A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis
Abstract
:1. Introduction
- A component complexity analysis method based on bi-layer decomposition is proposed. A Hodrick Prescott Filter (HP Filter) is applied to extract the long-term trend and short-term fluctuation characteristics from the electricity load data. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is applied to decompose the short-term fluctuation components. A subsequence complexity evaluation index system is constructed based on the sample entropy, spectral entropy, and Lempel–Ziv complexity, providing a comprehensive characterization of the complexity features of each IMF component.
- An improved model, SCEPDF, based on the multi-periodic decoupling block [23], is proposed. The Cross-Variation Aggregation Block is introduced to improve the PDF. During the fusion of periodic features from the dual-variant modeling block, interaction terms between different periodic features are generated element by element through a feature-crossing mechanism. This approach deeply explores the nonlinear relationships between periodic features and significantly improves the model’s forecasting accuracy under single-channel input.
- A complementary forecasting model based on SCEPDF and Pyraformer [24] is constructed. SCEPDF is used to accurately extract the periodic and local characteristics of components with medium and low complexity. Pyraformer is utilized to efficiently model the long-range dependencies and global patterns in high complexity components. Experimental results verify that the integration of these two models’ complementary characteristics allows for a more comprehensive capture of the multi-level features in the data, thereby significantly improving the accuracy of short-term electricity load forecasting.
2. Methodology
2.1. Overall Framework
2.2. Bi-Layer Decomposition Method
2.2.1. Hodrick Prescott Filter
2.2.2. CEEMDAN
2.3. Complexity Evaluation Index System
2.3.1. Sample Entropy
2.3.2. Spectral Entropy
2.3.3. Lempel–Ziv Complexity
2.4. Complementary Forecasting Method
2.4.1. SCEPDF
2.4.2. Pyraformer
3. Examples Analysis
3.1. Data Base Foundation and Model Input
3.2. Evaluating Indicator
3.3. Model Comparison
3.4. Complexity Analysis
3.5. Verification of the Model Complementary Characteristics
3.6. Ablation Experiment
4. Conclusions
- (1)
- The bi-layer decomposition method based on HP filtering and CEEMDAN effectively improves the data input of the model and significantly improves the forecasting accuracy. The effectiveness of the bi-layer decomposition method was verified by the results of ablation experiments. The combined model based on bi-layer decomposition increased the RMSE, MAE, MAPE, and R2 by 28.87%, 28.35%, 28.27%, and 11.80%, respectively, as compared with the single model.
- (2)
- The improved PDF and Pyraformer exhibit significant complementarity, and their combination achieves better forecasting results. SCEPDF focuses on extracting periodic and local features, making it suitable for handling medium- to low-complexity IMF components. In contrast, Pyraformer excels at capturing long-range dependencies and global patterns, making it appropriate for high-complexity IMF components. By selecting the corresponding model based on component complexity, their collaborative use can further enhance the accuracy of electric load forecasting.
- (3)
