Oscillation Conditions for Third-Order Delay Differential Equations with Neutral-Type Term
Abstract
1. Introduction
- (A1)
- ;
- (A2)
- , ;
- (A3)
- , is the inverse function of , ;
- (A4)
- There exists a function such that for .
2. Main Results
- (I)
- , , , ;
- (II)
- , , , .
- (I)
- , , , ;
- (II)
- , , , ;
- (III)
- , , , .
3. Numerical Simulations
4. Results and Discussion Part
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Acosta-Soba, D.; Columbu, A.; Viglialoro, G. Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models. Stud. Appl. Math. 2025, 154, e70018. [Google Scholar] [CrossRef]
- Li, T.; Frassu, S.; Vigialoro, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 2023, 74, 109. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Yamada, T. Trubulent state in chemical reaction. Prog. Theor. Phys. 1976, 56, 679–681. [Google Scholar] [CrossRef]
- Michelson, D. Steady solutions of the Kuramoto-Sivashinsky equation. Phys. D 1986, 19, 89–111. [Google Scholar] [CrossRef]
- Agarwal, R.; Bohner, M.; Li, T.; Zhang, C. Oscillation of third-order nonlinear delay differential equations. Taiwan J. Math. 2013, 17, 545–558. [Google Scholar] [CrossRef]
- Džurina, J.; Kotorová, R. Properties of the third order trinomial differential equations with delay argument. Nonlinear Anal. 2009, 71, 1995–2002. [Google Scholar] [CrossRef]
- Baculĺková, B. Properties of third-order nonlinear functional differential equations with mixed arguments. Abstr. Appl. Anal. 2011, 2011, 857860. [Google Scholar] [CrossRef]
- Baculĺková, B.; Džurina, J. On the asymptotic behavior of a class of third order nonlinear neutral differential equations. Cent. Eur. J. Math. 2010, 8, 1091–1103. [Google Scholar] [CrossRef]
- Baculĺková, B.; Džurina, J. Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 43, 10–14232. [Google Scholar] [CrossRef]
- Baculĺková, B.; Džurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Baculĺková, B.; Džurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2011, 24, 466–470. [Google Scholar] [CrossRef]
- Baculĺková, B.; Džurina, J.; Rogovchenko, Y. Oscillation of third order trinomial delay differential equations. Appl. Math. Comput. 2012, 218, 7023–7033. [Google Scholar] [CrossRef]
- Baculĺková, B.; Elabbasy, E.; Saker, S.; Džurina, J. Oscillation criteria for third-order nonlinear differential equations. Math. Slovaca 2008, 58, 201–220. [Google Scholar] [CrossRef]
- Candan, T.; Dahiya, R. Oscillation of third order functional differential equations with delay. Fifth Mississippi State Conference on Differential Equations and Computational Simulations. Electron. J. Differ. Equ. 2003, 10, 79–88. [Google Scholar]
- Candan, T.; Dahiya, R. Functional differential equations of third order. Electron. J. Differ. Equ. 2005, 12, 47–56. [Google Scholar]
- Džurina, J. Asymptotic properties of third order delay differential equations. Czechoslov. Math. J. 1995, 45, 443–448. [Google Scholar] [CrossRef]
- Džurina, J.; Grace, S.; Jadlovská, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Došlá, Z.; Liška, P. Oscillation of third-order nonlinear neutral differential equations. Appl. Math. Lett. 2016, 56, 42–48. [Google Scholar] [CrossRef]
- Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pac. J. Math. 1976, 64, 369–385. [Google Scholar] [CrossRef]
- Elabbasy, E.; Hassan, T.; Elmatary, B. Oscillation criteria for third order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 5, 1–11. [Google Scholar] [CrossRef]
- Grace, S.; Agarwal, R.; Pavani, R.; Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Grace, J.; Savithri, R.; Thandapani, E. Oscillatory properties of third order neutral delay differential equations. In Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, Wilmington, NC, USA, 24–27 May 2002; pp. 342–350. [Google Scholar]
- Hanan, M. Oscillation criteria for third-order linear differential equations. Pac. J. Math. 1961, 11, 919–944. [Google Scholar] [CrossRef]
- Saker, S. Oscillation criteria of third-order nonlinear delay differential equations. Math. Slovaca 2006, 56, 433–450. [Google Scholar]
- Saker, S.; Džurina, J. On the oscillation of certain class of third-order nonlinear delay differential equations. Math. Bohem. 2010, 135, 225–237. [Google Scholar] [CrossRef]
- Tiryaki, A.; Aktaş, M. Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping. J. Math. Anal. Appl. 2007, 325, 54–68. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47, 181–199. [Google Scholar]
- Jiang, Y.; Jiang, C.; Li, T. Oscillatory behavior of third-order nonlinear neutral delay differential equations. Adv. Differ. Equ. 2016, 2016, 171. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y. On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations. Appl. Math. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Baculícová, B.; Džurina, J. On the oscillation of third-order quasi-linear delay diffrential equations. Tatra Mt. Math. Publ. 2011, 48, 117–123. [Google Scholar]
- Li, T.; Rogovchenko, Y. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 2020, 105, 106293. [Google Scholar] [CrossRef]
- Jadlovská, I.; Li, T. A note on the oscillation of third-order delay differential equations. Appl. Math. Lett. 2025, 167, 109555. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Grace, S.; Jadlovská, I.; Li, T.; Tunç, E. Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 2019, 5691758. [Google Scholar] [CrossRef]
- Kiguradze, I.; Chanturia, T. Asymptotic properties of solutions of nonautonomous ordinary differential equations. In Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Koplatadze, R.; Chanturiya, T. Oscillating and monotone solutions of first-order differential equations with deviating argument. Differ. Uravn. 1982, 18, 1463–1465. [Google Scholar]
- Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 1980, 78, 64–68. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Wang, Q.-R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Tian, H. Oscillation Conditions for Third-Order Delay Differential Equations with Neutral-Type Term. Mathematics 2025, 13, 3625. https://doi.org/10.3390/math13223625
Guo R, Tian H. Oscillation Conditions for Third-Order Delay Differential Equations with Neutral-Type Term. Mathematics. 2025; 13(22):3625. https://doi.org/10.3390/math13223625
Chicago/Turabian StyleGuo, Rongrong, and Haifeng Tian. 2025. "Oscillation Conditions for Third-Order Delay Differential Equations with Neutral-Type Term" Mathematics 13, no. 22: 3625. https://doi.org/10.3390/math13223625
APA StyleGuo, R., & Tian, H. (2025). Oscillation Conditions for Third-Order Delay Differential Equations with Neutral-Type Term. Mathematics, 13(22), 3625. https://doi.org/10.3390/math13223625

