An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function
Abstract
:1. Introduction and Preliminaries
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyadzhiev, K.N.; Medina, L.A.; Moll, V.H. The integrals in Gradshteyn and Ryzhik, Part II: The incomplete beta function. Sci. Ser. A Math. Sci. 2009, 18, 61–75. [Google Scholar]
- Bromwich, T.J.A. An Introduction to the Theory of Infinite Series, 2nd ed.; Macmillan: London, UK, 1965. [Google Scholar]
- Nielsen, N. Handbuch der Theorie der Gammafunktion, 1st ed.; B.G. Teubner: Leipzig, Germany, 1906. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions Vol. I-III, California Institute of Technology-Bateman Manuscri pt Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1981. [Google Scholar]
- Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar] [CrossRef]
- Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2004, 74, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Mortici, C. A sharp inequality involving the psi function. Acta Univ. Apulensis 2010, 22, 41–45. [Google Scholar]
- Kac, V.; Pokman, C. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mahmoud, M.; Almuashi, H. On some inequalities of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 22, 672–683. [Google Scholar]
- Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
- Nantomah, K. New Inequalities for Nielsen’s beta function. Commun. Math. Appl. 2019, 10, 773–781. [Google Scholar] [CrossRef]
- Berg, C.; Koumandos, S.; Pedersen, H.L. Nielsen’s beta function and some infinitely divisible distributions. Math. Nach. 2021, 294, 426–449. [Google Scholar] [CrossRef]
- Nantomah, K. Certain properties of the Nielsen’s β-function. Bull. Int. Math. Virtual Inst. 2019, 9, 263–269. [Google Scholar]
- Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Nantomah, K. Monotonicity and convexity properties of the Nielsen’s β-function. Probl. Anal. Issues Anal. 2017, 6, 81–93. [Google Scholar] [CrossRef]
- Qi, F. Complete monotonicity for a new ratio of finitely many Gamma functions. Acta Math. Sci. Engl. Ser. 2022, 42B, 511–520. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Elbert, A.; Laforgia, A. On some properties of the gamma function. Proc. Amer. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics 2022, 10, 4729. https://doi.org/10.3390/math10244729
Mahmoud M, Almuashi H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics. 2022; 10(24):4729. https://doi.org/10.3390/math10244729
Chicago/Turabian StyleMahmoud, Mansour, and Hanan Almuashi. 2022. "An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function" Mathematics 10, no. 24: 4729. https://doi.org/10.3390/math10244729
APA StyleMahmoud, M., & Almuashi, H. (2022). An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics, 10(24), 4729. https://doi.org/10.3390/math10244729