The Shape Entropy of Small Bodies
Abstract
:1. Introduction
2. Shape Entropy in the 2D Continuous Cases
2.1. Definition
2.2. Regular Polygons
2.3. Rectangles and Ellipses
3. Shape Entropy in the 3D Continuous Cases
3.1. Definition
3.2. Regular Polyhedrons
3.3. Cuboids and Triaxial Ellipsoids
4. Shape Entropy Applied to Polyhedral Models of Small Bodies
4.1. Definition
4.2. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, Y.; Michel, P. Shapes, structures, and evolution of small bodies. Astrodyn 2021, 5, 293–329. [Google Scholar] [CrossRef]
- IAU2006 General Assembly. Resolution B5: Definition of a Planet in the Solar System. Available online: https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf (accessed on 9 December 2022).
- Spohn, T. Small Solar System Body. In Encyclopedia of Astrobiology; Gargaud, M., Irvine, W.M., Amils, R., James, H., Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1516–1517. [Google Scholar] [CrossRef]
- Sugiura, K.; Kobayashi, H.; Inutsuka, S. Toward understanding the origin of asteroid geometries-variety in shapes produced by equal-mass impacts. Astron. Astrophys. 2018, 620, A167. [Google Scholar] [CrossRef]
- Yu, Y.; Baoyin, H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron. J. 2012, 143, 62. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H.; Wang, X.; Yu, Y.; Li, H.; Peng, C.; Zhang, Z. Order and chaos near equilibrium points in the potential of rotating highly irregular-shaped celestial bodies. Nonlinear Dyn. 2016, 83, 231–252. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Y.; Gong, S. Analysis of the Potential Field and Equilibrium Points of Irregular-shaped Minor Celestial Bodies. Astrophys. Space Sci. 2014, 353, 105–121. [Google Scholar] [CrossRef]
- Yu, Y.; Baoyin, H. Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 2012, 427, 872–881. [Google Scholar] [CrossRef]
- Yu, Y.; Baoyin, H.; Jiang, Y. Constructing the natural families of periodic orbits near irregular bodies. Mon. Not. R. Astron. Soc. 2015, 453, 3269–3277. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, Y.; Baoyin, H. Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn. 2015, 81, 119–140. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H.; Li, H. Periodic motion near the surface of asteroids. Astrophys. Space Sci. 2015, 360, 63. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Jiang, Y.; Baoyin, H. Multiple bifurcations in the periodic orbit around Eros. Astrophys. Space Sci. 2016, 361, 170. [Google Scholar] [CrossRef]
- Lan, L.; Ni, Y.; Jiang, Y.; Li, J. Motion of the moonlet in the binary system 243 Ida. Acta Mech. Sin. 2018, 34, 214–224. [Google Scholar] [CrossRef]
- Gil-Fernandez, J.; Ortega-Hernando, G. Autonomous vision-based navigation for proximity operations around binary asteroids. CEAS Space J. 2018, 10, 287–294. [Google Scholar] [CrossRef]
- Pellacani, A.; Cabral, F.; Alcalde, A.; Kicman, P.; Lisowski, J.; Gerth, I.; Burmann, B. Semi-autonomous attitude guidance using relative navigation based on line of sight measurements: Aim scenario. Acta Astronaut. 2018, 152, 496–508. [Google Scholar] [CrossRef]
- Hu, W.; Scheeres, D.J. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planet. Space Sci. 2004, 52, 685–692. [Google Scholar] [CrossRef]
- Scheeres, D.J.; Ostro, S.J.; Hudson, R.S.; Werner, R.A. Orbits close to asteroid 4769 Castalia. Icarus 1996, 121, 67–87. [Google Scholar] [CrossRef]
- de Pater, I.; Lissauer, J.J. Planetary Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 247–248. [Google Scholar] [CrossRef]
- Zhuravlev, S.G. Stability of the libration points of a rotating triaxial ellipsoid. Celest. Mech. 1972, 6, 255–267. [Google Scholar] [CrossRef]
- Scheeres, D.J. Dynamics about uniformly rotating triaxial ellipsoids: Applications to asteroids. Icarus 1994, 110, 225–238. [Google Scholar] [CrossRef]
- Jiang, Y. Equilibrium points and periodic orbits in the vicinity of asteroids with an application to 216 Kleopatra. Earth Moon Planets 2015, 115, 31–44. [Google Scholar] [CrossRef]
- Jiang, Y.; Ni, Y.; Baoyin, H.; Li, J.; Liu, Y. Asteroids and Their Mathematical Methods. Mathematics 2022, 10, 2897. [Google Scholar] [CrossRef]
- Riaguas, A.; Elipe, A.; López-Moratalla, T. Non-Linear Stability of the Equilibria in the Gravity Field of a Finite Straight Segment. Celest. Mech. Dyn. Astron. 2001, 81, 235–248. [Google Scholar] [CrossRef]