- The complementary forecasting method based on bi-level decomposition and complexity-driven approaches fully exploits the characteristics of each component, effectively addressing the impacts of non-stationarity in load sequences, thereby further enhancing prediction accuracy. The effectiveness of this method was verified through ablation experiments, which demonstrated an average improvement of 14.75% in RMSE, 14.13% in MAE, 13.79% in MAPE, and 4.79% in R2 compared to models based solely on bi-level decomposition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Method | RMSE (KW) | MAE (KW) | MAPE% | R2 |
---|---|---|---|---|
LightTS | 738.63 | 566.49 | 4.9247 | 0.8511 |
Reformer | 1283.43 | 998.35 | 8.3158 | 0.5503 |
Crossformer | 673.11 | 518.13 | 4.4478 | 0.8763 |
Transformer | 966.45 | 711.5 | 5.8472 | 0.745 |
Informer | 845.59 | 661.09 | 5.8424 | 0.8048 |
564.84 | 425.19 | 3.6386 | 0.9127 | |
SCEPDF | 523.68 | 402.45 | 3.5008 | 0.925 |
Pyraformer | 601.31 | 441.98 | 3.8006 | 0.9013 |
Method | RMSE (KW) | MAE (KW) | MAPE% | R2 |
---|---|---|---|---|
LightTS | 812.82 | 584.97 | 5.3298 | 0.9298 |
Reformer | 1050.92 | 757.61 | 6.6941 | 0.8826 |
Crossformer | 575.13 | 428.19 | 4.008 | 0.9649 |
Transformer | 880.24 | 673.47 | 5.8303 | 0.9177 |
Informer | 1133.1 | 827.46 | 7.1071 | 0.8636 |
586.83 | 444.93 | 3.9513 | 0.9638 | |
SCEPDF | 543.61 | 409.57 | 3.8961 | 0.9869 |
Pyraformer | 676.5 | 490.78 | 4.4126 | 0.9514 |
Components | Sample Entropy | Spectral Entropy | Lempel–Ziv Complexity | Compositive Complexity |
---|---|---|---|---|
IMF_1 | 1.00 | 0.95 | 1.00 | 0.98 |
IMF_2 | 0.59 | 1.00 | 0.65 | 0.75 |
IMF_3 | 0.47 | 0.99 | 0.36 | 0.60 |
IMF_4 | 0.29 | 0.96 | 0.44 | 0.56 |
IMF_5 | 0.20 | 0.92 | 0.32 | 0.48 |
IMF_6 | 0.07 | 0.96 | 0.17 | 0.40 |
IMF_7 | 0.02 | 0.93 | 0.09 | 0.35 |
IMF_8 | 0.00 | 0.84 | 0.03 | 0.29 |
IMF_9 | 0.00 | 0.00 | 0.00 | 0.00 |
Components | SCEPDF | Pyraformer | ||
---|---|---|---|---|
RMSE (KW) | MAE (KW) | RMSE (KW) | MAE (KW) | |
IMF_1 | 269.49 | 222.73 | 261.57 | 215.14 |
IMF_2 | 210.43 | 157.09 | 160.61 | 115.37 |
IMF_3 | 104.19 | 85.67 | 141.94 | 114.18 |
IMF_4 | 30.62 | 21.4 | 40.01 | 27.01 |
IMF_5 | 11.37 | 9.09 | 10.52 | 7.92 |
IMF_6 | 2.7 | 2.02 | 4.31 | 3.53 |
IMF_7 | 0.58 | 0.49 | 1.34 | 1.07 |
IMF_8 | 0.04 | 0.03 | 11.24 | 8.47 |
IMF_9 | 0.05 | 0.05 | 0.1 | 0.09 |
Components | Sample Entropy | Spectral Entropy | Lempel–Ziv Complexity | Compositive Complexity |
---|---|---|---|---|
IMF_1 | 1.00 | 0.93 | 1.00 | 0.98 |
IMF_2 | 0.40 | 1.00 | 0.38 | 0.59 |
IMF_3 | 0.18 | 0.96 | 0.40 | 0.51 |
IMF_4 | 0.28 | 0.93 | 0.39 | 0.53 |
IMF_5 | 0.09 | 0.87 | 0.22 | 0.39 |
IMF_6 | 0.02 | 0.88 | 0.14 | 0.35 |
IMF_7 | 0.01 | 0.85 | 0.06 | 0.31 |
IMF_8 | 0.00 | 0.00 | 0.00 | 0.00 |
Components | SCEPDF | Pyraformer | ||
---|---|---|---|---|
RMSE (KW) | MAE (KW) | RMSE (KW) | MAE (KW) | |
IMF_1 | 213.54 | 175.27 | 197.11 | 158.98 |
IMF_2 | 281.93 | 215.54 | 253.7 | 199.95 |
IMF_3 | 37.57 | 27.67 | 41.47 | 28.03 |
IMF_4 | 17.67 | 13.03 | 10.47 | 7.72 |
IMF_5 | 4.3 | 3.05 | 7.9 | 5.92 |
IMF_6 | 0.96 | 0.778 | 1.94 | 1.82 |
IMF_7 | 0.73 | 0.65 | 2.35 | 2.25 |
IMF_8 | 0.62 | 0.96 | 6.43 | 6.38 |
References
- Liao, W.; Wang, S.; Yang, D.; Yang, Z.; Fang, J.; Rehtanz, C.; Porté-Agel, F. TimeGPT in load forecasting: A large time series model perspective. Appl. Energy 2025, 379, 124973. [Google Scholar]
- Jalalifar, R.; Delavar, M.R.; Ghaderi, S.F. SAC-ConvLSTM: A novel spatio-temporal deep learning-based approach for a short term power load forecasting. Expert Syst. Appl. 2024, 237 Pt B, 121487. [Google Scholar]
- Kong, X.; Li, C.; Wang, C.; Zhang, Y.; Zhang, J. Short-term electrical load forecasting based on error correction using dynamic mode decomposition. Appl. Energy 2020, 261, 114368. [Google Scholar]
