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Abstract: The irregular shapes of small bodies usually lead to non-uniform distributions of mass,
which makes dynamic behaviors in the vicinities of small bodies different to that of planets. This study
proposes shape entropy (SE) as an index that compares the shapes of small bodies and spheres to
describe the shape of a small body. The results of derivation and calculation of SE in two-dimensional
and three-dimensional cases show that: SE is independent of the size of geometric figures but depends
on the shape of the figures; the SE difference between a geometric figure and a circle or a sphere,
which is the limit of SE value, reflects the difference between this figure and a circle or a sphere.
Therefore, the description of shapes of small bodies, such as near-spherical, ellipsoid, and elongated,
can be quantitatively described via a continuous index. Combining SE and the original inertia index,
describing the shape of small bodies, can define the shapes of small bodies and provide a reasonably
simple metric to describe a complex shape that is applicable to generalized discussion and analysis
rather than highly detailed work on a specific, unique, polyhedral model.
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1. Introduction

Small Solar System Bodies (hereafter called small bodies) offer unique opportunities
to study the mechanical structures, different processes, and responses that are related to the
origin, evolution, and current architecture of the Solar System [1]. Small bodies are all other
objects orbiting the Sun that are neither planets, dwarf planets, nor satellites, according to In-
ternational Astronomical Union (IAU) resolutions five and six (Resolution_GA26-5-6) [2,3].
Therefore, a small body lacks sufficient mass for its self-gravity to overcome rigid body
forces and assume hydrostatic equilibrium in a nearly round shape [2], which leads to
irregular shapes of small bodies.

The shapes of small bodies span from spherical to ellipsoidal and elongated [4]. It
is the irregular distribution of mass in space, caused by irregular shapes, that makes the
dynamic characteristics of small bodies, such as equilibrium points [5–7] and periodic
orbits [8–13], different from that of planets, provides rich research contents for celestial
mechanics and nonlinear dynamics, and brings challenges to the orbit design and control
of spacecraft in the vicinity of small bodies. Besides, fly-by, impacting, and rendezvous
missions to small bodies demand that the shape of small bodies is accurately known
to select the best-suited image processing technique for optical navigation, such as the
center of brightness, intensity weighted centroiding, correlation with Lambertian spheres,
and center finding by correlation [14,15]. However, this information may not always be
available from ground-based observation for interplanetary missions. Spacecraft should be
able to return good navigation results with the proper technique according to the shape,
though small bodies can assume a wide variety of shapes.
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Although the shape regularity of a small body significantly impacts the dynamical
characteristics of its gravitational field and the robustness of the image processing for optical
navigation, there is a lack of sufficient description, research, and quantitative analysis on
the regularity of a small body, simulated by a polyhedral model with a single parameter,
for further understanding on the dynamic behavior related to shapes of small bodies. Hu
and Scheeres [16] defined an index describing the shape of a small body according to its
principal moments of inertia, which is developed from Scheeres et al. [17]

ρ =
Iy − Ix

Iz − Ix
, (1)

where the z-axis is the principal axis with maximum inertia, and the x-axis is with minimum
inertia, i.e., Ix ≤ Iy ≤ Iz. According to Equation (1), the index is ρ ∈ [0, 1]. When ρ = 0, the
shape of the small body is symmetric about the z-axis; when ρ = 1, the shape is symmetric
about the x-axis. This shape index can describe the mass distribution characteristics of
small bodies and reflect the shape of small bodies to a certain extent. However, when the
shape of a small body is close to a sphere, that is, the three-axis inertias are very close, this
index cannot accurately describe the shape characteristics of a small body, especially the
approximation between the small body and the sphere.

Although it is possible to describe the regularity of the shape of a small body by
spherical harmonic coefficients, the similarity between the shape of the small body and
the sphere can only be accurately described by the multi-dimensional array composed
of many spherical harmonic coefficients, which is not conducive to directly judging the
shape similarity of different small bodies through a few indicators. If we investigate the
coefficients C20, C22, and S22 [18], we can find that these three coefficients still reflect the
relationship between the inertia of small bodies.

