Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area
Abstract
:1. Introduction
2. Mathematic Models of GNSS Observables and Multipath Error
2.1. GNSS Observables and Multipath Error
2.2. Multipath Error Extraction from GNSS Observables
3. Nonlinear Regression-Based Multipath Error Map Construction
3.1. Multipath Modeling
3.2. Nonlinear Regression
3.3. Multipath Map Construction
3.4. User Utilization of the Multipath Map
4. Field Test
4.1. Test Construction
4.2. Multipath Map Construction Results
4.3. Test Data Application Results
5. Conclusions, Limitations and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Correa-Caicedo, P.J.; Rostro-González, H.; Rodriguez-Licea, M.A.; Gutiérrez-Frías, Ó.O.; Herrera-Ramírez, C.A.; Méndez-Gurrola, I.I.; Cano-Lara, M.; Barranco-Gutiérrez, A.I. GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles. Mathematics 2021, 9, 2818. [Google Scholar] [CrossRef]
- Buzna, Ľ.; Czimmermann, P. On the Modelling of Emergency Ambulance Trips: The Case of the Žilina Region in Slovakia. Mathematics 2021, 9, 2165. [Google Scholar] [CrossRef]
- Hussain, R.; Zeadally, S. Autonomous cars: Research results, issues, and future challenges. IEEE Commun. Surv. Tutor. 2018, 21, 1275–1313. [Google Scholar] [CrossRef]
- He, Q.; Meng, X.; Qu, R.; Xi, R. Machine Learning-Based Detection for Cyber Security Attacks on Connected and Autonomous Vehicles. Mathematics 2020, 8, 1311. [Google Scholar] [CrossRef]
- Bijjahalli, S.; Ramasamy, S.; Sabatini, R. Masking and multipath analysis for unmanned aerial vehicles in an urban environment. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Bijjahalli, S.; Sabatini, R.; Gardi, A. GNSS performance modelling and augmentation for urban air mobility. Sensors 2019, 19, 4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors 2015, 15, 23286–23302. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Hsu, L.T.; Kamijo, S. GNSS/onboard inertial sensor integration with the aid of 3-D building map for lane-level vehicle self-localization in urban canyon. IEEE Trans. Veh. Technol. 2015, 65, 4274–4287. [Google Scholar] [CrossRef]
- Yoon, H.; Seok, H.; Lim, C.; Park, B. An Online SBAS Service to Improve Drone Navigation Performance in High-Elevation Masked Areas. Sensors 2020, 20, 3047. [Google Scholar] [CrossRef]
- Lim, C.; Yoon, H.; Cho, A.; Yoo, C.-S.; Park, B. Dynamic Performance Evaluation of Various GNSS Receivers and Positioning Modes with Only One Flight Test. Electronics 2019, 8, 1518. [Google Scholar] [CrossRef] [Green Version]
- Rizos, C. Trends in GPS Technology & Applications. In Proceedings of the 2nd International LBS Workshop, Boston, MA, USA, 4 April 2009. [Google Scholar]
- Groves, P.D. How Does Non-Line-of-Sight Reception Differ from Multipath Interference. Inside GNSS 2013, 8, 40–42. [Google Scholar]
- Wang, L.; Groves, P.D.; Ziebart, M.K. Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models. J. Navig. 2012, 65, 459–476. [Google Scholar] [CrossRef] [Green Version]
- Lisi, M. GNSS User Technology Report 2020. GEOmedia 2020, 24, 21. [Google Scholar]
- Park, B.; Kim, J.; Kee, C.; Cleveland, A.; Parsons, M.; Wolfe, D.; Kalafus, R. RRC unnecessary for DGPS messages. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1149–1160. [Google Scholar] [CrossRef]
- Imparato, D.; El-Mowafy, A.; Rizos, C.; Wang, J. Vulnerabilities in SBAS and RTK positioning in intelligent transport systems: An overview. In Proceedings of the International Global Navigation Satellite System Association IGNSS Symposium, Sydney, Australia, 7–8 February 2018. [Google Scholar]
- Park, B.; Kee, C. The Compact Network RTK Method: An Effective Solution to Reduce GNSS Temporal and Spatial Decorrelation Error. J. Navig. 2010, 63, 343–362. [Google Scholar] [CrossRef]
- Bennett, N.; Hunter, M.; Buesnel, G. Validation of Urban Multipath Models with Record and Playback Simulation. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021. [Google Scholar]
- Groves, P.D. It’s time for 3D mapping–aided GNSS. Inside GNSS Mag. 2016, 5, 50–56. [Google Scholar]
- End Game for Urban GNSS: Google’s Use of 3D Building Models. Available online: https://insidegnss.com/end-game-for-urban-gnss-googles-use-of-3d-building-models/ (accessed on 19 November 2021).