- Pappas, S.S.; Ekonomou, L.; Karampelas, P.; Karamousantas, D.C.; Katsikas, S.K.; Chatzarakis, G.E.; Skafidas, P.D. Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electr. Power Syst. Res. 2010, 3, 256–264. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Y.; Hyndman, R.J.; Li, F. Distributed ARIMA models for ultra-long time series. Int. J. Forecast. 2023, 39, 1163–1184. [Google Scholar]
- Mashaly, A.F.; Alazba, A.A. MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Comput. Electron. Agric. 2016, 122, 146–155. [Google Scholar]
- Wang, C.; Zhao, H.; Liu, Y.; Fan, G. Minute-level ultra-short-term power load forecasting based on time series data features. Appl. Energy 2024, 372, 123801. [Google Scholar] [CrossRef]
- Li, K.; Mu, Y.; Yang, F.; Wang, H.; Yan, Y.; Zhang, C. A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN. Appl. Energy 2023, 351, 121823. [Google Scholar]
- Bu, X.; Wu, Q.; Zhou, B.; Li, C. Hybrid short-term load forecasting using CGAN with CNN and semi-supervised regression. Appl. Energy 2023, 338, 120920. [Google Scholar]
- Gang, W.; Wang, J. Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems. Appl. Energy 2013, 112, 1146–1153. [Google Scholar]
- Agarwal, H.; Mahajan, G.; Shrotriya, A.; Shekhawat, D. Predictive Data Analysis: Leveraging RNN and LSTM Techniques for Time Series Dataset. Procedia Comput. Sci. 2024, 235, 979–989. [Google Scholar] [CrossRef]
- Jonkers, J.; Avendano, D.N.; Van Wallendael, G.; Van Hoecke, S. A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests. Appl. Energy 2024, 361, 122900. [Google Scholar] [CrossRef]
- Li, L.; Meinrenken, C.J.; Modi, V.; Culligan, P.J. Short-term apartment-level load forecasting using a modified neural network withselected auto-regressive features. Appl. Energy 2021, 287, 116509. [Google Scholar] [CrossRef]
- Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282 Pt A, 116177. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Huang, Y.; Zhang, P.; Fu, Y. A multivariate time series graph neural network for district heat load forecasting. Energy 2023, 278 Pt A, 127911. [Google Scholar] [CrossRef]
- Yang, D.; Li, M.; Guo, J.-E.; Du, P. An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting. Appl. Energy 2024, 375, 124057. [Google Scholar] [CrossRef]
- He, F.; Zhou, J.; Feng, Z.-K.; Liu, G.; Yang, Y. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm. Appl. Energy 2019, 237, 103–116. [Google Scholar] [CrossRef]
- Li, K.; Duan, P.; Cao, X.; Cheng, Y.; Zhao, B.; Xue, Q.; Feng, M. A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction. Appl. Energy 2024, 365, 123283. [Google Scholar] [CrossRef]
- Ma, K.; Nie, X.; Yang, J.; Zha, L.; Li, G.; Li, H. A power load forecasting method in port based on VMD-ICSS-hybrid neural network. Appl. Energy 2025, 377 Pt B, 124246. [Google Scholar] [CrossRef]
- Shi, J.; Teh, J. Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion. Appl. Energy 2024, 353 Pt B, 122146. [Google Scholar] [CrossRef]
- Saini, P.; Parida, S.K. A novel probabilistic gradient boosting model with multi-approach feature selection and iterative seasonal trend decomposition for short-term load forecasting. Energy 2024, 294, 130975. [Google Scholar]
- Qiu, Y.; He, Z.; Zhang, W.; Yin, X.; Ni, C. MSGCN-ISTL: A multi-scaled self-attention-enhanced graph convolutional network with improved STL decomposition for probabilistic load forecasting. Expert Syst. Appl. 2024, 238 Pt A, 121737. [Google Scholar]