Approximating a small body to a triaxial ellipsoid [19,20] is also possible to describe
the regularity of the shape of a small body; however, the gravitational field in the vicinity of
a triaxial ellipsoid is different from that of the small body, and the dynamical characteristics
in the triaxial ellipsoid case [20] is thus distinct from the polyhedron case [21], which is
more accurate.

Jiang et al. [22] reviewed the common approximate models of gravitational fields, such
as the simple geometry models [23–27], the spherical harmonic and ellipsoidal harmonic
function model [28–33], the particle group model [34], and the polyhedral model [35–38].
In the studies of dynamic characteristics, the accuracy of the description of the gravitational
field near irregular small bodies and the collision test is much more of a concern. Therefore,
it is more reasonable to select the polyhedral model as the gravitational field model of the
particle motion near an irregular small body [39–42].

Buonagura et al. [43] developed a shape-cube method to describe the shapes of small
bodies from regular to irregular. Fifteen small bodies were placed into three layers according
to whether they were near-spherical bodies, approximated to ellipsoids, or elongated and
irregular bodies. In this shape-cube method, shapes of small bodies can be described as
linear combinations of the starting ones. However, there is still a lack of a continuous
index to quantitatively describe which small bodies should be recognized as near-spherical
bodies, approximated to ellipsoids, or elongated bodies. Since Buonagura et al. used this
method to assess the image processing robustness of small-body shapes and to compare
the best technique, it would be better to have an index to define layers.

In this research, with the concept of entropy in statistical physics, a characteristic shape
index, called shape entropy, is proposed to compare the shape difference between small
bodies and uniform spheres. Entropy mainly describes the degree of data concentration,
which differs from the variance as entropy has more tremendous advantages in describing
the degree of data concentration with a multimodal distribution. When the data set
distributes near several peaks, the variance will reflect that the data is not centralized
enough, while the entropy can still reflect the data set with obvious peaks. Ni et al. have
given a detailed description and derivation [44].
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In order to illustrate the applicability of shape entropy, firstly, in Section 2, the shape
differences among regular polygons, rectangles, ellipses, and circles with different aspect
ratios are compared by using shape entropy using the 2D continuous case. Secondly,
in Section 3, the shape differences among three kinds of regular polyhedrons, cuboids,
triaxial ellipsoids with different axial length ratios, and spheres are compared by using
shape entropy using the 3D continuous case. Finally, in Section 4, combined with the
characteristics of the polyhedral models, the shape entropies are used to describe the
shape differences between the small bodies and the homogeneous spheres of equal volume
in the cases of three-dimensional discretization, and the results are compared with that
of Equation (1).

2. Shape Entropy in the 2D Continuous Cases
2.1. Definition

A plane geometric figure is compared with a circle. According to the polar coordinates
defined in Figure 1, we have a normalized quantity

ps(θ) =
rs(θ)2/2∫ 2π

0 (rs(θ)2/2)dθ
, (2)

where rs(θ) is a single-valued function, and the denominator part depicts the area of the
plane geometry, making ∫ 2π

0
psdθ = 1. (3)
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Figure 1. An illustration of arbitrary planar geometry.

The shape entropy in the 2D continuous case is defined as

S = −
∫ 2π

0
ps log(ps)dθ. (4)

For a circle with radius a, we have rs(θ) ≡ a, thus

ps(θ) =
rs(θ)2/2∫ 2π

0 (rs(θ)2/2)dθ
=

a2/2
πa2 =

1
2π

, (5)

S = −
∫ 2π

0
ps log(ps)dθ = log(2π) = 1.83788 . . . (6)
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2.2. Regular Polygons

The shape entropies of regular polygons are calculated and compared with the result
of Equation (6). The calculation diagram is illustrated in Figure 2.
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For a regular triangle with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

3
,
π

3

]
, (7)

ps(θ) =
rs(θ)2/2

3
∫ π

3
−π

3
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

6
√

3a2
=

1
12
√

3 cos2 θ
, (8)

S = −3
∫ π

3

−π
3

ps log(ps)dθ = 1.74557 . . . (9)

The derivation of their entropies can be referred to as Appendix A for the square,
regular pentagon, and regular hexagon cases. The results are summarized in Table 1.