- Dredge, S. Google Unveils 3D Cities in Google Earth and offline Google Maps for Android. The Guardian Apps Blog (6 June). Available online: http://www.theguardian.com/technology/appsblog/2012/jun/06/google-maps-3d-street-view1 (accessed on 19 November 2021).
- Adjrad, M.; Groves, P.D. Enhancing least squares GNSS positioning with 3D mapping without accurate prior knowledge. NAVIGATION J. Inst. Navig. 2017, 64, 75–91. [Google Scholar] [CrossRef]
- Groves, P.D. Shadow matching: A new GNSS positioning technique for urban canyons. J. Navig. 2011, 64, 417–430. [Google Scholar] [CrossRef]
- Obst, M.; Bauer, S.; Reisdorf, P.; Wanielik, G. Multipath detection with 3D digital maps for robust multi-constellation GNSS/INS vehicle localization in urban areas. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Miura, S.; Hsu, L.-T.; Chen, F.; Kamijo, S. GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3104–3115. [Google Scholar] [CrossRef]
- Hsu, L.-T.; Gu, Y.; Kamijo, S. NLOS correction/exclusion for GNSS measurement using RAIM and city building models. Sensors 2015, 15, 17329–17349. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R. A systematic review of machine learning techniques for software fault prediction. Appl. Soft. Comput. 2015, 27, 504–518. [Google Scholar] [CrossRef]
- Hsu, L.-T. GNSS multipath detection using a machine learning approach. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Guermah, B.; El Ghazi, H.; Sadiki, T.; Guermah, H. A robust GNSS LOS/multipath signal classifier based on the fusion of information and machine learning for intelligent transportation systems. In Proceedings of the 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, 21–23 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Park, K.; Lee, D.; Seo, J. Dual-polarized GPS antenna array algorithm to adaptively mitigate a large number of interference signals. Aerosp. Sci. Technol. 2018, 78, 387–396. [Google Scholar] [CrossRef]
- Suzuki, T.; Amano, Y. NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning. Sensors 2021, 21, 2503. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Gao, Y. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments. Sensors 2020, 20, 7265. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kusama, K.; Amano, Y. NLOS Multipath Detection using Convolutional Neural Network. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), Online, 21–25 September 2020. [Google Scholar]
- Phan, Q.-H.; Tan, S.-L. Mitigation of GPS periodic multipath using nonlinear regression. In Proceedings of the 2011 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Tian, Y.; Ge, M.; Neitzel, F. Variance Reduction of Sequential Monte Carlo Approach for GNSS Phase Bias Estimation. Mathematics 2020, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Kubo, N.; Yasuda, A. A study on GPS augmentation using Japanese Quasi-Zenith satellite system. In Proceedings of the PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556), Monterey, CA, USA, 26–29 April 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 347–356. [Google Scholar]
- Zhu, S.; Yue, D.; He, L.; Liu, Z.; Chen, J. Comprehensive analysis of compatibility between QZSS and GPS in Asia-Pacific region: Signal quality, RTK and PPP. Adv. Space Res. 2020, 66, 395–411. [Google Scholar] [CrossRef]
- Nabipour, N.; Karballaeezadeh, N.; Dineva, A.; Mosavi, A.; Mohammadzadeh, S.D.; Shamshirband, S. Comparative analysis of machine learning models for prediction of remaining service life of flexible pavement. Mathematics 2019, 7, 1198. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Shen, J. Waterlogging Resistance Evaluation Index and Photosynthesis Characteristics Selection: Using Machine Learning Methods to Judge Poplar’s Waterlogging Resistance. Mathematics 2021, 9, 1542. [Google Scholar] [CrossRef]
- Xie, X.; Luo, K.; Yin, Z.; Wang, G. Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis. Mathematics 2021, 9, 2307. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Rubino, S.; Fernández-García, S.; Gómez-Mármol, M.; Rivera-Gómez, C.; Galán-Marín, C. Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction. Mathematics 2021, 9, 1142. [Google Scholar] [CrossRef]
- García, L.A.M.; Lasheras, F.S.; Nieto, P.J.G.; de Prado, L.Á.; Sánchez, A.B. Predicting Benzene Concentration Using Machine Learning and Time Series Algorithms. Mathematics 2020, 8, 2205. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. 2005, 127, 1077–1087. [Google Scholar] [CrossRef]
- Smola, A.J. Learing with Kernels. Ph.D. Thesis, Department of Computer Science, Technical University, Berlin, Germany, 1998. [Google Scholar]
- Lee, Y.; Park, B. Seamless Accurate Positioning in Deep Urban Area based on Mode Switching Between DGNSS and Multipath Mitigation Positioning. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Online, 21–25 September 2020. [Google Scholar]
- Kim, J.; Park, M.; Bae, Y.; Kim, O.; Kim, D.; Kim, B.; Kee, C. A low-cost, high-precision vehicle navigation system for deep urban multipath environment using TDCP measurements. Sensors 2020, 20, 3254. [Google Scholar] [CrossRef]
- Freda, P.; Angrisano, A.; Gaglione, S.; Troisi, S. Time-differenced carrier phases technique for precise GNSS velocity estimation. GPS Solut. 2015, 19, 335–341. [Google Scholar] [CrossRef]
- VWorld Data Center, Operated by the Ministry of Land, Transport and Maritime Affairs of South Korea. Available online: http://data.vworld.kr/data/v4dc_usrmain.do (accessed on 11 November 2021).
