Exact Inference and Prediction for Exponential Models Under General Progressive Censoring with Application to Tire Wear Data
Abstract
1. Introduction
2. General Progressive Type-II Censoring
3. Algorithm
- (R1)
- for ,
- (R2)
- for (i.e., the first k columns of A are identical),
- (R3)
- and .
4. The Best Linear Unbiased Estimators
4.1. One-Parameter Exponential Case
4.2. Two-Parameter Exponential Case
5. The Exact Inference and Prediction
5.1. One-Parameter Exponential Case
5.2. Two-Parameter Exponential Case
6. Illustrative Example of Computational Implementation
7. Simulation Study and Application
7.1. Example 1
| j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Sample 1 | – | – | 12.89 | 12.97 | 19.15 | 19.50 | 26.63 | 27.27 |
| – | – | 4 | 0 | 4 | 0 | 4 | 20 | |
| Sample 2 | – | 5.71 | 6.51 | 7.44 | 8.13 | 14.24 | 17.61 | 25.32 |
| – | 3 | 0 | 5 | 0 | 4 | 0 | 20 | |
| Sample 3 | – | 1.57 | 1.72 | 2.84 | 10.40 | 17.09 | 18.80 | 19.16 |
| – | 0 | 3 | 3 | 3 | 3 | 0 | 20 |
7.2. Example 2
| j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Present | – | – | 10.58 | 11.60 | 12.41 | 13.51 | 16.96 | 19.30 |
| – | – | 4 | 0 | 4 | 0 | 4 | 20 | |
| Additive | – | 11.01 | 11.20 | 12.95 | 16.03 | 18.96 | 28.59 | 33.51 |
| – | 3 | 0 | 5 | 0 | 4 | 0 | 20 | |
| Thickness | – | 19.51 | 19.62 | 20.47 | 20.78 | 26.23 | 28.28 | 34.36 |
| – | 0 | 3 | 3 | 3 | 3 | 0 | 20 |
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Digits:=40;
- K:=1;
- na:=[19];
- ma:=[8];
- ra:=[1];
- Ra:=[[0,0,3,0,3,0,0, 5]];
- alphrn:=proc(r,n)
- local j,sum;
- if r > n then
- ERROR(′Wrong r′);
- fi;
- sum:=0;
- for j from 1 to r+1 do
- sum:=sum+1/(n-j+1);
- od;
- sum;
- end;
- betarn:=proc(r,n)
- local j,sum;
- if r > n then
- ERROR(′Wrong r′);
- fi;
- sum:=0;
- for j from 1 to r+1 do
- sum:=sum+1/(n-j+1)^2;
- od;
- sum;
- end;
- Eq6bottomcoef:=proc(na,ma,ra,K)
- local i,j,ans;
- ans:=0;
- for i from 1 to K do
- ans:=ans+ma[i]-ra[i]-1+alphrn(ra[i],na[i])^2/betarn(ra[i],na[i])
- od;
- ans;
- end;
- QforKS_Eq10:=proc(na,ma,ra,Ra,K)
- local i,j,h,ell,denumW, denum, a;
- denum:=Eq6bottomcoef(na,ma,ra,K);
- a:=[];
- for i from 1 to K do
- for j from 1 to ma[i] do
- if j <= ra[i]+1 then
- a:=[op(a),alphrn(ra[i],na[i])/betarn(ra[i],na[i])/(na[i]-j+1)/denum];
- else
- for h from ra[i]+2 to j do
- denumW:=0;
- for ell from ra[i]+1 to h-1 do
- denumW:=denumW+Ra[i,ell]
- od;
- a:=[op(a),(Ra[i,j]+1)/(na[i]-denumW-h+1)/denum];
- od;
- fi;
- od;
- od;
- a:=convert(a,list);
- V(a);
- end;
- basic:=proc(a)
- local j,e,num,ans,wt;
- e:=a;
- num:=nops(op(1,e));
- j:=1;
- while j<num do
- if op(j,op(1,e))<>op(j+1,op(1,e)) then
- wt:= (-1)*op(j+1,op(1,e))/(op(j,op(1,e))-op(j+1,op(1,e)));
- ans:=wt*subsop(1=subsop(j=NULL,op(1,e)),e)
- +(1-wt)*subsop(1=subsop(j+1=NULL,op(1,e)),e);
- e:=ans;
- break;
- else
- j:=j+1;
- fi;
- od;
- e;
- end;
- aplbasic:=proc(e)
- local w,ans;
- w:=op(0,e);
- if w=′V′ then
- ans:=basic(e)
- elif w=′+′ or w=′*′ or w=′^′ then
- ans:=map(aplbasic,e)