Table 1. The shape entropies of regular polygons.

Number of Sides of Regular Polygons Shape Entropy S

3 1.74557 . . .

4 1.81549 . . .

5 1.82964 . . .

6 1.83412 . . .

. . . . . .

∞ log(2π) = 1.83788 . . .

It is not difficult to see that the shape entropy is independent of the size of the geometry,
a, and only related to the shape. With the increase of the regular n-sided shape, n, the value
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of S tends to be closer to the circular case log(2π) = 1.83788 . . . In fact, it can be obtained
through calculation

lim
n→+∞

− n
∫ π

n
−π

n

a2

2 cos2 θ

n
∫ π

n
−π

n

[
a2

2 cos2 θ

]
dθ

log

{
a2

2 cos2 θ

n
∫ π

n
−π

n

[
a2

2 cos2 θ

]
dθ

}
dθ

= lim
n→+∞

− n
∫ π

n
−π

n

{
sec2 θ

n
∫ π

n
−π

n
sec2 θdθ

log

[
sec2 θ

n
∫ π

n
−π

n
sec2 θdθ

]}
dθ = log(2π),

(10)

so that the series of shape entropy of the regular n-sided shape {Sn} tends to the shape
entropy of a circle log(2π) = 1.83788 . . . when n tends to +∞. Note that entropy in statistical
physics describes the concentration of states, and the value of entropy is the largest when
the probabilities of all states are equal. Thus, when rs are equal, corresponding to the most
regular case, the shape entropy in 2D cases is the largest.

2.3. Rectangles and Ellipses

For a rectangle with a long side 2a and a short side 2b, Equations (2)–(4) are trans-
formed as

rs(θ) =

{ a
cos θ , θ ∈ [0, arctan(b/a)]
b

sin θ , θ ∈
[
arctan(b/a), π2

] , (11)

ps(θ) =
rs(θ)2/2

4
∫ π

2
0 (rs(θ)2/2)dθ

=

{
a

8b cos2 θ
, θ ∈ [0, arctan(b/a)]

b
8a sin2 θ

, θ ∈
[
arctan(b/a), π2

] , (12)

S = −4
∫ π

2

0
ps log(ps)dθ. (13)

The shape entropy of any rectangle can be calculated via Equations (11)–(13).
For an ellipse with a major axis 2a and a minor axis 2b, Equations (2)–(4) are trans-

formed as
rs(θ) =

ab√
b2 cos2 θ + a2 sin2 θ

, (14)

ps(θ) =
rs(θ)2/2∫ π

0 (rs(θ)2/2)dθ
=

ab
2π
[
b2 cos2 θ + a2 sin2 θ

] , (15)

S = −
∫ 2π

0
ps log(ps)dθ. (16)

It should be noted that Equation (14) is not the parametric equation of an ellipse.
The shape entropy of any ellipse can be calculated via Equations (14)–(16).
For different shapes of rectangles and ellipses represented by a:b, their shape entropies

are calculated and summarized as Table 2.
For rectangles, when a:b tends to 1:1, S tends to the shape entropy of the square 1.81549...

and when a:b = 1:1, Equations (11)–(13) degenerate to the square case Equations (A1)–(A3).
The shape entropy of a rectangle is independent of the size of the rectangle and only
depends on its shape, which is consistent with the general understanding.

For ellipses, when a:b tends to 1:1, S tends to the shape entropy of the circle 1.83788 . . .
and when a:b = 1:1, Equations (14)–(16) degenerate to the circle case Equations (5) and (6).
Similarly, as in the rectangles cases, the shape entropy of an ellipse is independent of the
size and only depends on its shape, which is also consistent with the general understanding.