- Jeong, G.S.; Kong, S.H. GIS based advanced positioning technique for mobile GPS. J. Korean Inst. Commun. Inf. Sci. 2015, 40, 2261–2290. [Google Scholar] [CrossRef] [Green Version]
- Google Maps Street View. Available online: https://www.google.com/maps/@37.5078445,127.0595055,3a,90y,338.18h,179t/data=!3m7!1e1!3m5!1srhCgHDKwyWioPJ6Q86Do5g!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fpanoid%3DrhCgHDKwyWioPJ6Q86Do5g%26cb_client%3Dmaps_sv.tatile.gps%26w%3D203%26h%3D100%26yaw%3D72.211334%26pitch%3D0%26thumbfov%3D100!7i13312!8i6656 (accessed on 19 November 2021).
- Google Earth. Available online: https://earth.google.com/web/@37.50780564,127.05940105,16.35165563a,548.62225985d,35y,0h,0t,0r (accessed on 19 November 2021).
Approach | Techniques | Features of Techniques | Accuracy | References |
---|---|---|---|---|
Classification | SVM | Doppler shift used as key feature in the signal classifier | 75% | [28] |
Classification | Decision Tree, SVM, KNN | Fusion of information provided by RHCP and LHCP antennas is used for signal classifier | 99% (KNN) | [29] |
Classification | SVM, NN | GNSS signal correlation output is used to detect NLOS signal | 98% (NN) | [31] |
Mitigation | SVM | Weight scheme based on probability of the signal being NLOS or LOS | 86% | [32] |
Mitigation | CNN | NLOS probability of CNN-based discriminator is used for position calculation | 98% | [33] |
Correction | SVR | Multipath is directly estimated using iterative properties of satellites orbit | N/A | [34] |
Data Set | Data Collecting Period (UTC) |
---|---|
Training Data 1 | 20 July 2108 05:20:00~20 July 2018 06:20:00 |
Training Data 2 | 1 September 2020 01:00:00~1 September 2020 02:00:00 |
Training Data 3 | 5 November 2020 06:40:00~5 November 2020 07:40:00 |
Test Data | 20 November 2018 12:00:00~20 November 2018 13:00:00 |
Statistical Results | RMS (m) | 95% (m) | Improvement | |
---|---|---|---|---|
Original | Horizontal | 48.8 | 72.0 | - |
Vertical | 93.5 | 142.2 | - | |
Linear Regression | Horizontal | 35.3 | 59.2 | 27.7% |
Vertical | 30.9 | 86.5 | 67.0% | |
Nonlinear Regression | Horizontal | 22.8 | 44.2 | 53.3% |
Vertical | 29.1 | 82.8 | 68.9% | |
Nonlinear Regression (+Doppler Check) | Horizontal | 20.3 | 41.1 | 58.4% |
Vertical | 20.7 | 55.0 | 77.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Park, B. Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area. Mathematics 2022, 10, 412. https://doi.org/10.3390/math10030412
Lee Y, Park B. Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area. Mathematics. 2022; 10(3):412. https://doi.org/10.3390/math10030412
Chicago/Turabian StyleLee, Yongjun, and Byungwoon Park. 2022. "Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area" Mathematics 10, no. 3: 412. https://doi.org/10.3390/math10030412
APA StyleLee, Y., & Park, B. (2022). Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area. Mathematics, 10(3), 412. https://doi.org/10.3390/math10030412