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Abstract: In this paper, a ternary 4-point rational interpolation subdivision scheme is presented,
and the necessary and sufficient conditions of the continuity are analyzed. The generalization
incorporates existing schemes as special cases: Hassan–Ivrissimtzis’s scheme, Siddiqi–Rehan’s
scheme, and Siddiqi–Ahmad’s scheme. Furthermore, the fractal behavior of the scheme is investigated
and analyzed, and the range of the parameter of the fractal curve is the neighborhood of the singular
point of the rational scheme. When the fractal curve and surface are reconstructed, it is convenient
for the selection of parameter values.
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1. Introduction

Due to the use of techniques that are simple and easy to handle, the subdivision method is widely
used for generating smooth curves from original data points, and this method plays an important role
in computer-aided geometric design, computer-aided design, and image processing.

According to the relationship of the original points and the limit curves, the two categories we are
going to divide them into are interpolation subdivision [1–6] and approximation subdivision [7–10].
The limit curve of the interpolation subdivision scheme is through all original points, which can
protect the shape of the original control polygon. In 2002, Hassan et al. [2] presented a ternary 4-point
interpolating subdivision scheme that generates a C2 limiting curve for the tension parameter satisfied
with 1

15 < µ < 1
9 . In 2010 and 2012, Mustafa et al. [3,4] introduced 6-point and 5-point ternary

interpolating schemes with a shape parameter in succession, and proved the limit curves are C3 or C2

and continue for a certain range of parameter ω. In 2012 and 2013, Siddiqi and Rehan [5,6] proposed
two schemes of ternary 4-point interpolating subdivision in which the limiting curve is C1 or C2

continuous. The above schemes have the following common characteristics: the masks in the scheme
are all simple linear combinations of parameters, and when the limit curve is C1 or C2 continuous,
the selection range of parameters is small, so it is impossible to know what will happen to the limit
curves at other infinite intervals.

Compared with interpolation subdivision, the limit curve of the approximation subdivision
scheme did not continue through the original points, but this scheme had less support and the
limit curve had higher smoothness. In 2004, Hassan and Dodgson [7] derived a ternary 3-point
approximating subdivision scheme that generates the C2 limiting curve. In 2007, Ko et al. [8] introduced
an improved ternary 4-point approximating subdivision scheme derived from cubic polynomial
interpolation, and used similar methods to generalize ternary (2n+ 2) point approximating subdivision
schemes. In 2012, Ghaffar and Mustafa [9] investigated a general formula to generate the family of
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an even-point ternary approximating subdivision scheme with a shape parameter. In 2015, Rehan
and Siddiqi [10] proposed a ternary 4-point approximating subdivision scheme that generates the
limiting curve of C3 continuity. These experimental results show that when the continuity was higher,
the limiting curve of the approximation scheme deviated further from the original points.

This motivated us to present a ternary interpolation scheme with high smoothness and more
degrees of freedom for the curve design. The proposed scheme not only provides the mask of 4-point
schemes, but also generalizes and unifies several well-known schemes.

Furthermore, the subdivision scheme is important not only in the geometric design of smooth
curves, but also in the construction of irregular shapes. Zheng et al. [11,12] proved that the limit
curves generated by binary 4-point and ternary 3-point interpolation subdivision schemes are fractals.
Siddiqi et al. [13,14] described the fractal behavior of ternary 4-point interpolation subdivision schemes.

In this paper, the fractal behavior of the ternary 4-point rational interpolation subdivision scheme
is investigated and analyzed. Through examples, it was found that when the parameter selection is
close to the singular point, the limit curve pattern is more turbulent. As the parameter value becomes
far from the singular point, the limit curve becomes smoother and finally reaches C1 and C2 continuity.

2. Preliminaries

A general ternary subdivision scheme S with the initial values p0 = {p0
i }i∈Z recursively defines

new discrete values as follows:

pk+1
i = ∑

j∈Z
a3j−i pk

j , i ∈ Z, (1)

where the set a = {ai|i ∈ Z} of coefficients is called the mask of the scheme. A necessary condition for
uniform convergence of the subdivision scheme (1) is that

∑
j∈Z

a3j = ∑
j∈Z

a3j+1 = ∑
j∈Z

a3j+2 = 1. (2)

The Z-transform of the mask a of subdivision scheme can be given as

a(z) = ∑
i∈Z

aizi, (3)

which is called the symbol or Laurent polynomial.
A subdivision scheme is said to be uniformly convergent if for every initial data p0 = {p0

i }i∈Z,
there is a continuous function f such that for any closed interval [a, b]

lim
k→∞

sup
i∈Z∩3k [a,b]

|pk
i − f (

i
3k )| = 0.