Comparing the results of Table 2, it can also be found that when a rectangle and an
ellipse with the same length ratio are compared, the shape of the ellipse is closer to the
circle, which is also consistent with general cognition.
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Table 2. The shape entropies of rectangles and ellipses.

a:b Rectangle Ellipse

3:1 1.49387 . . . 1.55019 . . .

2:1 1.68228 . . . 1.72009 . . .

1.5:1 1.76905 . . . 1.79706 . . .

1:1 1.81549... log(2π) = 1.83788 . . .

For non-convex shapes described in Figure 3, Equations (11) and (12) are trans-
formed as

rs(θ) =


a

cos θ , θ ∈ [0, arctan(b/a)]√
x2(θ) + y2(θ), θ ∈

[
arctan(b/a), π2

]
where x(θ) = ac

c−b+a tan θ , y(θ) = x(θ) tan θ

, (17)

ps(θ) =
rs(θ)2/2

4
∫ π

2
0 (rs(θ)2/2)dθ

=


a2

2 cos2 θ[4ab−2a(b−c)] , θ ∈ [0, arctan(b/a)]
x2(θ)+y2(θ)

2[4ab−2a(b−c)] , θ ∈
[
arctan(b/a), π2

] . (18)
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The shape entropies of non-convex shapes from Figure 3 are calculated as
Equations (13), (17) and (18). Setting b = 1, c varying from 0.1 to 1 and a = 1, 1.5,

√
3,

and 2, the shape entropies are shown in Figure 4. The results show that non-convex shapes
are more irregular as c decreases, which is intuitive. Therefore, it is reasonable to compare
the difference between the two-dimensional shape and the circle with the shape entropy
defined by Equations (2)–(4).
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3. Shape Entropy in the 3D Continuous Cases
3.1. Definition

In this section, the description of the shape entropy is extended from 2D to 3D to
compare the difference between spatial geometry and a sphere. According to the spherical
coordinates defined in Figure 5, we can write a similar normalized quantity as in Section 2.

ps(θ, φ) =
sin φ rs(θ, φ)3/3∫ 2π

0

∫ π
0

(
rs(θ, φ)3/3

)
sin φdφdθ

, (19)

where rs (θ, φ) is a single-valued function, and the denominator part depicts the volume of
the spatial geometry, making ∫ 2π

0

∫ π

0
ps(θ, φ)dφdθ = 1. (20)
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The shape entropy in the 3D continuous case is defined as

S = −
∫ 2π

0

∫ π

0
ps(θ, φ) log[ps(θ, φ)]dφdθ. (21)

For a sphere with rs (θ, ϕ) ≡ a, Equation (19) is transformed as

ps(θ, φ) =
sin φ rs(θ, φ)3/3∫ 2π

0

∫ π
0

(
rs(θ, φ)3/3

)
sin φdφdθ

=
sin φ a3/3

4πa3/3
=

sin φ

4π
, (22)

and the shape entropy calculated via Equation (21) is

S = −
∫ 2π

0

∫ π

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = log(2π) + 1 = 2.83788 . . . (23)



Mathematics 2023, 11, 878 8 of 19

3.2. Regular Polyhedrons

In this subsection, the shape entropies of a regular tetrahedron, hexahedron, and
octahedron are derived and summarized in Table 3. For a regular tetrahedron, 1/24 of it is
taken according to symmetry, as shown in Figure 6, and it can be deduced that:

rs(θ, φ) =
a

cos φ
, θ ∈

[
0,

π

3

]
, φ ∈

[
0, arctan

( √
2

cos θ

)]
, (24)

ps(θ, φ) = sin φrs(θ,φ)3/3

24
∫ π

3
0
∫ arctan[

√
2

cos θ
]

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φa3/3/ cos3 φ

8
√

3a3 = sin φ

24
√

3 cos3 φ
,

(25)

S = −24
∫ π

3

0

∫ arctan[
√

2
cos θ ]

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.60889 . . . (26)

Table 3. The shape entropies of regular polyhedrons.

