Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extraction–Derivatization
2.3. GC-MS Analysis
3. Results
3.1. Methylation: TMAH and DMF-DMA
3.2. Silylation: MTBSTFA
3.3. Esterification: MCF-MeOH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Seaton, K.M.; Cable, M.L.; Stockton, A.M. Analytical Chemistry in Astrobiology. Anal. Chem. 2021, 93, 5981–5997. [Google Scholar] [CrossRef]
- Sternberg, R.; Szopa, C.; Coscia, D.; Zubrzycki, S.; Raulin, F.; Vidal-Madjar, C.; Niemann, H.; Israel, G. Gas Chromatography in Space Exploration: Capillary and Micropacked Columns for in Situ Analysis of Titan’s Atmosphere. J. Chromatogr. A 1999, 846, 307–315. [Google Scholar] [CrossRef]
- Sternberg, R.; Szopa, C.; Rodier, C. Analyzing a Comet Nucleus by Capillary GC. Anal. Chem. 2002, 74, 481A–487A. [Google Scholar] [CrossRef] [Green Version]
- Biemann, K.; Oro, J.; Toulmin, P.; Orgel, L.E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; et al. Search for Organic and Volatile Inorganic Compounds in Two Surface Samples from the Chryse Planitia Region of Mars. Science 1976, 194, 72–76. [Google Scholar] [CrossRef]
- Rodier, C.; Buch, A.; Szopa, C. The Search for Organics in Extraterrestrial Environments: Lessons for Mars Exploration. In Planet Mars Research Focus; Costas Lorenzo A.: New York, NY, USA, 2008; p. 300. ISBN 978-1-60021-826-2. [Google Scholar]
- Eigenbrode, J.L.; Summons, R.E.; Steele, A.; Freissinet, C.; Millan, M.; Navarro-González, R.; Sutter, B.; McAdam, A.C.; Franz, H.B.; Glavin, D.P.; et al. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science 2018, 360, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Ming, D.W.; Archer, P.D., Jr.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; et al. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1245267. [Google Scholar] [CrossRef] [PubMed]
- Sutter, B.; Quinn, R.C.; Archer, P.D.; Glavin, D.P.; Glotch, T.D.; Kounaves, S.P.; Osterloo, M.M.; Rampe, E.B.; Ming, D.W. Measurements of Oxychlorine Species on Mars. Int. J. Astrobiol. 2017, 16, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Rodier, C.; Laurent, C.; Szopa, C.; Sternberg, R.; Raulin, F. Chirality and the Origin of Life: In Situ Enantiomeric Separation for Future Space Missions. Chirality 2002, 14, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Rodier, C.; Sternberg, R.; Raulin, F.; Vidal-Madjar, C. Chemical Derivatization of Amino Acids for in Situ Analysis of Martian Samples by Gas Chromatography. J. Chromatogr. A 2001, 915, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Freissinet, C.; Buch, A.; Szopa, C.; Morisson, M.; Grand, N.; Raulin, F.; Brinckerhoff, W. Enantiomeric Derivatization on the Mars Organic Molecule Analyzer (MOMA) Experiment Aboard ExoMars 2018: How to Unravel Martian Chirality. In Proceedings of the European Planetary Science Congress 2015, Nantes, France, 27 September–2 October 2015; id. EPSC2015-405. Volume 10, p. 405. Available online: http://meetingorganizer.copernicus.org/EPSC2015 (accessed on 1 October 2015).
