Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme
Abstract
1. Introduction
2. Positivity Preservation
3. Monotonicity Preservation
4. Convexity Preservation
5. Numerical Examples and Conclusions
5.1. Numerical Examples
5.2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuijt, F.; Damme, R.V. Shape preserving interpolatory subdivision schemes for nonuniform data. J. Approx. Theory 2002, 114, 1–32. [Google Scholar] [CrossRef]
- Cao, H.; Tan, J. A binary five-point relaxation subdivision scheme. J. Inf. Comp. Sci. 2013, 10, 5903–5910. [Google Scholar] [CrossRef]
- Tan, J.; Yao, Y.; Cao, H.; Zhang, L. Convexity preservation of five-point binary subdivision scheme with a parameter. Appl. Math. Comput. 2014, 245, 279–288. [Google Scholar] [CrossRef]
- Hassan, M.F.; Ivrissimitzis, I.; Dodgson, N.A.; Sabin, M.A. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aided Geom. Des. 2002, 19, 1–18. [Google Scholar] [CrossRef]
- Dyn, N.; Kuijt, F.; Levin, D.; van Damme, R. Convexity preservation of the four-point interpolatory subdivision scheme. Comput. Aided Geom. Des. 1999, 16, 789–792. [Google Scholar] [CrossRef]
- Dyn, N.; Levin, D.; Gregory, J.A. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des. 1987, 4, 257–268. [Google Scholar] [CrossRef]
- Hao, Y.X.; Wang, R.H.; Li, C.J. Analsis of six point subdivision scheme. Appl. Math. Comput. 2011, 59, 2647–2657. [Google Scholar] [CrossRef]
- Kuijt, F.; van Damme, R. Monotonicity preserving interpolatory subdivision schemes. J. Comput. Appl. Math. 1999, 101, 203–229. [Google Scholar] [CrossRef]
- Kuijt, F.; van Damme, R. Convexity preserving interpolatory subdivision schemes. Constr. Approx. 1998, 14, 609–630. [Google Scholar] [CrossRef]
- Tan, J.; Zhuang, X.; Zhang, L. A new four-point shape-preserving C3 subdivision scheme. Comput. Aided Geom. Des. 2014, 31, 57–62. [Google Scholar] [CrossRef]
- Floater, M.; Beccari, C.; Cashman, T.; Romani, L. A smoothness criterion for monotonicity-preserving subdivision. Adv. Comput. Math. 2013, 39, 193–204. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Noreen, T. Convexity preservation of six point C2 interpolating subdivision scheme. Appl. Math. Comput. 2015, 265, 936–944. [Google Scholar] [CrossRef]
- Mustafa, G.; Ashraf, P. A new 6-point ternary interpolating subdivision scheme and its differentiability. J. Inf. Comput. Sci. 2010, 5, 199–210. [Google Scholar] [CrossRef]
- Albrecht, G.; Romani, L. Convexity preserving interpolatory subdivision with conic precision. Appl. Math. Comput. 2012, 219, 4049–4066. [Google Scholar] [CrossRef]
- Amat, S.; Donat, R.; Trillo, J.C. Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators. Appl. Math. Comput. 2013, 219, 7413–7421. [Google Scholar] [CrossRef]
- Akram, G.; Bibi, K.; Rehan, K.; Siddiqi, S.S. Shape preservation of 4-point interpolating non-stationary subdivision scheme. J. Comput. Appl. Math. 2017, 319, 480–492. [Google Scholar] [CrossRef]
- Gabrielides, N.C.; Sapidis, N.S. C1 sign, monotonicity and convexity preserving hermite polynomial splines of variable degree. J. Comput. Appl. Math. 2018, 343, 662–707. [Google Scholar] [CrossRef]