Number of Faces of Regular Polyhedrons Shape Entropy S

4 2.60889 . . .

6 2.73379 . . .

8 2.82407...

Spherical case log(2π) + 1 = 2.83788...
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For a regular hexahedron with an edge length of 2a, as shown in Figure 7, one-eighth
of the hexahedron is taken according to symmetry. In this part, the distance from the point
on the surface to the centroid of the regular hexahedron can be determined according to θ
and ϕ into four parts:

rs(θ, φ) =


a

cos φ , θ ∈
[
0, π4

]
, φ ∈ [0, arctan(cos θ)]

a
cos θ sin φ , θ ∈

[
0, π4

]
, φ ∈

[
arctan(cos θ), π2

]
a

cos φ , θ ∈
[
π
4 , π2

]
, φ ∈ [0, arctan(sin θ)]

a
sin θ sin φ , θ ∈

[
π
4 , π2

]
, φ ∈

[
arctan(sin θ), π2

] , (27)
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then we have

ps(θ, φ) =
rs

3(θ, φ) sin φ

24a3 , (28)

S = −8
∫ π

2

0

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.73379 . . . (29)
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Figure 7. An illustration of a regular hexahedron and the calculation of its shape entropy.

For a regular octahedron with an edge length of 2a, as shown in Figure 8, one-eighth
of the octahedron is taken according to symmetry. In this part, using the sine theorem and
cosine theorem, the distance from the point on the surface of the original regular octahedron
to the centroid can be expressed as:

rs(θ, φ) =

√
2a

cos φ +
√

2 cos θ sin φ
, θ ∈

[
−π

4
,
π

4

]
, φ ∈

[
0,

π

2

]
, (30)

Equation (19) is transformed as

ps(θ, φ) = sin φ rs(θ,φ)3/3

8
∫ π

4
−π

4

∫ π
2

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φ rs(θ,φ)3/3
8
√

3a3/3
= sin φ rs(θ,φ)3

8
√

3a3 ,
(31)

so, the shape entropy of a regular octahedron is

S = −8
∫ π

4

−π
4

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.82407 . . . (32)

It is not difficult to see that the shape entropy of 3D continuous cases, defined in
Section 3.1, is independent of the size of the geometry, a, and is only related to the shape.
With the face increasing of regular polyhedrons, the value of S is closer to the spherical case
log(2π) + 1 = 2.83788...
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3.3. Cuboids and Triaxial Ellipsoids

For a cuboid with edge lengths 2a, 2b and 2c respectively (a > b > c), it can be de-
duced that

rs(θ, φ) =


c

cos φ , θ ∈
[
0, arctan

( a
b
)]

, φ ∈
[
0, arctan

( c
b cos θ

)]
b

cos θ sin φ , θ ∈
[
0, arctan

( a
b
)]

, φ ∈
[
arctan

( c
b cos θ

)
, π2
]

c
cos φ , θ ∈

[
arctan

( a
b
)
, π2
]
, φ ∈

[
0, arctan

( c
a sin θ

)]
a

sin θ sin φ , θ ∈
[
arctan

( a
b
)
, π2
]
, φ ∈

[
arctan

( c
a sin θ

)
, π2
] , (33)

Equation (19) is transformed as

ps(θ, φ) = rs
3(θ,φ) sin φ

24abc

=



c2 sin φ

24ab cos3 φ
, θ ∈

[
0, arctan

( a
b
)]

, φ ∈
[
0, arctan

( c
b cos θ

)]
b2

24ac cos3 θ sin2 φ
, θ ∈

[
0, arctan

( a
b
)]

, φ ∈
[
arctan

( c
b cos θ

)
, π2
]

c2 sin φ

24ab cos3 φ
, θ ∈

[
arctan

( a
b
)
, π2
]
, φ ∈

[
0, arctan

( c
a sin θ

)]
a2

24bc sin3 θ sin2 φ
, θ ∈

[
arctan

( a
b
)
, π2
]
, φ ∈

[
arctan

( c
a sin θ

)
, π2
]