- Freissinet, C.; Buch, A.; Sternberg, R.; Szopa, C.; Geffroy-Rodier, C.; Jelinek, C.; Stambouli, M. Search for Evidence of Life in Space: Analysis of Enantiomeric Organic Molecules by N,N-Dimethylformamide Dimethylacetal Derivative Dependant Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2010, 1217, 731–740. [Google Scholar] [CrossRef]
- Millan, M.; Teinturier, S.; Malespin, C.A.; Bonnet, J.Y.; Buch, A.; Dworkin, J.P.; Eigenbrode, J.L.; Freissinet, C.; Glavin, D.P.; Navarro-González, R.; et al. Organic Molecules Revealed in Mars’s Bagnold Dunes by Curiosity’s Derivatization Experiment. Nat. Astron. 2022, 6, 129–140. [Google Scholar] [CrossRef]
- Serra, C.; Lange, J.; Remaury, Q.B.; Timoumi, R.; Danger, G.; Laurent, B.; Remusat, L.; Rodier, C.G.; Poinot, P. Integrative Analytical Workflow to Enhance Comprehensive Analysis of Organic Molecules in Extraterrestrial Objects. Talanta 2022, 243, 123324. [Google Scholar] [CrossRef] [PubMed]
- de Marcellus, P.; Meinert, C.; Nuevo, M.; Filippi, J.-J.; Danger, G.; Deboffle, D.; Nahon, L.; Le Sergeant d’Hendecourt, L.; Meierhenrich, U.J. Non-Racemic Amino Acid Production by Ultraviolet Irradiation of Achiral Interstellar Ice Analogs with Circularly Polarized Light. Astrophys. J. 2011, 727, L27. [Google Scholar] [CrossRef] [Green Version]
- Munoz Caro, G.M.; Meierhenrich, U.J.; Schutte, W.A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W.H.-P.; Brack, A.; Greenberg, J.M. Amino Acids from Ultraviolet Irradiation of Interstellar Ice Analogues. Nature 2002, 416, 403–406. [Google Scholar] [CrossRef]
- Koga, T.; Naraoka, H. A New Family of Extraterrestrial Amino Acids in the Murchison Meteorite. Sci. Rep. 2017, 7, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, J.R.; Pizzarello, S. Aliphatic Hydrocarbons of the Murchison Meteorite. Geochim. Cosmochim. Acta 1990, 54, 2859–2868. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.; Djago, F.; Eddhif, B.; Remaury, Q.B.; Ruf, A.; Leitner, N.K.V.; Hendecourt, L.L.S.; Danger, G.; Rodier, C.G.; Papot, S.; et al. A Novel Proteomics-Based Strategy for the Investigation of Peptide Sequences in Extraterrestrial Samples. J. Proteome Res. 2020, 20, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfreund, P.; Glavin, D.P.; Botta, O.; Cooper, G.; Bada, J.L. Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites. Proc. Natl. Acad. Sci. USA 2001, 98, 2138–2141. [Google Scholar] [CrossRef] [Green Version]
- Martins, Z.; Modica, P.; Zanda, B.; d’Hendecourt, L.L.S. The Amino Acid and Hydrocarbon Contents of the Paris Meteorite: Insights into the Most Primitive CM Chondrite. Meteorit. Planet. Sci. 2015, 50, 926–943. [Google Scholar] [CrossRef]
- David, M.; Musadji, N.-Y.; Labanowski, J.; Sternberg, R.; Geffroy-Rodier, C. Pilot for Validation of Online Pretreatments for Analyses of Organics by Gas Chromatography–Mass Spectrometry: Application to Space Research. Anal. Chem. 2016, 88, 5137–5144. [Google Scholar] [CrossRef]
- Buch, A.; Sternberg, R.; Meunier, D.; Rodier, C.; Laurent, C.; Raulin, F.; Vidal-Madjar, C. Solvent Extraction of Organic Molecules of Exobiological Interest for in Situ Analysis of the Martian Soil. J. Chromatogr. A 2003, 999, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Buch, A.; Glavin, D.P.; Sternberg, R.; Szopa, C.; Rodier, C.; Navarro-González, R.; Raulin, F.; Cabane, M.; Mahaffy, P.R. A New Extraction Technique for in Situ Analyses of Amino and Carboxylic Acids on Mars by Gas Chromatography Mass Spectrometry. Planet. Space Sci. 2006, 54, 1592–1599. [Google Scholar] [CrossRef]
- Timoumi, R.; François, P.; Le Postollec, A.; Dobrijevic, M.; Grégoire, B.; Poinot, P.; Geffroy-Rodier, C. Focused Ultrasound Extraction versus Microwave-Assisted Extraction for Extraterrestrial Objects Analysis. Anal. Bioanal. Chem. 2022, 414, 3643–3651. [Google Scholar] [CrossRef] [PubMed]
- Mahaffy, P.R.; Webster, C.R.; Cabane, M.; Conrad, P.G.; Coll, P.; Atreya, S.K.; Arvey, R.; Barciniak, M.; Benna, M.; Bleacher, L.; et al. The Sample Analysis at Mars Investigation and Instrument Suite. Space Sci. Rev. 2012, 170, 401–478. [Google Scholar] [CrossRef]