- else
- ans:=e;
- fi;
- ans;
- end;
- decomp:=proc(e)
- local t;
- t:=e;
- t:=aplbasic(t);
- if t<> e then
- t:=decomp(t);
- else
- RETURN(t);
- fi;
- end;
- reduce:=proc(e)
- local w,k,c;
- w:=e;
- k:=nops(op(1,w));
- c:=1/op(1,op(1,w));
- sumR(k,c);
- end;
- sumR:=proc(dd,c)
- local v,j;
- v:=0;
- for j from 0 to dd-1 by 1 do
- v:=v+c^j*R(j,c);
- od;
- v;
- end;
- aplred:=proc(e)
- local w,ans;
- w:=op(0,e);
- if w=′V′ then ans:=reduce(e)
- elif w=′+′ or w=′*′ then ans:=simplify(map(aplred,e))
- else ans:=e;
- fi;
- ans;
- end;
- R:=proc(j,w)
- t^j*exp(-w*t)/j!;
- end;
- tval:=proc(alpha)
- local dd,s,ss,ans;
- global t;
- dd:=QforKS_Eq10(na,ma,ra,Ra,K);
- s:=decomp(dd);
- ss:=aplred(s);
- ans:=fsolve(ss=alpha,t,0..infinity);
- ans;
- end;
References
- Sen, P.K. Progressive censoring schemes. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; John Wiley & Sons: New York, NY, USA, 1986; Volume 7, pp. 296–299. [Google Scholar]
- Balakrishnan, N.; Cramer, E.; Kamps, U.; Schenk, N. Progressive type II censored order statistics from exponential distributions. Statistics 2001, 35, 537–556. [Google Scholar] [CrossRef]
- Bhattacharya, B. Testing for ordered failure rates under general progressive censoring. J. Stat. Plan. Infer. 2007, 137, 1775–1786. [Google Scholar] [CrossRef]
- Bain, L.J.; Engelhardt, M. Statistical Analysis of Reliability and Life-Testing Models, 2nd ed.; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive Type-II censored samples. Sankhyā Ser. B 1996, 58, 1–9. [Google Scholar]
- Balakrishnan, N.; Lin, C.T. Exact linear inference and prediction for exponential distributions based on general progressively Type-II censored samples. J. Statist. Computat. Simul. 2002, 72, 677–686. [Google Scholar] [CrossRef]
- Fernández, A.J. On estimating exponential parameters with general Type-II progressive censoring. J. Stat. Plan. Inference 2004, 121, 135–147. [Google Scholar] [CrossRef]
- Soliman, A.A. Estimations for Pareto model using general progressive censored data and asymmetric loss. Commun. Stat. Theory Methods 2008, 37, 1353–1370. [Google Scholar] [CrossRef]
- Kim, C.; Han, K. Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring. J. Korean Statist. Soc. 2009, 38, 239–246. [Google Scholar] [CrossRef]
- Soliman, A.A.; Al-Hossain, A.Y.; Al-Harbi, M.M. Predicting observables from Weibull model based on general progressive censored data with asymmetric loss. Stat. Methodol. 2011, 8, 451–461. [Google Scholar] [CrossRef]
- Wang, B.X. Exact interval estimation for the scale family under general progressive Type-II censoring. Commun. Stat. Theory Methods 2012, 41, 4444–4452. [Google Scholar] [CrossRef]
- Peng, X.Y.; Yan, Z.Z. Bayesian estimation and prediction for the inverse Weibull distribution under general progressive censoring. Commun. Stat.-Theory Methods 2016, 45, 621–635. [Google Scholar] [CrossRef]
- Rashad, M.E. Bayesian prediction based on general progressive censored data from generalized pareto distribution. J. Stat. Appl. Probab. 2016, 5, 43–51. [Google Scholar] [CrossRef]