,
(34)

and the shape entropy of the cuboid is

S = −8
∫ π

2

0

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ. (35)

The shape entropy of an arbitrary cuboid can be calculated by Equations (33)–(35).
Shape entropies of cuboids with different combinations of a and b, provided that c = 1,
are calculated, and the results are shown in Figure 9. When a:b:c = 1:1:1, Equation (33)
degenerates to Equation (27), and the shape entropy equals the hexahedron case 2.73379....
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It is shown again that the shape entropy of a cuboid is independent of the size, and only
depends on the shape of the cuboid.
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regular hexahedron.

For an ellipsoid with triaxial lengths 2a, 2b and 2c respectively (a > b > c), it can be
deduced that

rs(θ, φ) =
abc√

b2c2cos2φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 φ
, (36)

ps(θ, φ) = sin φ rs(θ,φ)3/3∫ 2π
0
∫ π

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φ rs(θ,φ)3/3
4πabc/3 = sin φ rs(θ,φ)3

4πabc ,
(37)

S = −
∫ 2π

0

∫ π

0
ps log(ps)dφdθ. (38)

It should also be noted that Equation (36) is not the parametric equation of an ellipsoid.
The shape entropy of an arbitrary ellipsoid can be calculated by Equations (36)–(38).

Shape entropies of ellipsoids with different combinations of a and b, provided that c = 1, are
calculated, and results are shown in Figure 10. When a:b:c = 1:1:1, Equation (36) degenerates
to the sphere case, and the shape entropy equals the sphere case. It is shown again that the
shape entropy of an ellipsoid is independent of the size, and only depends on the shape of
the ellipsoid.

By comparing the results of a few values of a and b, summarized in Table 4, it can
also be deduced that the shape of the ellipsoid is closer to the sphere when a cuboid
and an ellipsoid with the same axial/edge length ratio are compared. When c = 1, the
difference between the shape entropy of the ellipsoid and the cuboid calculated by different
combinations of a and b is shown in Figure 11. It can be seen that when the shape is
close to slender, the difference between the shape of the ellipsoid and the cuboid is more
significant; when the shape is nearly flat, the difference between the ellipsoid and the
cuboid is relatively small; when the axial/edge length ratio is 1:1:1, the shape difference
between the two is minimal.
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Table 4. The shape entropies of cuboids and ellipsoids.

a:b:c Cuboid Ellipsoid

3:2:1 2.15642 . . . 2.29111 . . .

2:2:1 2.37094 . . . 2.48964 . . .

2:1.5:1 2.43230 . . . 2.55064 . . .

1:1:1 2.73379.... log(2π) + 1 = 2.83788 . . .
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4. Shape Entropy Applied to Polyhedral Models of Small Bodies
4.1. Definition

Since the polyhedral models of small bodies are discrete vertex-face models, we
transform Equation (19) as

pn
S =

rn
S

N
∑

n=1
rn

S

, (39)

where rn
S denotes the distance between the nth vertex and the centroid, and N denotes the

number of vertices. Equation (39) is a normalized quantity whose denominator part is the
sum of the distances from all vertices to the centroid, making

N

∑
n=1

pn
S = 1. (40)

The shape entropy of the polyhedral model of a small body is defined as

S = −
N

∑
n=1

pn
S log(pn

S)− log(N). (41)

At the last term of Equation (41), log(N) is subtracted to eliminate the influence caused
by the different number of vertices of polyhedral models. When the object is a sphere, each
point is the same distance from the centroid, and the shape entropy is

S = −
N

∑
n=1

1
N

log
(

1
N

)
− log(N) = log(N)− log(N) = 0. (42)

By comparing the shape entropy S, as defined by Equations (39)–(41), we can compare
the shape of the polyhedral model with that of the homogeneous sphere with equal volume.