- Mustafa, G.; Bashir, R. Univariate approximating schemes and their non-tensor product generalization. Open Math. 2018, 16, 1501–1518. [Google Scholar] [CrossRef]
- Ghaffar, A.; Ullah, Z.; Bari, M.; Nisar, K.S.; Al-Qurashi, M.M.; Baleanu, D. A new class of 2m-point binary non-stationary subdivision schemes. Adv. Differ. Equ. 2019, 325. [Google Scholar] [CrossRef]
- Asghar, M.; Mustafa, G. A Family of binary approximating subdivision schemes based on binomial distribution. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 1087–1100. [Google Scholar] [CrossRef]
- Bibi, K.; Akram, G.; Rehan, K. Level set shape analysis of Binary 4-point non-stationary interpolating subdivision scheme. Int. J. Appl. Comput. Math. 2019, 5, 146. [Google Scholar] [CrossRef]
- Tan, J.; Wang, B.; Shi, J. A five-point subdivision scheme with two parameters and a four-point shape-preserving scheme. Math. Comput. Appl. 2017, 22, 22. [Google Scholar] [CrossRef]
- Dyn, N.; Iske, A.; Quak, E.; Floater, M.S. Tutorials on Multiresolution in Geometric Modelling. In Mathematics and Visualization; Summer School Lecture Notes Series; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Mustafa, G.; Hashmi, M.S. Subdivision depth computation for n-ary subdivision curves/surfaces. Vis. Comput. 2010, 26, 841–851. [Google Scholar] [CrossRef]
- Shang, Y. Lack of Gromov-hyperbolicity in small-world networks. Cent. Eur. J. Math. 2011, 10, 1152–1158. [Google Scholar] [CrossRef]
- Mustafa, G.; Ghaffar, A.; Khan, F. The odd-point ternary approximating schemes. Am. J. Comput. Math. 2011, 1, 111–118. [Google Scholar] [CrossRef]
- Ghaffar, A.; Mustafa, G.; Qin, K. Unification and application of 3-point approximating subdivision schemes of varying arity. Open J. Appl. Sci. 2012, 2, 48–52. [Google Scholar] [CrossRef]
- Ghaffar, A.; Mustafa, G.; Qin, K. The 4-point 3-ary approximating subdivision scheme. Open J. Appl. Sci. 2013, 3, 106–111. [Google Scholar] [CrossRef]
- Mustafa, G.; Ghaffar, A.; Aslam, M. A subdivision-regularization framework for preventing over fitting of data by a model. AAM 2013, 8, 178–190. [Google Scholar]
- Siddiqi, S.S.; Younis, M. The Quaternary Interpolating Scheme for Geometric Design. Int. Sch. Res. Not. 2013, 2013, 434213. [Google Scholar] [CrossRef]
- Mustafa, G.; Ashraf, P.; Deng, J. Generalized and unified families of interpolating subdivision schemes. Numer. Math. Theory Methods Appl. 2014, 7, 193–213. [Google Scholar] [CrossRef]
- Rehan, K.; Siddiqi, S.S. A Family of Ternary Subdivision Schemes for Curves. Appl. Math. Comput. 2015, 270, 114–123. [Google Scholar] [CrossRef]
- Rehan, K.; Sabri, M.A. A combined ternary 4-point subdivision scheme. Appl. Math. Comput. 2016, 276, 278–283. [Google Scholar] [CrossRef]
- Peng, K.; Tan, J.; Li, Z.; Zhang, L. Fractal behavior of a ternary 4-point rational interpolation subdivision scheme. Math. Comput. Appl. 2018, 23, 65. [Google Scholar] [CrossRef]
- Zulkifli, N.A.B.; Karim, S.A.A.; Sarfraz, M.; Ghaffar, A.; Nisar, K.S. Image interpolation using a rational bi-cubic ball. Mathematics 2019, 7, 1045. [Google Scholar] [CrossRef]