As a result, f is regarded as the limit function of the subdivision scheme, and is denoted f = S∞ p0.
In 2002, Hassan et al. [2] provided a sufficient and necessary condition for a uniform convergent

subdivision scheme. Firstly, they used matrix formalism to derive necessary conditions for a scheme
to be Ck based on the eigenvalues of the subdivision matrix. If the limiting curve is C2 continuity,
the eigenvalues {λi} satisfy:

λ0 = 1, |λi| > |λi+1|, i = 1, 2, ..., and λ2
1 = |λ2| > |λ3|. (4)

Secondly, a subdivision scheme S is uniform convergent if and only if there is an integer L ≥ 1,
such that ‖( 1

3 S1)
L‖∞ < 1. Then, the subdivision scheme is uniform convergent.

This paper is organized as follows. In Section 3, a ternary 4-point rational interpolating subdivision
scheme is presented. The continuity analyses are in Section 4. In Section 5, the fractal behavior of
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subdivision schemes is introduced. In Section 6, examples are considered to demonstrate the role of
the parameter. Conclusions are drawn in Section 7.

3. Rational Interpolation Subdivision Scheme

A 4-point rational interpolation subdivision scheme is defined as
pk+1

3i = pk
i ,

pk+1
3i+1 = a0 pk

i−1 + a1 pk
i + a2 pk

i+1 + a3 pk
i+2,

pk+1
3i+2 = a3 pk

i−1 + a2 pk
i + a1 pk

i+1 + a0 pk
i+2,

(5)

where

a0 =
2− 243α

27(126α− 1)
, a1 =

873α− 7
9(126α− 1)

, a2 =
129α− 1

3(126α− 1)
, a3 =

1− 135α

27(126α− 1)
, and α 6= 1

126
.

Specifically, for α = 1
108 , the mask of the subdivision scheme is:

a = {· · · , 0, 0,− 1
18

,− 1
18

, 0,
7
18

,
13
18

, 1,
13
18

,
7

18
, 0,− 1

18
,− 1

18
, 0, 0, · · · },

and this is exactly the scheme which is mentioned in Hassan et al. [2].
For α = 0, the mask of the subdivision scheme is:

a = {· · · , 0, 0,− 1
27

,− 2
18

, 0,
9
18

,
21
27

, 1,
21
27

,
9

18
, 0,− 2

18
,− 1

27
, 0, 0, · · · },

then the subdivision scheme rebuilds the scheme in Siddiqi et al. [5].
For α = 1

90 , it is a ternary 4-point subdivision scheme:

a = {· · · , 0, 0,− 5
108

,− 7
108

, 0,
13
36

,
3
4

, 1,
3
4

,
13
36

, 0,− 7
108

,− 5
108

, 0, 0, · · · },

then the subdivision scheme is the scheme offered by Siddiqi et al. [6].

4. Continuity Analysis

4.1. Necessary Condition

Theorem 1. If the limiting curve of the subdivision scheme (5) is C2 continuity, the parameter α ∈
(−∞, 0)

⋃
( 1

86 ,+∞).

Proof. Similar to in Hassan’s paper [2], let the matrix A be the mid-point subdivision matrix and the
matrix B be the vertex subdivision matrix. We have:

A =



a3 a2 a1 a0 0 0
0 0 1 0 0 0
0 a0 a1 a2 a3 0
0 a3 a2 a1 a0 0
0 0 0 1 0 0
0 0 a0 a1 a2 a3


, B =


a0 a1 a2 a3 0
a3 a2 a1 a0 0
0 0 1 0 0
0 a3 a2 a1 a0

0 a0 a1 a2 a3

 .

• The eigenvalues for A are 1,
1
3

,
1
9

,
108α− 1

9(126α− 1)
,

1− 135α

27(126α− 1)
,

1− 135α

27(126α− 1)
.

• The eigenvalues for B are 1,
1
3

,
1
9

,
297α− 2

27(126α− 1)
,

α

126α− 1
.