- Yan, Z.; Zhu, T.; Peng, X.; Li, X. Reliability analysis for multi-level stress testing with Weibull regression model under the general progressively Type-II censored data. J. Comput. Appl. Math. 2018, 330, 28–40. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, W. Estimation and prediction for Gompertz distribution under general progressive censoring. Symmetry 2021, 13, 858. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarawala, R. Progressive Censoring: Theory Methods and Applications; Birkhaüser: Boston, MA, USA, 2000. [Google Scholar] [CrossRef]
- Balakrishnan, N. Progressive censoring methodology: An appraisal (with discussions). Test 2007, 16, 211–296. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Birkhaüser: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Nelson, W.A. Applied Life Data Analysis; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models & Methods for Lifetime Data; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Balakrishnan, N.; Basu, A.P. (Eds.) The Exponential Distribution: Theory, Methods and Applications; Gordon and Breach Science Publishers: Langhorne, PA, USA, 1995. [Google Scholar]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- David, H.A. Order Statistics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Lawless, J.F. A prediction problem concerning samples from the exponential distribution, with application in life testing. Technometrics 1971, 13, 725–730. [Google Scholar] [CrossRef]
- Lawless, J.F. Prediction intervals for the two-parameter exponential distribution. Technometrics 1977, 19, 469–472. [Google Scholar] [CrossRef]
- Likeš, J. Prediction of sth ordered observation for the two-parameter exponential distribution. Technometrics 1974, 16, 241–244. [Google Scholar] [CrossRef]
- Lingappaiah, G.S. Prediction in exponential life testing. Can. J. Stat. 1973, 1, 113–117. [Google Scholar] [CrossRef]
- Patel, J.K. Prediction intervals—A review. Commun. Stat.-Theor. Methods 1989, 18, 2393–2465. [Google Scholar] [CrossRef]
- Kaminsky, K.S.; Nelson, P.I. Prediction of order statistics. In Handbook of Statistics-17: Order Statistics: Applications; Balakrishnan, N., Rao, C.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1998; pp. 431–450. [Google Scholar] [CrossRef]
- Nagaraja, H.N. Prediction problems. In The Exponential Distribution: Theory, Methods and Applications; Balakrishnan, N., Basu, A.P., Eds.; Gordon and Breach Science Publishers: Langhorne, PA, USA, 1995; pp. 139–163. [Google Scholar] [CrossRef]
- Lin, C.T.; Balakrishnan, N. Exact prediction intervals for exponential distributions based on doubly Type-II censored samples. J. Appl. Stat. 2003, 30, 783–801. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Lin, C.T.; Chan, P.S. Exact inference and prediction for K-sample two-parameter exponential case under general Type-II censoring. J. Statist. Computat. Simul. 2004, 74, 867–878. [Google Scholar] [CrossRef]
