A.M.; Porumb, R.; Epure, P. Progress in electrochemical (bio)sensors for monitoring wine production. Chemosensors 2019, 7, 66. [Google Scholar] [CrossRef]
- Kapoor, A.; Sundaramurthy, A. (Eds.) Sensor Technologies for Food Quality and Safety; Detection Science Series; The Royal Society of Chemistry (RSC): London, UK, 2025; Volume 29. [Google Scholar]
Analysis | Compounds/Feature | Analytical Method |
---|---|---|
Characterization of wines | pH levels |
|
Acid levels or tritatable acidity |
| |
Sugar levels |
| |
Nitrogen |
| |
Ethanol |
| |
Glycerol |
| |
Acetaldehyde |
| |
Sulphite |
| |
Organic acids |
| |
Metal contaminants (Cu, Zn, Fe) |
| |
Pesticides |
| |
Authentication of wine and fraud detection | Chaptalization (adding sugar to increase ethanol content) | SIRA (2H/1H-methyl and methylene in ethanol) (13C in sugars/ethanol) |
Sugars (beet, cane, and mixtures) | SIRA (2H/1H-methyl and methylene in ethanol (13C in sugars/ethanol) | |
Water (addition) | SIRA (18O water 2H/1H-methylene in ethanol) | |
Glycerol (synthetic or animal) | SIRA (13C glycerol) | |
Carbon dioxide (synthetic or fossil) | SIRA (13C carbon dioxide) | |
Tartaric acid (synthetic) | SIRA (13C tartaric acid) | |
Geographical origin mislabeling |
| |
Vintage mislabeling |
|
Electronic Tongue | Classical Chemical Analysis | Modern Analytical Instrument Techniques | Tasting Panels | |
---|---|---|---|---|
Simplicity | Yes | No | No | Yes |
Design or acquisition costs | Low | Medium | High | High |
Time consumption in measurements | Low | High | High | Medium |
Need for highly qualified personnel | No | No | Yes | Yes |
Contamination/ Destruction of the sample | No | Yes | Yes | Yes |
Generation of waste | Low | High | Low | High |
Possibility of on-site measurement | Yes | Yes | No | No |
Possibility of incorporating the measuring system into production lines (e.g., food industry) | Yes | No | No | No |
Application | Sample | Type of e-Tongue | Refs. |
---|---|---|---|
Food process monitoring | Red wine | Potentiometric Voltammetric | [98,99,100] |
Beer | Potentiometric Voltammetric | [44,101] | |
Milk | Potentiometric Voltammetric | [102,103] | |
Cheese | Potentiometric | [104] | |
Food quality and freshness | Meat | Potentiometric | [79] |
Fish | Potentiometric Voltammetric | [105,106,107] | |
Non-alcoholic beverages | Potentiometric | [88] | |
Milk | Voltammetric | [108] | |
Rice | Potentiometric | [109] | |
Olive oils | Voltammetric | [75] | |
Tea | Voltammetric | [76] | |
Apples | Hybrid | [89] | |
Authentication | Red wines | Voltammetric Potentiometric Impedimetric | [110,111,112] |
Beer | Potentiometric Voltammetric Hybrid | [90,113,114,115] | |
Alcoholic beverages | Potentiometric Voltammetric | [45,72,116] | |
Milk | Potentiometric Voltammetric | [117,118] | |
Yogurt | Voltammetric | [119] | |
Honey | Potentiometric | [120,121] | |
Drinking water | Potentiometric | [46] | |
Juices | Potentiometric Voltammetric Hybrid | [57,80,122] | |
Tea | Potentiometric Voltammetric | [123,124] | |
Olive oils | Voltammetric | [125] | |
Apples | Potentiometric | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Hernandez, C.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins. Chemosensors 2025, 13, 188. https://doi.org/10.3390/chemosensors13050188
Garcia-Hernandez C, Garcia-Cabezon C, Rodriguez-Mendez ML, Martin-Pedrosa F. Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins. Chemosensors. 2025; 13(5):188. https://doi.org/10.3390/chemosensors13050188
Chicago/Turabian StyleGarcia-Hernandez, Celia, Cristina Garcia-Cabezon, Maria Luz Rodriguez-Mendez, and Fernando Martin-Pedrosa. 2025. "Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins" Chemosensors 13, no. 5: 188. https://doi.org/10.3390/chemosensors13050188
APA StyleGarcia-Hernandez, C., Garcia-Cabezon, C., Rodriguez-Mendez, M. L., & Martin-Pedrosa, F. (2025). Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins. Chemosensors, 13(5), 188. https://doi.org/10.3390/chemosensors13050188