Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Samples
2.2. Headspace Solid-Phase Microextraction (SPME)
2.3. Gas Chromatography–Mass Spectrometry
2.4. Statistical Analysis
3. Results and Discussion
3.1. Volatile Composition of Olive Oil
3.2. Classification of EVOOs According to Cultivar
3.3. Classification of EVOOs According to Geographical Origin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boskou, D. Olive Fruit, Table Olives, and Olive Oil Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 1–30. [Google Scholar]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Beltrán, G.; Ruano, M.T.; Jiménez, A.; Uceda, M.; Aguilera, M.P. Evaluation of virgin olive oil bitterness by total phenol content analysis. Eur. J. Lipid Sci. Technol. 2007, 109, 193–197. [Google Scholar] [CrossRef]
- THE WORLD OF OLIVE OIL. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 3 January 2023).
- Kosma, I.; Badeka, A.; Vatavali, K.; Kontakos, S.; Kontominas, M. Differentiation of Greek extra virgin olive oils according to cultivar based on volatile compound analysis and fatty acid composition: Differentiation of Greek extra virgin olive oils. Eur. J. Lipid Sci. Technol. 2016, 118, 849–861. [Google Scholar] [CrossRef]
- Cecchi, T.; Alfei, B. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food Chem. 2013, 141, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Angerosa, F. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Sacchi, R. Temporal changes of virgin olive oil volatile compounds in a model system simulating domestic consumption: The role of biophenols. Food Res. Int. 2015, 77, 670–674. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Pouliarekou, E.; Badeka, A.; Tasioula-Margari, M.; Kontakos, S.; Longobardi, F.; Kontominas, M.G. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. J. Chromatogr. A 2011, 1218, 7534–7542. [Google Scholar] [CrossRef]
- Cajka, T.; Riddellova, K.; Klimankova, E.; Cerna, M.; Pudil, F.; Hajslova, J. Traceability of olive oil based on volatiles pattern and multivariate analysis. Food Chem. 2010, 121, 282–289. [Google Scholar] [CrossRef]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef] [PubMed]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; Garcia-Gonzalez, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Angerosa, F.; Campestre, C.; Giansante, L. Analysis and authentication. In Olive Oil: Chemistry and Technology; Boscou, D., Ed.; AOCS Publishing: Champaign, IL, USA, 2006; pp. 113–154. [Google Scholar]
- Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classification of the Greek olive oil varieties. Food Chem. 2018, 256, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Toschi, T.G.; Vichi, S.; Tres, A. Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT 2020, 121, 108936. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Pérez, A.G.; de la Rosa, R.; Pascual, M.; Sánchez-Ortiz, A.; Romero-Segura, C.; León, L.; Sanz, C. Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual×Arbequina cultivars. J. Chromatogr. A 2016, 1428, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME–GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Priego-Capote, F. Cultivar influence on the volatile components of olive oil formed in the lipoxygenase pathway. LWT 2021, 147, 111485. [Google Scholar] [CrossRef]
- Youssef, O.; Guido, F.; Manel, I.; Youssef, N.B.; Luigi, C.P.; Mohamed, H.; Daoud, D.; Mokhtar, Z. Volatile compounds and compositional quality of virgin olive oil from Oueslati variety: Influence of geographical origin. Food Chem. 2011, 124, 1770–1776. [Google Scholar] [CrossRef]