- Huffer, F.W.; Lin, C.T. Computing the joint distribution of general linear combinations of spacings or exponential variates. Stat. Sin. 2001, 11, 1141–1157. [Google Scholar]
- Huffer, F.W. Divided differences and the joint distribution of linear combinations of spacings. J. Appl. Prob. 1988, 25, 346–354. [Google Scholar] [CrossRef]
- Huffer, F.W.; Lin, C.T. Linear combinations of spacings. In Encyclopedia of Statistical Sciences, 2nd ed.; Kotz, S., Balakrishnan, N., Read, C.B., Vidakovic, B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 12, pp. 7866–7875. [Google Scholar] [CrossRef]
- Lin, C.T.; Wu, Y.N.; Balakrishnan, N.; Ling, M.H. OTL web interface: Outlier testing in lifetime data. Commun. Stat. Simul. Comput. 2024, 53, 3894–3915. [Google Scholar] [CrossRef]
- Viveros, R.; Balakrishnan, N. Interval estimation of parameters of life from progressively censored data. Technometrics 1994, 36, 84–91. [Google Scholar] [CrossRef]
- Wang, T.C. Constructing a cloud-computing tool of single sampling plan based on process capability indices for product acceptance determination. Int. J. Adv. Manuf. Tech. 2025, 138, 1323–1334. [Google Scholar] [CrossRef]
| j | 0.995 | 0.975 | 0.95 | 0.05 | 0.025 | 0.005 |
|---|---|---|---|---|---|---|
| 1 | 0.000251 | 0.001266 | 0.002567 | 0.157009 | 0.195449 | 0.287876 |
| 2 | 0.005236 | 0.012281 | 0.018050 | 0.258148 | 0.307141 | 0.421632 |
| 3 | 0.017351 | 0.031913 | 0.042312 | 0.355045 | 0.413379 | 0.547812 |
| 4 | 0.035141 | 0.057353 | 0.072216 | 0.453086 | 0.520481 | 0.674469 |
| 5 | 0.057505 | 0.087363 | 0.106602 | 0.554583 | 0.631131 | 0.805004 |
| 6 | 0.083865 | 0.121433 | 0.145053 | 0.661119 | 0.747138 | 0.941689 |
| 7 | 0.113978 | 0.159423 | 0.187511 | 0.774111 | 0.870102 | 1.086514 |
| 8 | 0.147821 | 0.201427 | 0.234144 | 0.895044 | 1.001692 | 1.241538 |
| 9 | 0.185549 | 0.247719 | 0.285304 | 1.025632 | 1.143817 | 1.409118 |
| 10 | 0.227476 | 0.298753 | 0.341530 | 1.167968 | 1.298818 | 1.592138 |
| 11 | 0.274089 | 0.355183 | 0.403574 | 1.324734 | 1.469686 | 1.794303 |
| 12 | 0.326089 | 0.417917 | 0.472471 | 1.499495 | 1.660411 | 2.020574 |
| 13 | 0.384462 | 0.488218 | 0.549650 | 1.697185 | 1.876530 | 2.277884 |
| 14 | 0.450605 | 0.567870 | 0.637130 | 1.924942 | 2.126090 | 2.576391 |
| 15 | 0.526558 | 0.659477 | 0.737863 | 2.193682 | 2.421458 | 2.931871 |
| 16 | 0.615426 | 0.767040 | 0.856403 | 2.521315 | 2.783066 | 3.370735 |
| 17 | 0.722277 | 0.897157 | 1.000310 | 2.940263 | 3.248235 | 3.942058 |
| 18 | 0.856258 | 1.061943 | 1.183601 | 3.518426 | 3.896097 | 4.752325 |
| 19 | 1.036896 | 1.287938 | 1.437412 | 4.437388 | 4.942115 | 6.100933 |
| 20 | 1.322616 | 1.658069 | 1.861503 | 6.510669 | 7.378900 | 9.427787 |
| Process | First 20 Wearout Times | Model | Estimated Parameters | KS | p-Value |
|---|---|---|---|---|---|
| Present | 10.03, 10.47, 10.58, 11.48, 11.60, 12.41, 13.03, 13.51, 14.48, 16.96, | Exp | , | 0.22529 | 0.2253 |
