Next Article in Journal
Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era
Next Article in Special Issue
Development of a New Zeta Formula and Its Role in Riemann Hypothesis and Quantum Physics
Previous Article in Journal
Coherent Upper Conditional Previsions Defined through Conditional Aggregation Operators
Previous Article in Special Issue
On New Matrix Version Extension of the Incomplete Wright Hypergeometric Functions and Their Fractional Calculus
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function

1
Mathematics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Mathematics Department, Faculty of Science, Jeddah University, P.O. Box 80327, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(24), 4729; https://doi.org/10.3390/math10244729
Submission received: 2 November 2022 / Revised: 5 December 2022 / Accepted: 12 December 2022 / Published: 13 December 2022
(This article belongs to the Special Issue New Trends in Special Functions and Applications)

Abstract

:
We prove that the function σ ( s ) defined by β ( s ) = 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 σ ( s ) 2 s 5 , s > 0 , is strictly increasing with the sharp bounds 0 < σ ( s ) < 49 120 , where β ( s ) is Nielsen’s beta function and ψ ( s ) is the trigamma function. Furthermore, we prove that the two functions s ( 1 ) 1 + μ β ( s ) 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) + ψ ( s ) 2 + 49 μ 240 s 5 ,   μ = 0 , 1 are completely monotonic for s > 0 . As an application, double inequality for β ( s ) involving ψ ( s ) is obtained, which improve some recent results.

1. Introduction and Preliminaries

The diagamma function is defined by ψ = Γ / Γ and its derivative ψ is called the trigamma function, where Γ is the Euler’s gamma function [1]. The Nielsen’s beta function [2,3] is defined by
β ( s ) = 1 2 ψ s 2 + 1 2 ψ s 2 , s 0 , 1 , 2 ,
and satisfies
β ( s + 1 ) + β ( s ) = 1 s ,
β ( s ) = 0 e s t 1 + e t d t , s > 0
and
β ( s ) = 1 2 s 2 F 1 1 , 1 ; 1 + s ; 1 2 ,
where 2 F 1 is Gauss hypergeometric function [4].
In some literature, one finds the function G ( s ) = 2 β ( s ) , which is called the Bateman’s G function [5,6].
Qiu and Vuorinen [7] established the bounds
( 3 2 ln 4 ) s 2 < β ( s ) 1 2 s < 1 4 s 2 , s > 1 / 2
and Mortici [8] established the relation
0 < ψ ( s + b ) ψ ( s ) ψ ( b ) + γ b + b 1 , s 1 ; b ( 0 , 1 ) ,
where γ is the Euler constant. Then, Mahmoud and Agarwal [6] established the asymptotic formula
2 β ( s ) s 1 k = 1 ( 2 2 k 1 ) B 2 k k s 2 k , s ,
where B r s are the Bernoulli numbers [9]. In addition, they obtained the relation
1 2 s 2 + 3 2 < 2 β ( s ) s 1 < 1 2 s 2 , s > 0
which improves the lower bound of the inequality (5) for s > 9 12 ln 2 16 ln 2 11 2.74 . In [10], Mahmoud and Almuashi presented the inequality
k = 1 2 m ( 2 2 k 1 ) k B 2 k s 2 k < 2 β ( s ) s 1 < k = 1 2 m 1 ( 2 2 k 1 ) k B 2 k s 2 k , m N ,
where the constants ( 2 2 k 1 ) k B 2 k are the best possible. Mahmoud, Talat, and Moustafa [11] presented the family
ϱ ( ξ , s ) = ln 1 + 1 s + ξ + 2 s ( s + 1 ) , ξ [ 1 , 2 ] ; s > 0
which is asymptotically equivalent to 2 β ( s ) for s .
Recently, Nantomah [12] established the inequality
1 4 ψ ( s / 2 + 1 / 4 ) < β ( s ) < 1 8 ψ ( s / 2 ) + ψ ( ( s + 1 ) / 2 ) , s > 0 .
For more inequalities and approximations of the Nielsen’s beta β ( s ) or Bateman’s G function G ( s ) , refer to [7,12,13,14,15] and the references therein.
Nielsen’s β function is very useful in evaluating and estimating several integrals [1], as well as some mathematical constants such as
G = β ( 1 / 2 ) 4 0.9159655 , π = 2 β ( 1 / 2 ) , ζ ( r + 1 ) = ( 2 ) r β ( r ) ( 1 ) r ! 2 r 1 ; r N ,
where G is the Catalan’s constant and ζ ( s ) is the Riemann zeta function. The function β ( s ) is also related to the Euler’s beta function B ( s , v ) by (see [16])
d d s ln B ( s / 2 , 1 / 2 ) = β ( s ) and B ( s , 1 s ) = β ( s ) + β ( 1 s ) .
Furthermore, the function β ( s ) is related to the important alternating series [6]
r = 0 ( 1 ) r s + r = β ( s ) , s 0 , 1 , 2 , .
Hence, our results enable us to estimate the errors of the numerical values of the Nielsen’s β function and its related constants, integrals, series, and mathematical constants.
In this paper, we prove that the function
σ ( s ) = s 5 2 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 β ( s ) , s > 0
is strictly increasing with the sharp bounds 0 < σ ( s ) < 49 120 . Furthermore, we prove the completely monotonicity property of two functions related to σ ( s ) . As an application, we obtain the double inequality
6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) 1 2 ψ ( s ) 49 240 s 5 < β ( s ) < 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) 1 2 ψ ( s ) , s > 0
whose upper and lower bounds are better than the ones in (10) for s > 0 and s 2 , respectively. Furthermore, its upper (lower) bound is better than the counterpart in (8) for s > 1 / 2 and s 2.4 , respectively.