4.2. Results

The shape entropies, S, of some polyhedral models [45] of small bodies are calcu-
lated according to Equations (39)–(41) and are listed in Table 5 in the order of S from
large to small, listed together with the values of ρ from Equation (1). It can be seen that
although the shape entropies of the first four small bodies are the same, the range of ρ is
extensive. It can be seen more clearly from Figure 12 that the four near-spherical small
bodies, corresponding to points 1–4, are on the most right in the figure, and their shapes
are close to spheres (Figure 13). Although the four small bodies approximated to ellipsoids
(Figure 14), corresponding to points 5–8, have specific differences in shape and spheres,
they are obviously different from the shape of elongated small bodies, corresponding to
points 9–12 (Figure 15), on the left of the figure.

Only ρ calculated by Equation (1) cannot describe the shape well. When the principal
moments of inertia of the small body are relatively close, the ρ values differ significantly.
However, the appearances of small bodies are similar, such as the four small bodies
numbered 1–4. The appearance and shape of small bodies with similar ρ values may also
differ significantly, such as small bodies 6 and 8, and 9–12. The shape of the polyhedral
model can be compared with that of the homogeneous sphere of the same volume sphere
with the help of Equation (42), and the shape of the small body can be better described
together with Equation (1).

According to the results in Table 5 and Figure 12, the shapes of small bodies from
near-spherical to elongated can be described with shape entropy from large to small. The
new description is quantitative rather than terms without accurate definitions, although the
exact demarcation for near-spherical, ellipsoids, and elongated can be further discussed. In
this work, we suggest that so-called near-spherical bodies have shape entropies larger than
−0.004, small bodies approximated to ellipsoids corresponding to those whose entropies
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lie between −0.02 and −0.004, and small bodies with shape entropies less than −0.02
can be labeled as elongated. It would also be more applicable in a further discussion on
characteristics related to shapes.

Table 5. The shape entropies of polyhedral models of small bodies.

Name of Small Bodies Shape Entropy S Vertices Faces ρ from Equation (1) No. in Figure 12

52760 (1998 ML14) −0.001118600 8162 16,320 0.877608 1

101955 Bennu −0.001171272 1348 2692 0.320574 2

1998 KY26 −0.001469927 2048 4092 0.823293 3

4 Vesta −0.003386096 2522 5040 0.165797 4

9P/Tempel −0.008419353 16,022 32,040 0.779807 5

6489 Golevka −0.011491285 2048 4092 0.964472 6

3103 Eger −0.013905315 997 1990 0.648360 7

951 Gaspra −0.019957635 2522 5040 0.914083 8

4769 Castalia −0.028763986 2048 4092 0.896695 /

2063 Bacchus −0.034839183 2048 4092 0.986248 /

25143 Itokawa −0.039069503 25,350 49,152 0.932418 /

1P/Halley −0.039881773 2522 5040 0.934006 /

1620 Geographos −0.042576975 8192 16,380 0.942497 /

4486 Mithra −0.049464462 3000 5996 0.860466 /

1996 HW1 −0.057551792 1392 2780 0.973871 /

433 Eros −0.060992619 99,846 196,608 0.978736 9

216 Kleopatra −0.074191101 2048 4092 0.990365 10

243 Ida −0.085757437 2522 5040 0.883693 11

103P/Hartley −0.098676873 16,022 32,040 0.975002 12
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5. Conclusions

This study proposes shape entropy as an index to compare the shape differences
between small bodies and homogeneous spheres of equal volume. First, the methods of
comparing plane geometry with circle and space geometry with sphere by using the shape
entropy in continuous cases are given, and then the shape entropy applied to discrete cases
is derived for polyhedral models. The shape entropy is independent of the size of the
geometry and only depends on the shape.

In comparing plane geometric figures with circles, the shape entropies of circles and
regular polygons are derived and calculated. It is proved that when n tends to infinity,
the shape entropy of the regular n-sided shape tends to that of the circle. The shape
entropies of rectangles and ellipses are derived and calculated, respectively. The shape
entropy is used to compare the rectangle and ellipse with the same edge/axis length ratio.
The shape entropies of dumbbell-like non-convex shapes transformed from rectangles are
also calculated, and results show that such shapes are more irregular as their necks are
more narrow, which is intuitive. Derivation and calculation prove that comparing plane
geometries with circles by shape entropies is reasonable.