- Ghaffar, A.; Ullah, Z.; Bari, M.; Nisar, K.S.; Baleanu, D. Family of odd point non-stationary subdivision schemes and their applications. Adv. Differ. Equ. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Ghaffar, A.; Bari, M.; Ullah, Z.; Iqbal, M.; Nisar, K.S.; Baleanu, D. A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications. Mathematics 2019, 7, 639. [Google Scholar] [CrossRef]
- Ghaffar, A.; Iqbal, M.; Bari, M.; Muhammad Hussain, S.; Manzoor, R.; Sooppy Nisar, K.; Baleanu, D. Construction and Application of Nine-Tic B-Spline Tensor Product SS. Mathematics 2019, 7, 675. [Google Scholar] [CrossRef]
- Zou, L.; Song, L.; Wang, X.; Chen, Y.; Zhang, C.; Tang, C. Bivariate thiele-like rational interpolation continued fractions with parameters based on virtual points. Mathematics 2020, 8, 71. [Google Scholar] [CrossRef]
- Shahzad, A.; Khan, F.; Ghaffar, A.; Mustafa, G.; Nisar, K.S.; Baleanu, D. A novel numerical algorithm to estimate the subdivision depth of binary subdivision schemes. Symmetry 2020, 12, 66. [Google Scholar] [CrossRef]
- Ashraf, P.; Sabir, M.; Ghaffar, A.; Nisar, K.S.; Khan, I. Shape-Preservation of Ternary Four-point Interpolating Non-stationary Subdivision Scheme. Front. Phys. 2019, 7, 241. [Google Scholar] [CrossRef]
- Ashraf, P.; Nawaz, B.; Baleanu, D.; Ghaffar, A.; Nisar, K.S.; Khan, A.A.; Akram, S. Analysis of geometric properties of ternary four-point rational interpolating subdivision scheme. Mathematics 2020, 8, 338. [Google Scholar] [CrossRef]
- Hussain, S.M.; Rehman, A.U.; Baleanu, D.; Ghaffar, A.; Nisar, K.S. Generalized 5-point approximating subdivision scheme of varying arity. Mathematics 2020, 8, 474. [Google Scholar] [CrossRef]
- Horman, K.; Sabin, M.A. A family of subdivision schemes with cubic percision. Comput. Aided Geom. Des. 2008, 25, 41–52. [Google Scholar] [CrossRef]
1.6 | 2.1 | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | |
1.27 | 1.45 | 1.62 | 1.77 | 1.89 | 2.03 | 2.15 |
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14 | |
1.02 | 1.04 | 1.06 | 1.08 | 1.105 | 1.12 | 1.15 |
−0.006 | −0.004 | −0.002 | 0 | 0.002 | 0.004 | 0.006 | |
0.994 | 0.996 | 0.998 | 1 | 1.002 | 1.004 | 1.006 |
−0.006 | −0.004 | −0.002 | 0 | 0.002 | 0.004 | 0.006 | |
0.1991 | 0.1994 | 0.1997 | 0.2000 | 0.2003 | 0.2006 | 0.2009 |
−4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | |
8.5 | 5 | 2.5 | 1 | 0.5 | 1 | 2.5 | 5 | 8.5 |
−4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
10.75 | 7 | 4.25 | 2.5 | 1.75 | 2 | 3.25 | 5.5 | 8.75 | 13 | 18.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, P.; Ghaffar, A.; Baleanu, D.; Sehar, I.; Nisar, K.S.; Khan, F. Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics 2020, 8, 806. https://doi.org/10.3390/math8050806
Ashraf P, Ghaffar A, Baleanu D, Sehar I, Nisar KS, Khan F. Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics. 2020; 8(5):806. https://doi.org/10.3390/math8050806
Chicago/Turabian StyleAshraf, Pakeeza, Abdul Ghaffar, Dumitru Baleanu, Irem Sehar, Kottakkaran Sooppy Nisar, and Faheem Khan. 2020. "Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme" Mathematics 8, no. 5: 806. https://doi.org/10.3390/math8050806
APA StyleAshraf, P., Ghaffar, A., Baleanu, D., Sehar, I., Nisar, K. S., & Khan, F. (2020). Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics, 8(5), 806. https://doi.org/10.3390/math8050806