- Kosma, I.; Vatavali, K.; Kontakos, S.; Kontominas, M.; Kiritsakis, A.; Badeka, A. Geographical Differentiation of Greek Extra Virgin Olive Oil from Late-Harvested Koroneiki Cultivar Fruits. J. Am. Oil Chem. Soc. 2017, 94, 1373–1384. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Marin, M.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Gallina Toschi, T.; Vichi, S.; Tres, A. Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. Foods 2020, 9, 1509. [Google Scholar] [CrossRef] [PubMed]
- Ruisánchez, I.; Jiménez-Carvelo, A.M.; Callao, M.P. ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta 2021, 222, 121564. [Google Scholar] [CrossRef] [PubMed]
- Stilo, F.; Jiménez-Carvelo, A.M.; Liberto, E.; Bicchi, C.; Reichenbach, S.E.; Cuadros-Rodríguez, L.; Cordero, C. Chromatographic Fingerprinting Enables Effective Discrimination and Identitation of High-Quality Italian Extra-Virgin Olive Oils. J. Agric. Food Chem. 2021, 69, 8874–8889. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Ruiz, R.; García-González, D.L.; Morales, M.T.; Lobo-Prieto, A.; Romero, I. Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS. Talanta 2018, 187, 133–141. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J.J.; Wishart, D.S. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N.; Melani, F. Authentication of the geographical origin of virgin olive oils from the main worldwide producing countries: A new combination of HS-SPME-GC-MS analysis of volatile compounds and chemometrics applied to 1217 samples. Food Control 2020, 112, 107156. [Google Scholar] [CrossRef]
- Kiritsakis, A.K. Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Cavalli, J.-F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M. Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 2004, 88, 151–157. [Google Scholar] [CrossRef]
- Salas, J.J.; Harwood, J.L.; Martínez-Force, E. Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components. In Handbook of Olive Oil: Analysis and Properties; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 97–127. [Google Scholar]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef] [PubMed]
- Baccouri, O.; Guerfel, M.; Baccouri, B.; Cerretani, L.; Bendini, A.; Lercker, G.; Zarrouk, M.; Daoud Ben Miled, D. Chemical composition and oxidative stability of Tunisian monovarietal virgin olive oils with regard to fruit ripening. Food Chem. 2008, 109, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 2003, 983, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem. 2019, 270, 403–414. [Google Scholar] [CrossRef]
Content (% of Total Identified Compounds) | ||||
---|---|---|---|---|
Compound | CRE | PEL | LES | RID 1 |
Acids | ||||
Acetic acid | 4.62 a | 3.04 b | 5.43 a | A |
Propanoic acid | 0.24 a | 0.13 b | 0.13 b | A |
Butanoic acid | 0.24 a | 0.12 b | 0.15 b | A |
3-Methylbutanoic acid | 0.04 a | 0.03 b | 0.04 a | B |
Hexanoic acid | 0.31 a | 0.25 ab | 0.23 b | A |
2-Ethylhexanoic acid | 0.06 a | 0.08 a | 0.08 a | B |
Heptanoic acid | 0.06 ab | 0.04 a | 0.06 b | B |
Octanoic acid | 0.07 a | 0.09 a | 0.08 a | A |
Nonanoic acid | 0.29 a | 0.46 b | 0.27 a | B |
Alcohols | ||||
Ethanol | 5.23 a | 4.13 a | 3.98 a | A |
1-Propanol | 0.02 a | 0.02 a | 0.04 b | A |
2-Methyl-1-propanol | 0.11 a | 0.08 a | 0.29 b | A |
3-Pentanol | 0.28 a | 0.54 b | 0.60 b | A |
1-Butanol | 0.12 ab | 0.06 a | 0.13 b | A |
1-Penten-3-ol | 10.56 a | 10.96 a | 7.83 b | A |
3-Methyl-1-butanol | 0.20 a | 0.14 a | 0.60 b | A |
1-Pentanol | 0.32 a | 0.35 a | 0.58 b | A |
(Z)-2-Penten-1-ol | 4.29 a | 4.05 a | 3.18 b | B |
1-Hexanol | 4.05 a | 4.80 a | 7.98 b | A |