From the two subdivision matrices and Equation (4), we can find the bound of α which is a
necessary condition of the limiting curve to be C2 continuity.
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If the eigenvalues of the mid-point subdivision matrix satisfy the necessary conditions (4), then

1
9
>

∣∣∣∣ 108α− 1
9(126α− 1)

∣∣∣∣ > ∣∣∣∣ 1− 135α

27(126α− 1)

∣∣∣∣ . (6)

If the eigenvalues of vertex subdivision matrix satisfies the necessary conditions (4), then

1
9
>

∣∣∣∣ 297α− 2
27(126α− 1)

∣∣∣∣ > ∣∣∣∣ α

126α− 1

∣∣∣∣ . (7)

Combining Equation (6) and Equation (7), we find that the necessary conditions for C2 continuity
are α ∈ (−∞, 0)

⋃
( 1

86 ,+∞).

4.2. Sufficient Condition

Theorem 2. If α ∈ (−∞, 0)
⋃
( 1

86 ,+∞), then the subdivision scheme of Equation (5) is C2 continuity.

Proof. Considering the refinement rules of the ternary 4-point rational interpolating subdivision
scheme defined in Equation (5), we calculate sufficient conditions for the continuity of C0, C1, and C2

by the Laurent polynomial method.
The mask a of the subdivision scheme can be written as

a =
1

126α− 1
{1− 135α

27
,

2− 243α

27
, 0,

873α− 7
9

,
129α− 1

3
, 1,

129α− 1
3

,
873α− 7

9

873α− 7
9

, 0,
2− 243α

27
,

1− 135α

27
}. (8)

Taking am(z) = ( 3z2

1+z+z2 )
ma(z), we have:

a1(z) =
1

9(126α− 1)
{(1− 135α)z−3 + (243α− 2)z−2 + (1− 108α)z−1 + (1026α− 8)

+(1350α− 11)z + (1026α− 8)z2 + (1− 108α)z3 + (243α− 2)z4 + (1− 135α)z5},

for the range α ∈ (−∞, 0)
⋃
( 1

86 ,+∞),∥∥∥∥1
3

S1

∥∥∥∥
∞
=

1
3

max{∑
i∈Z

a(1)3i , ∑
i∈Z

a(1)3i+1, ∑
i∈Z

a(1)3i+2} =
∣∣∣∣ 15− 1521α

27(1− 126α)

∣∣∣∣ < 1. (9)

a2(z) =
1

3(126α− 1)
{(1− 135α)z−1 − 27α + (351α− 1)z + (648α− 5)z2 + (351α− 1)z3

−27αz4 + (1− 135α)z5},

for the range α ∈ (−∞, 0)
⋃
( 1

86 ,+∞),∥∥∥∥1
3

S2

∥∥∥∥
∞
=

1
3

max{∑
i∈Z

a(2)3i , ∑
i∈Z

a(2)3i+1, ∑
i∈Z

a(2)3i+2} =
∣∣∣∣ 7− 918α

9(1− 126α)

∣∣∣∣ < 1. (10)

a3(z) =
1

126α− 1
{(1− 135α)z + (162α− 1)z2 + (324α− 3)z3 + (162α− 1)z4 + (1− 135α)z5},
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for the range α ∈ (−∞, 0)
⋃
( 1

86 ,+∞),∥∥∥∥1
3

S3

∥∥∥∥
∞
=

1
3

max{∑
i∈Z

a(3)3i , ∑
i∈Z

a(3)3i+1, ∑
i∈Z

a(3)3i+2} =
∣∣∣∣ 3− 324α

3(1− 126α)

∣∣∣∣ < 1. (11)

According to (9), (10), and (11), we know that the sufficient conditions are satisfied for this scheme
to be C0, C1, and C2.

5. Fractal Behavior

In this paper, the fractal behavior of a ternary 4-point interpolation subdivision scheme is
developed and analyzed.

The original data points are p0 = {p0
i }

n
i=0. Let pk = {pk

i }
3kn+1
i=0 be the set of control points at level

k, and pk = {pk
i }

3kn+1
i=0 satisfies the scheme (5). We need to analyze the effect of the parameter α on the

sum of the length of all the small edges between two arbitrary fixed control points pk
i and pk

j after k
subdivision steps. For simplicity, we only analyze the effect between two initial points p0

0 and p0
1 .

According to the subdivision scheme (5), it is known that pk
0 = p0

0, where k ≥ 0 and:
pk+1

0 = pk
0,

pk+1
1 = a0 pk

−1 + a1 pk
0 + a2 pk

1 + a3 pk
2,

pk+1
2 = a3 pk

−1 + a2 pk
0 + a1 pk

1 + a0 pk
2.