2. Main Results

Recall that an infinite differentiable function M ( s ) on s > 0 is said to be completely monotonic [17] if, for s > 0 and r 0 , we have ( 1 ) r M ( r ) ( s ) 0 . The necessary and sufficient condition for M ( s ) to be completely monotonic function on s > 0 is the convergence of the integral [18]
M ( s ) = 0 e s t d θ ( t ) ,
where θ ( t ) is bounded and non-decreasing for t 0 .
Theorem 1.
The function
H ( s ) = 2 β ( s ) 2 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) + 49 120 s 5 + ψ ( s )
is completely monotonic for s > 0 .
Proof. 
Using the integral representation (3), we have
H ( s ) = 0 e s t h ( t ) 8640 e 2 t 1 e 3 t 2 d t ,
where
h ( t ) = 147 e 3 t 2 t 4 + 147 e 7 t 2 t 4 + 9600 e 3 t 2 t + 8640 e 5 t 2 t 960 e 7 t 2 t + 16640 e 3 t 2 17280 e 5 t 2 + 640 e 7 t 2 640 e 2 t + 640 = r = 11 U ( r ) 2 4 r t r 1323 r ! + 290803 t 10 1120 + 747299 t 9 1920 + 25283 t 8 56 + 10159 t 7 28 + 153 t 6
with
U ( r ) = 1512 189 ( r 5 ) 5 r ( 35 ) 4 r 5 ( 3 r 7 ) 7 r + 70 ( 5 r + 13 ) 3 r ( 2401 ) 3 r ( 81 ) 7 r ( r 3 ) ( r 2 ) ( r 1 ) r > 3 r 81 r 4 486 r 3 + 891 r 2 23166 r + 52920 + 3 r 2401 r 4 + 14406 r 3 26411 r 2 + 543606 r + 1375920 + 5 r ( 285768 r 1428840 ) ( 52920 ) 5 r > 3 r ( 1428840 + 520440 r 25520 r 2 + 13920 r 3 2320 r 4 ) + 5 r ( 285768 r 1481760 ) , r 11 .
Using induction, we obtain
2320 r 4 13920 r 3 + 25520 r 2 520440 r 1428840 285768 r 1481760 < 5 3 r , r 11 ,
where
5 3 2320 r 4 13920 r 3 + 25520 r 2 520440 r 1428840 285768 r 1481760 2320 ( r + 1 ) 4 13920 ( r + 1 ) 3 + 25520 ( r + 1 ) 2 520440 ( r + 1 ) 1428840 285768 ( r + 1 ) 1481760 = 5 Q ( r ) 3969 ( 27 r 140 ) ( 27 r 113 ) > 0 , r 11
with
Q ( r + 11 ) = 3132 r 5 + 126266 r 4 + 2004712 r 3 + 15048292 r 2 + 47492336 r + 25456347 > 0 , r 0 .
Hence U ( r ) > 0 for r 11 , which completes the proof. □
From Theorem 1, the function H ( s ) is completely monotonic for s > 0 , and therefore it is positive, so we get the following result:
Corollary 1.
Nielsen’s beta function satisfies the inequality
β ( s ) > 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) 49 240 s 5 1 2 ψ ( s ) , s > 0 .
Theorem 2.
The function
F ( s ) = 2 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 β ( s )
is completely monotonic for s > 0 .
Proof. 
Using the integral representation (3), we have
F ( s ) = 0 e s t f ( t ) 27 e 2 t 1 e 3 t 2 d t ,
where
f ( t ) = 27 e 5 t 2 ( t 2 ) + 2 e 2 t + e 7 t 2 ( 3 t 2 ) 2 e 3 t 2 ( 15 t + 26 ) 2 = 147 t 5 160 + 291 t 6 160 + 8469 t 7 4480 + r = 8 P ( r ) 2 1 r t r 35 r !
with
P ( r ) = ( 350 r ) 3 r ( 189 r ) 5 r + ( 15 r ) 7 r ( 910 ) 3 r + ( 35 ) 4 r + ( 189 ) 5 r + 1 ( 5 ) 7 r + 1 , r 8 .
Using
3 ( 910 ) 3 r ( 35 ) 4 r ( 189 ) 5 r + 1 + ( 5 ) 7 r + 1 7 ( 350 ) 3 r ( 189 ) 5 r + ( 15 ) 7 r = 7 ( 740 ) 3 r ( 15 ) 4 r ( 216 ) 5 r < 0 , r 8 .
Then,
( 910 ) 3 r ( 35 ) 4 r ( 189 ) 5 r + 1 + ( 5 ) 7 r + 1 ( 350 ) 3 r ( 189 ) 5 r + ( 15 ) 7 r < 7 3 < r , r 8