(E)-3-Hexen-1-ol | 0.16 a | 0.38 b | 0.28 b | B |
(Z)-3-Hexen-1-ol | 6.22 a | 9.17 b | 10.42 b | B |
(E)-2-Hexen-1-ol | 5.33 a | 6.72 a | 6.60 a | B |
2-Ethyl-1-hexanol | 0.15 a | 0.31 b | 0.65 c | B |
1-Octanol | 0.15 a | 0.10 b | 0.09 b | A |
1-Nonanol | 0.10 a | 0.07 b | 0.04 c | B |
Benzyl alcohol | 0.17 a | 0.13 b | 0.09 c | A |
2-Phenylethanol | 0.48 a | 0.44 a | 0.23 b | A |
Aldehydes | ||||
2-Methylbutanal | 0.51 ab | 0.35 a | 0.76 b | B |
3-Methylbutanal | 0.24 a | 0.19 a | 0.30 a | B |
Pentanal | 1.03 a | 0.67 b | 0.62 b | B |
Hexanal | 1.50 a | 1.42 a | 0.89 b | A |
(E)-2-Pentenal | 0.43 a | 0.32 b | 0.18 c | B |
(Z)-3-Hexenal | 0.62 a | 0.47 ab | 0.38 b | B |
(E)-3-Hexenal | 3.65 a | 2.78 a | 2.47 a | B |
Heptanal | 0.16 a | 0.08 b | 0.04 c | B |
(E)-2-Hexenal | 2.32 a | 1.75 b | 0.86 c | B |
Octanal | 0.15 a | 0.08 b | 0.05 b | B |
Nonanal | 1.01 a | 0.59 b | 0.31 c | B |
(E,E)-2,4-Hexadienal | 0.39 a | 0.48 ab | 0.54 b | B |
Benzaldehyde | 0.10 a | 0.11 a | 0.08 b | A |
(E)-4-Oxohex-2-enal | 1.42 a | 1.41 a | 1.00 a | B |
Esters | ||||
Methyl acetate | 0.31 a | 0.37 a | 0.72 b | A |
Ethyl acetate | 2.66 a | 3.43 a | 5.08 b | A |
Hexyl acetate | 3.02 a | 2.50 a | 1.15 b | A |
(Z)-3-Hexenyl acetate | 10.12 a | 10.80 a | 3.77 b | B |
Methylbenzoate | 0.05 a | 0.04 b | 0.01 c | B |
Methylsalicylate | 0.10 a | 0.09 a | 0.14 b | B |
Methyl 2-oxohexanoate | 1.01 a | 0.96 a | 1.04 a | C |
Hydrocarbons | ||||
Benzene | 0.11 a | 0.30 a | 0.12 a | B |
n-Octane | 0.37 a | 0.23 b | 0.21 b | A |
3-Ethyl-1,5-octadiene (isomer 1) | 2.36 a | 2.09 a | 1.34 b | B |
3-Ethyl-1,5-octadiene (isomer 2) | 0.88 a | 0.80 a | 0.46 b | B |
4-Methyl-2,6-Octadiene | 4.71 a | 2.75 b | 3.89 a | C |
3-Ethyl-1,4-hexadiene | 0.24 a | 0.14 b | 0.07 c | C |
Ketones | ||||
2-Butanone | 0.13 a | 0.07 b | 0.06 b | B |
3-Pentanone | 8.10 a | 12.27 b | 15.75 c | B |
1-Penten-3-one | 3.38 a | 3.41 a | 6.06 b | B |
2-Heptanone | 0.12 a | 0.07 b | 0.08 ab | B |
Acetoin (3-hydroxy-2-butanone) | 0.25 a | 0.19 ab | 0.28 b | A |
2-Octanone | 0.14 a | 0.06 b | 0.08 b | B |
6-Methyl-5-hepten-2-one | 0.16 a | 0.08 b | 0.05 b | B |
Terpenoids | ||||
α-Pinene | 0.12 a | 0.09 a | 0.10 a | A |
D-Limonene | 0.06 a | 0.04 a | 0.06 a | A |
β-Ocimene | 0.22 b | 0.14 a | 0.18 b | B |
p-Cymene | 0.03 a | 0.03 a | 0.02 a | A |
(E)-4,8-Dimethylnona-1,3,7-triene | 3.56 a | 1.33 b | 0.23 c | C |
α-Farnesene | 0.04 a | 0.04 a | 0.20 b | B |
Miscellaneous | ||||
2-Methylfuran | 0.05 a | 0.06 a | 0.03 b | B |
2-Ethylfuran | 0.12 a | 0.10 a | 0.11 a | B |
Guaiacol (2-Methoxyphenol) | 0.03 a | 0.02 b | 0.02 b | B |
Phenol | 0.06 a | 0.06 a | 0.06 a | A |
Dimethyl sulfide | 0.05 a | 0.03 a | 0.05 a | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikrou, T.; Litsa, M.; Papantoni, A.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils. Chemosensors 2023, 11, 80. https://doi.org/10.3390/chemosensors11020080
Mikrou T, Litsa M, Papantoni A, Kapsokefalou M, Gardeli C, Mallouchos A. Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils. Chemosensors. 2023; 11(2):80. https://doi.org/10.3390/chemosensors11020080
Chicago/Turabian StyleMikrou, Theano, Maria Litsa, Artemis Papantoni, Maria Kapsokefalou, Chrysavgi Gardeli, and Athanasios Mallouchos. 2023. "Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils" Chemosensors 11, no. 2: 80. https://doi.org/10.3390/chemosensors11020080
APA StyleMikrou, T., Litsa, M., Papantoni, A., Kapsokefalou, M., Gardeli, C., & Mallouchos, A. (2023). Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils. Chemosensors, 11(2), 80. https://doi.org/10.3390/chemosensors11020080