- Dai, T.; Wu, B.; Liu, P.; Li, N.; Bao, J.; Jiang, Y.; Xia, S.-T. Periodicity Decoupling Framework for Long Term Series Forecasting. In Proceedings of the 2024 12th International Conference on LeFarning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low complexity pyramidal attention for long-range time series modeling and forecasting. In Proceedings of the 2022 10th International Conference on LeFarning Representations, Online, 25–29 April 2022. [Google Scholar]
Parameter Name | Parameter Value |
---|---|
Seq len | 24 |
Number of attention heads | 8 |
Epoch | 50 |
Batch size | 24 |
Patience | 10 |
Dropout | 0.05 |
Optimizer | Adam |
Learning rate | 0.0001 |
Activation function | GELU |
Loss function | MSE |
Method | RMSE (KW) | MAE (KW) | MAPE% | R2 |
---|---|---|---|---|
LightTS | 562.52 | 448.78 | 2.6731 | 0.7416 |
Reformer | 691.99 | 555.15 | 3.2901 | 0.609 |
Crossformer | 528.36 | 416.76 | 2.4787 | 0.7721 |
Transformer | 676.74 | 551.64 | 3.2998 | 0.6267 |
Informer | 605.78 | 476.8 | 2.8394 | 0.7004 |
516.63 | 404.39 | 2.3937 | 0.7821 | |
SCEPDF | 510.86 | 400.6 | 2.3755 | 0.7869 |
Pyraformer | 548.84 | 425.69 | 2.5374 | 0.7541 |
Components | Sample Entropy | Spectral Entropy | Lempel–Ziv Complexity | Compositive Complexity |
---|---|---|---|---|
IMF_1 | 1.00 | 1.00 | 0.77 | 0.92 |
IMF_2 | 0.64 | 0.86 | 1.00 | 0.83 |
IMF_3 | 0.45 | 0.57 | 0.90 | 0.64 |
IMF_4 | 0.35 | 0.55 | 0.82 | 0.57 |
IMF_5 | 0.21 | 0.43 | 0.49 | 0.37 |
IMF_6 | 0.07 | 0.23 | 0.32 | 0.21 |
IMF_7 | 0.02 | 0.12 | 0.36 | 0.17 |
IMF_8 | 0.01 | 0.06 | 0.00 | 0.02 |
IMF_9 | 0.00 | 0.00 | 0.42 | 0.14 |
Components | SCEPDF | Pyraformer | Crossformer | |||
---|---|---|---|---|---|---|
RMSE (KW) | MAE (KW) | RMSE (KW) | MAE (KW) | RMSE (KW) | MAE (KW) | |
IMF_1 | 343.19 | 276.77 | 324.94 | 258.02 | 335.91 | 272.86 |
IMF_2 | 140.67 | 105.99 | 132.19 | 99.34 | 168.44 | 124.7 |
IMF_3 | 51.09 | 39.26 | 49.23 | 39.01 | 54.7 | 35.69 |
IMF_4 | 36.51 | 25.24 | 19.16 | 15.49 | 20.56 | 15.27 |
IMF_5 | 8.92 | 6.99 | 5.058 | 3.6289 | 5.76 | 3.71 |
IMF_6 | 0.9147 | 0.634 | 1.7099 | 1.4319 | 0.4061 | 0.3258 |
IMF_7 | 0.5549 | 0.3689 | 3.9253 | 2.3734 | 4.63 | 3.67 |
IMF_8 | 0.0079 | 0.0047 | 0.1288 | 0.1168 | 0.0843 | 0.0698 |
IMF_9 | 0.143 | 0.0652 | 4.1561 | 4.0526 | 3.2769 | 3.1799 |
Method | RMSE (KW) | MAE (KW) | MAPE% | R2 |
---|---|---|---|---|
SCEPDF | 510.86 | 400.6 | 2.37 | 0.7869 |
Pyraformer | 548.84 | 425.69 | 2.53 | 0.7541 |
HP-SCEPDF | 455.46 | 358.95 | 2.13 | 0.8306 |
CEEMDAN-SCEPDF | 364.48 | 287.72 | 1.71 | 0.8915 |
HP-CEEMDAN-LightTS | 483.81 | 375.4 | 2.2253 | 0.8089 |
HP-CEEMDAN-Reformer | 487.69 | 376.05 | 2.2274 | 0.8058 |
HP-CEEMDAN-Crossformer | 386.16 | 303.09 | 1.8109 | 0.8783 |
HP-CEEMDAN-Transformer | 370.14 | 296.12 | 1.7586 | 0.8881 |
HP-CEEMDAN-Informer | 407.65 | 320.99 | 1.9083 | 0.8643 |
HP-CEEMDAN-SCEPDF | 363.39 | 287.03 | 1.70 | 0.8922 |
Proposed | 354.74 | 280.34 | 1.67 | 0.8973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; He, Y. A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis. Mathematics 2025, 13, 1066. https://doi.org/10.3390/math13071066
Dou X, He Y. A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis. Mathematics. 2025; 13(7):1066. https://doi.org/10.3390/math13071066
Chicago/Turabian StyleDou, Xun, and Yu He. 2025. "A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis" Mathematics 13, no. 7: 1066. https://doi.org/10.3390/math13071066
APA StyleDou, X., & He, Y. (2025). A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis. Mathematics, 13(7), 1066. https://doi.org/10.3390/math13071066