- Goesmann, F.; Brinckerhoff, W.B.; Raulin, F.; Goetz, W.; Danell, R.M.; Getty, S.A.; Siljeström, S.; Mißbach, H.; Steininger, H.; Arevalo, R.D.; et al. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. Astrobiology 2017, 17, 655–685. [Google Scholar] [CrossRef]
- Leseigneur, G.; Bredehöft, J.H.; Gautier, T.; Giri, C.; Krüger, H.; MacDermott, A.J.; Meierhenrich, U.J.; Muñoz Caro, G.M.; Raulin, F.; Steele, A.; et al. COSAC’s Only Gas Chromatogram Taken on Comet 67P/Churyumov-Gerasimenko. Chempluschem 2022, 87, e202200116. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Duarte, H.; Aliaño-González, M.J.; Romano, A.; Medronho, B. Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors 2022, 10, 465. [Google Scholar] [CrossRef]
- Geffroy-Rodier, C.; Grasset, L.; Sternberg, R.; Buch, A.; Amblès, A. Thermochemolysis in Search for Organics in Extraterrestrial Environments. J. Anal. Appl. Pyrolysis 2009, 85, 454–459. [Google Scholar] [CrossRef]
- He, Y.; Buch, A.; Morisson, M.; Szopa, C.; Freissinet, C.; Williams, A.; Millan, M.; Guzman, M.; Navarro-Gonzalez, R.; Bonnet, J.Y.; et al. Application of TMAH Thermochemolysis to the Detection of Nucleobases: Application to the MOMA and SAM Space Experiment. Talanta 2019, 204, 802–811. [Google Scholar] [CrossRef]
- Zampolli, M.; Meunier, D.; Sternberg, R.; Raulin, F.; Szopa, C.; Pietrogrande, M.C.; Dondi, F. GC-MS Analysis of Amino Acid Enantiomers as TheirN(O,S)-Perfluoroacyl Perfluoroalkyl Esters: Application to Space Analysis. Chirality 2006, 18, 279–295. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Buch, A.; Szopa, C.; Williams, A.J.; Millan, M.; Guzman, M.; Freissinet, C.; Malespin, C.; Glavin, D.P.; Eigenbrode, J.L.; et al. The Search for Organic Compounds with TMAH Thermochemolysis: From Earth Analyses to Space Exploration Experiments. TrAC Trends Anal. Chem. 2020, 127, 115896. [Google Scholar] [CrossRef]
- Rodier, C.; Vandenabeele-Trambouze, O.; Sternberg, R.; Coscia, D.; Coll, P.; Szopa, C.; Raulin, F.; Vidal-Madjar, C.; Cabane, M.; Israel, G.; et al. Detection of Martian Amino Acids by Chemical Derivatization Coupled to Gas Chromatography: In Situ and Laboratory Analysis. Adv. Space Res. 2001, 27, 195–199. [Google Scholar] [CrossRef]
- Gallois, N.; Templier, J.; Derenne, S. Pyrolysis-Gas Chromatography–Mass Spectrometry of the 20 Protein Amino Acids in the Presence of TMAH. J. Anal. Appl. Pyrolysis 2007, 80, 216–230. [Google Scholar] [CrossRef]
- Gallois, N.; Templier, J.; Derenne, S. Limitations in Interpreting TMAH Thermochemolysis of Natural Organic Matter via Consideration of Glycine and Alanine Derivatives. Org. Geochem. 2010, 41, 1338–1340. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Zampolli, M.G.; Dondi, F.; Szopa, C.; Sternberg, R.; Buch, A.; Raulin, F. In Situ Analysis of the Martian Soil by Gas Chromatography: Decoding of Complex Chromatograms of Organic Molecules of Exobiological Interest. J. Chromatogr. A 2005, 1071, 255–261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fkiri, R.; Timoumi, R.; Rioland, G.; Poinot, P.; Baron, F.; Gregoire, B.; Geffroy-Rodier, C. Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples. Chemosensors 2023, 11, 76. https://doi.org/10.3390/chemosensors11020076
Fkiri R, Timoumi R, Rioland G, Poinot P, Baron F, Gregoire B, Geffroy-Rodier C. Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples. Chemosensors. 2023; 11(2):76. https://doi.org/10.3390/chemosensors11020076
Chicago/Turabian StyleFkiri, Rihab, Ramzi Timoumi, Guillaume Rioland, Pauline Poinot, Fabien Baron, Brian Gregoire, and Claude Geffroy-Rodier. 2023. "Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples" Chemosensors 11, no. 2: 76. https://doi.org/10.3390/chemosensors11020076
APA StyleFkiri, R., Timoumi, R., Rioland, G., Poinot, P., Baron, F., Gregoire, B., & Geffroy-Rodier, C. (2023). Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples. Chemosensors, 11(2), 76. https://doi.org/10.3390/chemosensors11020076