and hence P ( r ) > 0 for r 8 , which completes the proof. □
From Theorem 2, the function F ( s ) is completely monotonic for s > 0 , and therefore it is positive, so we obtain the following result:
Corollary 2.
Nielsen’s beta function satisfies the inequality
β ( s ) < 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) 1 2 ψ ( s ) , s > 0 .
Theorem 3.
The function
σ ( s ) = s 5 2 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 β ( s ) , s > 0
is strictly increasing with the sharp bounds 0 < σ ( s ) < 49 120 .
Proof. 
Using the relation
σ ( s ) = s 5 F ( s ) ,
we obtain
d d s σ ( s ) = s 4 0 e s t m ( t ) 27 e 2 t 1 2 e 3 t 2 d t ,
where
m ( t ) = 27 e 5 t 2 t 2 54 e 7 t 2 t 2 27 e 9 t 2 t 2 + 90 e 3 t 2 t + 135 e 5 t 2 t 207 e 7 t 2 t 27 e 9 t 2 t + 9 e 11 t 2 t 6 e 2 t t + 3 e 4 t t + 3 t + 208 e 3 t 2 216 e 5 t 2 200 e 7 t 2 + 216 e 9 t 2 8 e 11 t 2 16 e 2 t + 8 e 4 t + 8 = r = 27 V ( r ) 2 2 r t r 40425 r ! + 623698635091326968990549 t 26 469868607935879589931253760000 + 1625663466842958699257 t 25 278886875555484087091200000 + 122689699708378183999 t 24 5019963759998713567641600 + 35494192493938036189 t 23 363765489854979244032000 + 428947480570000501 t 22 1159966485506949120000 + 2568895942714902679 t 21 1937671288290017280000 + 1239688163864594033 t 20 276810184041431040000 + 27562668794800823 t 19 1942527607308288000 + 10183224174059897 t 18 242815950913536000 + 11397477274003 t 17 99189522432000 + 7182473003897 t 16 24797380608000 + 16503914196013 t 15 24797380608000 + 38836308383 t 14 28178841600 + 719523341 t 13 283852800 + 72073021 t 12 17740800 + 23771543 t 11 4300800 + 3304163 t 10 537600 + 23563 t 9 4480 + 3473 t 8 1120 + 153 t 7 160
with
V ( r ) = ( 698544 r 2 ) 5 r ( 712800 r 2 ) 7 r ( 215600 r 2 ) 9 r + ( 9430344 r ) 5 r ( 8850600 r ) 7 r + ( 121275 r ) 8 r ( 754600 r ) 9 r + ( 264600 r ) 11 r ( 121275 r ) 4 r + 1 + ( 1078000 r ) 3 r + 2 + ( 11211200 ) 3 r + 1 ( 117600 ) 11 r + 1 ( 1397088 ) 5 r + 2 ( 660000 ) 7 r + 2 + ( 431200 ) 9 r + 2 ( 40425 ) 4 r + 3 + ( 40425 ) 2 3 r + 5 > 11 r ( 264600 r 1293600 ) 4 r ( 485100 r + 2587200 ) 9 r 215600 r 2 + 754600 r 34927200 5 r 698544 r 2 9430344 r + 34927200 7 r 712800 r 2 + 8850600 r + 32340000 , r 27 > 9 r 215600 r 2 + 754600 r 34927200 9 r 698544 r 2 9430344 r + 34927200 9 r 712800 r 2 + 8850600 r + 32340000 + 11 r ( 264600 r 1293600 ) 9 r ( 485100 r + 2587200 ) , r 27 > 11 r ( 264600 r 1293600 ) 44 36976 r 2 + 14999 r + 793800 9 r , r 27 .
Using induction, we obtain
11 9 r > 44 36976 r 2 + 14999 r + 793800 264600 r 1293600 , r 27 ,
where
11 9 44 36976 r 2 + 14999 r + 793800 264600 r 1293600 44 36976 ( r + 1 ) 2 + 14999 ( r + 1 ) + 793800 264600 ( r + 1 ) 1293600 = 11 ϵ ( s ) 33075 ( 9 r 44 ) ( 9 r 35 ) > 0 , r 27
with ϵ ( s + 27 ) = 5161745790 + 604101173 s + 24298807 s 2 + 332784 s 3 and hence V ( r ) > 0 for r 27 . Using the asymptotic expansions
ψ ( s ) = π 2 6 + 1 s 2 2 ζ ( 3 ) s + π 4 s 2 30 + O ( s 3 ) , a s s 0 ,