In comparing space geometric figures with spheres, due to the limited number of regu-
lar polyhedrons, the shape entropies of spheres, regular tetrahedrons, regular hexahedrons,
and regular octahedrons are derived and calculated. It is found that the shape entropy
of regular polyhedrons approaches the shape entropy of spheres with the increase in the
number of faces. The shape entropies of cuboids and ellipsoids are derived and calculated,
respectively. The rationality is verified by comparing different edge/axial length ratios
until they degenerate to cube and sphere, respectively. The shape differences between
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cuboids and ellipsoids with the same edge/axial length ratio are compared by using shape
entropy. The difference between an ellipsoid and a cuboid is more significant when the
shape is close to slender. The difference between an ellipsoid and a cuboid is relatively
small when the shape is nearly flat. When the axial/edge length ratio is 1:1:1, the shape
difference between the ellipsoid and the cuboid is the smallest. Derivation and calculation
prove that comparing space geometries with spheres with shape entropies is reasonable.

Sections 2 and 3 show that shape entropy is suitable for comparing 2D and 3D geo-
metric figures with circles and spheres under continuous conditions, and the entropies of
circles and spheres are the limit values in 2D and 3D cases, respectively. The difference be-
tween the shape entropy of each geometric figure and the limit value reflects the difference
between this figure and the circle or sphere in shape.

A discrete form of the shape entropy is defined for small bodies simulated by polyhe-
dral models. The shape entropies of 19 small bodies with polyhedral models are calculated,
which describes the comparison results between small bodies and homogeneous spheres
of equal volume. The shape comparison results between different small bodies are com-
pared using both the shape entropy, S, and the inertia index, ρ, proposed by Hu and
Scheeres [16]. For small bodies with shape entropies larger than −0.004, the inertia indices
vary in the whole range of [0, 1] due to the three-axis inertia being very close; thus can
not describe so-called near-spherical small bodies well. The shape entropy of a sphere
body is zero, and the shape entropy of a small body decreases as the shape varies from
near-spherical to elongated. The former so-called near-spherical small bodies, small bodies
approximated to ellipsoids, and elongated small bodies, in Buonagura et al. [43], can be
referred to as shape entropies larger than −0.004, between −0.02 and −0.004, and smaller
than −0.02, respectively.

Therefore, shape entropy is a continuous index and provides a reasonably simple
metric to quantitatively describe a complex shape (such as the shape of small bodies) in
a generalized discussion and analysis, including further research on the shape effect of
dynamic behaviors in the vicinity of small bodies (which is related to both shape/mass
distribution and rotation rate and, therefore, is limited to reflect behaviors independently)
and on-board optical navigations during interplanetary missions, as mentioned in the
introduction, rather than highly detailed work on a specific, unique, polyhedral model.
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Appendix A

For a square with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

4
,
π

4

]
, (A1)

ps(θ) =
rs(θ)2/2

4
∫ π

4
−π

4
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

4a2 =
1

8 cos2 θ
, (A2)
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S = −4
∫ π

4

−π
4

ps log(ps)dθ = 1.81549 . . . (A3)

For a regular pentagon with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

5
,
π

5

]
, (A4)

ps(θ) =
rs(θ)2/2

5
∫ π

5
−π

5
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

5× 2
√

5− 2
√

5a2
, (A5)

S = −5
∫ π

5

−π
5

ps log(ps)dθ = 1.82964 . . . (A6)

For a regular hexagon with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

6
,
π

6

]
, (A7)

ps(θ) =
rs(θ)2/2

6
∫ π

6
−π

6
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

4
√

3a2
=

1
8
√

3 cos2 θ
, (A8)

S = −6
∫ π

6

−π
6

ps log(ps)dθ = 1.83412 . . . (A9)
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