- Broucke, R.; Elipe, A. The Dynamics of Orbits in a Potential Field of a Solid Circular Ring. Regul. Chaotic Dyn. 2005, 10, 129–143. [Google Scholar] [CrossRef]
- Romanov, V.A.; Doedel, E.J. Periodic Orbits Associated with the Libration Points of the Homogeneous Rotating Gravitating Triaxial Ellipsoid. Int. J. Bifurc. Chaos 2012, 22, 1230035. [Google Scholar] [CrossRef]
- Zeng, X.; Jiang, F.; Li, J.; Baoyin, H. Study on the Connection between the Rotating Mass Dipole and Natural Elongated Bodies. Astrophys. Space Sci. 2015, 356, 29–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Y.; Li, X.; Yang, X. Resonant orbit search and stability analysis for elongated asteroids. Astrodynamics 2023, 7, 51–67. [Google Scholar] [CrossRef]
- Miller, J.K.; Konopliv, A.S.; Antreasian, P.G.; Bordi, J.J.; Chesley, S.; Helfrich, C.E.; Scheeres, D.J.; Owen, W.M.; Wang, T.C.; Williams, B.G.; et al. Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros. Icarus 2002, 155, 3–17. [Google Scholar] [CrossRef]
- Takahashi, Y.; Bradley, N.; Kennedy, B. Determination of Celestial Body Principal Axes via Gravity Field Estimation. J. Guid. Control Dyn. 2017, 40, 3050–3060. [Google Scholar] [CrossRef]
- Romain, G.; Jean-Pierre, B. Ellipsoidal Harmonic Expansions of the Gravitational Potential: Theory and Application. Celest. Mech. Dyn. Astron. 2001, 79, 235–275. [Google Scholar] [CrossRef]
- Rossi, A.; Marzari, F.; Farinella, P. Orbital Evolution around Irregular Bodies. Earth Planets Space 1999, 51, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Dechambre, D.; Scheeres, D.J. Transformation of Spherical Harmonic Coefficients to Ellipsoidal Harmonic Coefficients. Astron. Astrophys. 2002, 387, 1114–1122. [Google Scholar] [CrossRef]
- Garmier, R.; Barriot, J.P.; Konopliv, A.S.; Yeomans, D.K. Modeling of the Eros gravity Field as an Ellipsoidal Harmonic Expansion from the NEAR Doppler Tracking Data. Geophys. Res. Lett. 2002, 29, 721–723. [Google Scholar] [CrossRef]
- Geissler, P.; Petit, J.M.; Durda, D.D.; Greenberg, R.; Bottke, W.; Nolan, M.; Moore, J. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon. Icarus 1996, 120, 140–157. [Google Scholar] [CrossRef]
- Werner, R.A. The Gravitational Potential of a Homogeneous Polyhedron or Don’t Cut Corners. Celest. Mech. Dyn. Astron. 1994, 59, 253–278. [Google Scholar] [CrossRef]
- Werner, R.A. On the Gravity Field of Irregularly Shaped Celestial Bodies; The University of Texas at Austin: Austin, TX, USA, 1996. [Google Scholar]
- Werner, R.A.; Scheeres, D.J. Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 1996, 65, 313–344. [Google Scholar] [CrossRef]
- Mirtich, B. Fast and Accurate Computation of Polyhedral Mass Properties. J. Graph. Tools 1996, 1, 31–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Baoyin, H. Dynamical behavior of flexible net spacecraft for landing on asteroid. Astrodynamics 2021, 5, 249–261. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Hu, J. The Fast Generation of the Reachable Domain for Collision-Free Asteroid Landing. Mathematics 2022, 10, 3763. [Google Scholar] [CrossRef]
- Li, X.; Scheeres, D.J.; Qiao, D.; Liu, Z. Geophysical and orbital environments of asteroid 469219 2016 HO3. Astrodyn. 2023, 7, 31–50. [Google Scholar] [CrossRef]
- Oki, Y.; Yoshikawa, K.; Takeuchi, H.; Kikuchi, S.; Ikeda, H.; Scheeres, D.J.; McMahon, J.W.; Kawaguchi, J.; Takei, Y.; Mimasu, Y.; et al. Orbit insertion strategy of Hayabusa2’s rover with large release uncertainty around the asteroid Ryugu. Astrodyn 2020, 4, 309–329. [Google Scholar] [CrossRef]
- Buonagura, C.; Pugliatti, M.; Topputo, F. Image Processing Robustness Assessment of Small-Body Shapes. J. Astronaut. Sci. 2022, 69, 1744–1765. [Google Scholar] [CrossRef]
- Ni, Y.; Turitsyn, K.; Baoyin, H.; Li, J. Entropy Method of Measuring and Evaluating Periodicity of Quasi-periodic Trajectories. Sci. China Phys. Mech. Astron. 2018, 61, 064511. [Google Scholar] [CrossRef]
- Neese, C.E. Small Body Radar Shape Models V2.0. EAR-A-5-DDRRADARSHAPE-MODELS-V2.0, NASA Planetary Data System. 2004. Available online: https://data.nasa.gov/Earth-Science/SMALL-BODY-RADAR-SHAPE-MODELS-V2-0/qckk-73zc (accessed on 9 December 2022).