ψ ( s ) = 1 s + 1 2 s 2 + 1 6 s 3 1 30 s 5 + O ( s 7 ) , a s s ,
β ( s ) = log ( 2 ) + 1 s + π 2 s 12 3 4 ζ ( 3 ) s 2 + O ( s 3 ) , a s s 0
and
β ( s ) = 1 2 s + 1 4 s 2 1 8 s 4 + O ( s 6 ) , a s s ,
where the Riemann zeta function [4] is defined by ζ ( s ) = r = 1 1 r s , s > 1 , then we have
lim s 0 + σ ( s ) = 0 a n d lim s σ ( s ) = 49 120 ,
which completes the proof. □
Remark 1.
The function σ ( s ) satisfies
σ ( s ) = s 3 9 + O ( s 4 ) , a s s 0 + a n d σ ( s ) = 49 120 + O ( s 1 ) , a s s .
Furthermore, the function β ( s ) satisfies
β ( s ) 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) + 1 2 ψ ( s ) = π 2 12 2 81 log ( 2 ) 1 18 s 2 + 1 27 s + O ( s ) , a s s 0
and
β ( s ) 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) + 49 240 s 5 + 1 2 ψ ( s ) = 17 32 s 6 + O ( s 7 ) , a s s .
Remark 2.
The upper bound in (15) is better than the counterpart in (10) for s > 0 , where
6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 1 8 ψ s 2 + ψ s + 1 2 = 0 e 3 t 2 15 e 3 t 2 t + 12 e 5 t 2 t + 26 e 3 t 2 26 e 5 t 2 e t + 1 27 e t 1 e s t d t = 0 e ( 3 / 2 + s ) t 27 e t 1 r = 3 10 ( 5 r + 13 ) 3 r ( 5 ) 2 r + 2 ( 12 r 65 ) 5 r 2 r t r 5 r ! d t < 0 , for s > 0 .
Remark 3.
The lower bound in (13) is better than the counterpart in (10) for s 2 . To verify that, consider the function
T ( s ) = 49 240 s 5 + 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( x ) 2 1 4 ψ s 2 + 1 4 ,
then lim s T ( s + 2 ) = 0 and
T ( s + 2 ) T ( s + 4 ) = 2 q ( s ) ( s + 2 ) 5 ( s + 3 ) 2 ( s + 4 ) 5 ( 2 s + 5 ) 2 ( 2 s + 7 ) ( 2 s + 11 ) > 0 ,
where
q ( s ) = 480 s 12 + 19200 s 11 + 348600 s 10 + 3785880 s 9 + 27307420 s 8 + 137389520 s 7 + 492611791 s 6 + 1262260470 s 5 + 2278167311 s 4 + 2792735404 s 3 + 2162321672 s 2 + 908271720 s + 137545680 .
However, if π ( s ) is a real-valued function on s > 0 with lim s π ( s ) = 0 and π ( s ) > π ( s + r ) for all s > 0 , r N , then π ( s ) > 0 on s > 0 (see [19]). Hence T ( s + 2 ) > 0 for s > 0 or T ( s ) > 0 for s 2 .
Remark 4.
The upper (lower) bound in inequality (15) (in inequality (13)) is better than the upper (lower) bound in inequality (8) for s > 0.5 ( s 2.4 ), respectively, since the two functions
B ( s ) = 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) ψ ( s ) 2 1 4 s 2 1 2 s
and
A ( s ) = 6 s 2 + 12 s + 5 3 s 2 ( 2 s + 3 ) 49 240 s 5 ψ ( s ) 2 1 4 s 2 + 3 1 2 s
satisfy
lim s B ( s ) = A ( s ) = 0
and
B ( s ) B ( s + 1 ) = 24 s 35 12 s 2 ( s + 1 ) 2 4 s 2 + 16 s + 15 < 0 , s > 0.5 ,
A ( s ) A ( s + 1 ) = C ( s ) 240 s 5 ( s + 1 ) 5 ( 2 s + 3 ) ( 2 s + 5 ) 4 s 2 + 3 4 s 2 + 8 s + 7 > 0 , s > 2.4 ,
where
C ( s + 2.4 ) = 3840 s 11 + 134016 s 10 + 2082912 s 9 + 95187392 s 8 5 + 2839058008 s 7 25 + 289284768212 s 6 625 + 4087044207104 s 5 3125 + 7923834916229 s 4 3125 + 50631576895694 s 3 15625 + 194357236141326 s 2 78125 + 1771594294687077 s 1953125 + 431366838881769 9765625 > 0 , s > 0 .