We defined the three edge vectors as:
Vk = pk

1 − pk
0,

Sk = pk
2 − pk

1,
Rk = pk

3 − pk
2.

(12)

Let Uk = pk
1 − pk

−1, Wk = pk
0 − pk

−1 and Zk = pk
2 − pk

−2, and we can get Uk = Vk + Wk. Since
Uk = pk

1 − pk
−1, Uk can be written as:

Uk+1 = (a2 − a0)Uk + a3Zk. (13)

Similarly:

Zk+1 = (a1 − a3)Zk + a0Uk. (14)

Equations (13) and (14) are non-homogeneous difference equations to be solved simultaneously.
Since

U0 = p0
1 − p0

−1,

U1 = p1
1 − p1

−1 = −a3 p0
−2 + (a0 − a2)p0

−1 + (a2 − a0)p0
1 + a3 p0

2

gives the special solution:

Uk = C1λ1 + C2λ2, (15)

where λ1 = 1
3 , λ2 = α

126α−1 , and

C1 =
(135α− 1)p0

−2 − (4806α− 38)p0
−1 + (4806α− 38)p0

1 + (1− 135α)p0
2

9− 1161α
,

C2 =
(1026α− 8)p0

−2 + (3649α− 29)p0
−1 + (4806α− 38)p0

1 + (1− 135α)p0
2

1161α− 9
.
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Since Vk = pk
1 − pk

0 and Sk = pk
2 − pk

1, it follows that

Vk+1 = (1− a1)Vk + a3Sk − a0Uk, (16)

Sk+1 = (a0 − a3)Sk + (a1 − a2)Vk + (a0 − a3)Uk, (17)

Rk+1 = −a0Vk + a2Sk + a3Uk. (18)

Using Equations (15), (16), and (17), yields:

Vk+2 = (1 + a0 − a1 − a3)Vk+1 + [a3(a1 − a2)− (1− a1)(a0 − a3)]Vk + Uk, (19)

or
243(126α− 1)

108α− 1
Vk+2 =

45(135α− 1)
108α− 1

Vk+1 +
2− 197α

108α− 1
Vk + Uk, (20)

and the corresponding characteristic equation is:

243(126α− 1)
108α− 1

r2 − 45(1− 135α)

108α− 1
r− 197α− 2

108α− 1
= 0. (21)

When α 6= 1
108 , the roots of (21) are r1 = 1

9 , r2 = 297α−2
27(126α−1) , and the solution of Equation (16) is

Vk = D1rk
1 + D2rk

2 + D3λk
1 + D4λk

2, (22)

where Di, i = 1, 2, 3, 4 are the linear combinations of {p0
i }

2
i=−2.

Similarly, the solution of Equation (17) is:

Sk = E1ρk
1 + E2rk

1 + E3rk
2 + E4λk

1 + E5λk
2, (23)

where ρ1 = 108α−1
27(126α−1) and Ei, i = 1, ..., 5 are the linear combinations of {p0

i }
2
i=−2.

The solution of Equation (18) is:

Rk = H1ρk
1 + H2rk

1 + H3rk
2 + H4λk

1 + H5λk
2, (24)

where Hi, i = 1, ..., 5 are the linear combinations of {p0
i }

2
i=−2.

Theorem 3. If α ∈ ( 11
1431 , 7

837 ) and α 6= 1
126 , then the limit curve of the subdivision scheme (5) is a fractal

curve.

Proof. From Equations (22), (23), and (24), it might be concluded by induction that 3k small edge
vectors between the two initial control points pk

i and pk
j after k subdivision steps can be expressed as

ωk
i = pk

i − pk
i−1 = µ1iρ

k
1 + µ2irk

1 + µ3irk
2 + µ4iλ

k
1 + µ5iλ

k
2, i = 1, 2, 3. (25)

For α ∈ ( 11
1431 , 7

837 ) and α 6= 1
126 , then

|r2| >
1
9
= r1, |r1| > |ρ1| , |r2| >

1
3
= λ1, |r2| > |λ2| . (26)

Let
∣∣∣ωk

i

∣∣∣ refer to the length of a vector ωk
i and

∣∣∣ωk
i0

∣∣∣ = mini=1,2,··· ,3k

∣∣∣ωk
i

∣∣∣. Then, we have

3k
∑

i=1

∣∣∣ωk
i

∣∣∣ = 3k
∣∣∣µ1iρ

k
1 + µ2irk

1 + µ3irk
2 + µ4iλ

k
1 + µ5iλ

k
2

∣∣∣
=
∣∣∣3× 297α−7

27(126α−1)

∣∣∣k · ∣∣∣∣µ1i

(
ρ1
r2

)k
+ µ2i

(
r1
r2

)k
+ µ3i + µ4i

(
λ1
r2

)k
+ µ5i

(
λ2
r2

)k
∣∣∣∣→ ∞(k→ ∞).
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Hence, so far as the initial points p0
0 and p0

1 are concerned, the sum of the lengths of all the small
edges tends to infinity as k approaches infinity. Therefore, the limit curve of ternary 4-point scheme is
a fractal curve when α ∈ ( 11

1431 , 7
837 ) and α 6= 1

126 , and this parameter is valued near the point 1
126 .

We give the comparison of the range for continuity and fractal behavior of proposed 4-point
ternary scheme with other existing ternary schemes in Table 1.

Table 1. Comparison of existing ternary 4-point interpolation subdivision schemes.

Scheme Continuity The Range for Ck The Range for Fractal Behavior

Hassan [2] C2 ( 1
15 , 1

9 ) (−1,− 1
5 )
⋃
( 3

5 , 1) Siddiqi [13]
Siddiqi [6] C1 (− 1

18 , 1
9 ) (− 17

27 ,− 1
3 ) Siddiqi [14]

Ours C2 (−∞, 0)
⋃
( 1

84 ,+∞) ( 11
1431 , 7

837 )

6. Example

Examples of the rational interpolation subdivision schemes with C2 continuity are given in
Figure 1.

−2 −1 0 1 2
−2

−1.5
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−0.5

0

0.5

1

1.5

2

(a)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(b)

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

6

(c)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(d)

Figure 1. Examples of the rational interpolation subdivision schemes with C2 continuity. (a) Behavior
of the schemes for α = −1; (b) Behavior of the schemes for α = 0; (c) Behavior of the schemes for α = 1;
(d) Behavior of the schemes for α = 3.

Examples of the subdivision schemes with fractal behavior are given in Figure 2.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(b)

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

6

(c)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(d)

Figure 2. Example of the subdivision schemes with fractal behavior. (a) Behavior of the schemes for
α = 0.00813; (b) Behavior of the schemes for α = 0.00818; (c) Behavior of the schemes for α = 0.0078;
(d) Behavior of the schemes for α = 0.00775.

The change of the limit curves of the subdivision scheme is given in Figure 3.
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−2

0

2

4

6

(c)

−5 0 5

−4

−3
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4

(d)
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0
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2

3

4

(e)

−5 0 5

−4

−3

−2

−1

0

1

2

3

4

(f)

Figure 3. Example of the subdivision schemes with fractal behavior. (a) Control polygon; (b) Behavior
of the schemes for α = 0.00792; (c) Behavior of the schemes for α = 0.00812; (d) Behavior of the schemes
for α = 0.00823; (e) The limit curve with C0 of the schemes for α = 0.01; (f) The limit curve with C2 of
the schemes for α = 0.007.

The application of the fractal curve is given in Figure 4.

Original Image

(a)
0 500 1000 1500
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600

800

1000

1200
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1600

(b)

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

(c)

Figure 4. The application of the fractal curve. (a) The coastline; (b) Corresponds to the data points taken
from (a); (c) The coastline is constructed by applying the subdivision scheme (5) to (b) for α = 0.00814.

The continuous surface and the fractal surface is given in Figure 5.
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(a) (b)

(c) (d)

Figure 5. The continuous surface and the fractal surface. The initial control mesh in (a) and (b) shows
the obtained result with α = 3, and the surface is C1 continuous; (c) shows the obtained result with
α = 0.008, it is a fractal surface; (d) shows the obtained result with α = 0.00795, it is a fractal surface.

7. Conclusions

In this paper, a ternary 4-point interpolating subdivision scheme is introduced which generates
a family of C2 limiting curves for the range of parameter α ∈ (−∞, 0)

⋃ ( 1
84 ,+∞

)
. Compared with

Hassan et al. [2] and Siddiqi et al. [6], the advantage of the proposed subdivision scheme is that it
generates smooth limiting curves of C2 continuity for a wider range of the parameter. The Laurent
polynomial method and matrix method are used to prove the smoothness of the proposed subdivision
scheme. Furthermore, the fractal behavior of the subdivision scheme was analyzed, along with the
range of parameter α ∈ ( 11

1431 , 7
837 ).
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