| 17.08, 17.27, 17.90, 18.21, 19.30, 20.10, 20.51, 21.78, 21.79, 25.34 | Exp | 0.46177 | 0.0002007 | ||
| Additive | 10.10, 11.01, 11.20, 12.95, 13.19, 14.81, 16.03, 17.01, 18.96, 24.10, | Exp | , | 0.22935 | 0.2086 |
| 24.15, 24.52, 26.05, 26.44, 28.59, 30.24, 31.03, 33.51, 33.61, 40.68 | Exp | 0.36283 | 0.007256 | ||
| Thickness | 19.07, 19.51, 19.62, 20.47, 20.78, 21.37, 22.08, 22.61, 23.47, 26.02, | Exp | , | 0.22501 | 0.2265 |
| 26.23, 26.47, 27.07, 27.43, 28.28, 29.10, 29.66, 30.67, 30.81, 34.36 | Exp | 0.53005 | <0.00001 |
| j | 0.995 | 0.975 | 0.95 | 0.05 | 0.025 | 0.005 |
|---|---|---|---|---|---|---|
| 1 | 0.000338 | 0.001707 | 0.003459 | 0.214124 | 0.267248 | 0.395960 |
| 2 | 0.007030 | 0.016499 | 0.024261 | 0.353008 | 0.421275 | 0.582098 |
| 3 | 0.023226 | 0.042771 | 0.056755 | 0.486419 | 0.568200 | 0.758237 |
| 4 | 0.046923 | 0.076715 | 0.096707 | 0.621641 | 0.716600 | 0.935394 |
| 5 | 0.076616 | 0.116661 | 0.142556 | 0.761806 | 0.870121 | 1.118230 |
| 6 | 0.111521 | 0.161923 | 0.193743 | 0.909067 | 1.031234 | 1.309873 |
| 7 | 0.151303 | 0.212309 | 0.250190 | 1.065360 | 1.202134 | 1.513073 |
| 8 | 0.195928 | 0.267941 | 0.312120 | 1.232723 | 1.385115 | 1.730684 |
| 9 | 0.245592 | 0.329185 | 0.380003 | 1.413510 | 1.582814 | 1.965985 |
| 10 | 0.300707 | 0.396640 | 0.454554 | 1.610604 | 1.798462 | 2.222988 |
| 11 | 0.361914 | 0.471173 | 0.536776 | 1.827695 | 2.036192 | 2.506849 |
| 12 | 0.430135 | 0.553990 | 0.628045 | 2.069693 | 2.301518 | 2.824470 |
| 13 | 0.506667 | 0.646764 | 0.730262 | 2.343387 | 2.602085 | 3.185489 |
| 14 | 0.593354 | 0.751861 | 0.846114 | 2.658598 | 2.948997 | 3.604009 |
| 15 | 0.692885 | 0.872742 | 0.979537 | 3.030326 | 3.359299 | 4.101902 |
| 16 | 0.809366 | 1.014726 | 1.136602 | 3.483160 | 3.861117 | 4.715720 |
| 17 | 0.949504 | 1.186598 | 1.327408 | 4.061543 | 4.505735 | 5.513228 |
| 18 | 1.125438 | 1.404527 | 1.570707 | 4.858405 | 5.401673 | 6.641093 |
| 19 | 1.363162 | 1.704025 | 1.908269 | 6.121730 | 6.843679 | 8.510531 |
| 20 | 1.740802 | 2.196520 | 2.474421 | 8.959656 | 10.186063 | 13.095425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-T. Exact Inference and Prediction for Exponential Models Under General Progressive Censoring with Application to Tire Wear Data. Mathematics 2025, 13, 3627. https://doi.org/10.3390/math13223627
Lin C-T. Exact Inference and Prediction for Exponential Models Under General Progressive Censoring with Application to Tire Wear Data. Mathematics. 2025; 13(22):3627. https://doi.org/10.3390/math13223627
Chicago/Turabian StyleLin, Chien-Tai. 2025. "Exact Inference and Prediction for Exponential Models Under General Progressive Censoring with Application to Tire Wear Data" Mathematics 13, no. 22: 3627. https://doi.org/10.3390/math13223627
APA StyleLin, C.-T. (2025). Exact Inference and Prediction for Exponential Models Under General Progressive Censoring with Application to Tire Wear Data. Mathematics, 13(22), 3627. https://doi.org/10.3390/math13223627