Number of Sides of Regular Polygons | Shape Entropy S |
---|---|
3 | 1.74557… |
4 | 1.81549… |
5 | 1.82964… |
6 | 1.83412… |
… | … |
∞ | log(2π) = 1.83788… |
a:b | Rectangle | Ellipse |
3:1 | 1.49387… | 1.55019… |
2:1 | 1.68228… | 1.72009… |
1.5:1 | 1.76905… | 1.79706… |
1:1 | 1.81549... | log(2π) = 1.83788… |
Number of Faces of Regular Polyhedrons | Shape Entropy S |
---|---|
4 | 2.60889… |
6 | 2.73379… |
8 | 2.82407... |
Spherical case | log(2π) + 1 = 2.83788... |
a:b:c | Cuboid | Ellipsoid |
---|---|---|
3:2:1 | 2.15642… | 2.29111… |
2:2:1 | 2.37094… | 2.48964… |
2:1.5:1 | 2.43230… | 2.55064… |
1:1:1 | 2.73379.... | log(2π) + 1 = 2.83788… |
Name of Small Bodies | Shape Entropy S | Vertices | Faces | ρ from Equation (1) | No. in Figure 12 |
---|---|---|---|---|---|
52760 (1998 ML14) | −0.001118600 | 8162 | 16,320 | 0.877608 | 1 |
101955 Bennu | −0.001171272 | 1348 | 2692 | 0.320574 | 2 |
1998 KY26 | −0.001469927 | 2048 | 4092 | 0.823293 | 3 |
4 Vesta | −0.003386096 | 2522 | 5040 | 0.165797 | 4 |
9P/Tempel | −0.008419353 | 16,022 | 32,040 | 0.779807 | 5 |
6489 Golevka | −0.011491285 | 2048 | 4092 | 0.964472 | 6 |
3103 Eger | −0.013905315 | 997 | 1990 | 0.648360 | 7 |
951 Gaspra | −0.019957635 | 2522 | 5040 | 0.914083 | 8 |
4769 Castalia | −0.028763986 | 2048 | 4092 | 0.896695 | / |
2063 Bacchus | −0.034839183 | 2048 | 4092 | 0.986248 | / |
25143 Itokawa | −0.039069503 | 25,350 | 49,152 | 0.932418 | / |
1P/Halley | −0.039881773 | 2522 | 5040 | 0.934006 | / |
1620 Geographos | −0.042576975 | 8192 | 16,380 | 0.942497 | / |
4486 Mithra | −0.049464462 | 3000 | 5996 | 0.860466 | / |
1996 HW1 | −0.057551792 | 1392 | 2780 | 0.973871 | / |
433 Eros | −0.060992619 | 99,846 | 196,608 | 0.978736 | 9 |
216 Kleopatra | −0.074191101 | 2048 | 4092 | 0.990365 | 10 |
243 Ida | −0.085757437 | 2522 | 5040 | 0.883693 | 11 |
103P/Hartley | −0.098676873 | 16,022 | 32,040 | 0.975002 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Zhang, H.; Li, J.; Baoyin, H.; Hu, J. The Shape Entropy of Small Bodies. Mathematics 2023, 11, 878. https://doi.org/10.3390/math11040878
Ni Y, Zhang H, Li J, Baoyin H, Hu J. The Shape Entropy of Small Bodies. Mathematics. 2023; 11(4):878. https://doi.org/10.3390/math11040878
Chicago/Turabian StyleNi, Yanshuo, He Zhang, Junfeng Li, Hexi Baoyin, and Jiaye Hu. 2023. "The Shape Entropy of Small Bodies" Mathematics 11, no. 4: 878. https://doi.org/10.3390/math11040878