Author Contributions

Writing to Original draft, M.M. and H.A. All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research work was funded by Institutional Fund Projects under grant no. (IFPIP:565-130-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Boyadzhiev, K.N.; Medina, L.A.; Moll, V.H. The integrals in Gradshteyn and Ryzhik, Part II: The incomplete beta function. Sci. Ser. A Math. Sci. 2009, 18, 61–75. [Google Scholar]
  2. Bromwich, T.J.A. An Introduction to the Theory of Infinite Series, 2nd ed.; Macmillan: London, UK, 1965. [Google Scholar]
  3. Nielsen, N. Handbuch der Theorie der Gammafunktion, 1st ed.; B.G. Teubner: Leipzig, Germany, 1906. [Google Scholar]
  4. Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  5. Erdélyi, A. Higher Transcendental Functions Vol. I-III, California Institute of Technology-Bateman Manuscri pt Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1981. [Google Scholar]
  6. Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar] [CrossRef]
  7. Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2004, 74, 723–742. [Google Scholar] [CrossRef] [Green Version]
  8. Mortici, C. A sharp inequality involving the psi function. Acta Univ. Apulensis 2010, 22, 41–45. [Google Scholar]
  9. Kac, V.; Pokman, C. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
  10. Mahmoud, M.; Almuashi, H. On some inequalities of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 22, 672–683. [Google Scholar]
  11. Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
  12. Nantomah, K. New Inequalities for Nielsen’s beta function. Commun. Math. Appl. 2019, 10, 773–781. [Google Scholar] [CrossRef]
  13. Berg, C.; Koumandos, S.; Pedersen, H.L. Nielsen’s beta function and some infinitely divisible distributions. Math. Nach. 2021, 294, 426–449. [Google Scholar] [CrossRef]
  14. Nantomah, K. Certain properties of the Nielsen’s β-function. Bull. Int. Math. Virtual Inst. 2019, 9, 263–269. [Google Scholar]
  15. Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
  16. Nantomah, K. Monotonicity and convexity properties of the Nielsen’s β-function. Probl. Anal. Issues Anal. 2017, 6, 81–93. [Google Scholar] [CrossRef]
  17. Qi, F. Complete monotonicity for a new ratio of finitely many Gamma functions. Acta Math. Sci. Engl. Ser. 2022, 42B, 511–520. [Google Scholar] [CrossRef]
  18. Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
  19. Elbert, A.; Laforgia, A. On some properties of the gamma function. Proc. Amer. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mahmoud, M.; Almuashi, H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics 2022, 10, 4729. https://doi.org/10.3390/math10244729

AMA Style

Mahmoud M, Almuashi H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics. 2022; 10(24):4729. https://doi.org/10.3390/math10244729

Chicago/Turabian Style

Mahmoud, Mansour, and Hanan Almuashi. 2022. "An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function" Mathematics 10, no. 24: 4729. https://doi.org/10.3390/math10244729

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop