An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function
Abstract
1. Introduction and Preliminaries
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyadzhiev, K.N.; Medina, L.A.; Moll, V.H. The integrals in Gradshteyn and Ryzhik, Part II: The incomplete beta function. Sci. Ser. A Math. Sci. 2009, 18, 61–75. [Google Scholar]
- Bromwich, T.J.A. An Introduction to the Theory of Infinite Series, 2nd ed.; Macmillan: London, UK, 1965. [Google Scholar]
- Nielsen, N. Handbuch der Theorie der Gammafunktion, 1st ed.; B.G. Teubner: Leipzig, Germany, 1906. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions Vol. I-III, California Institute of Technology-Bateman Manuscri pt Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1981. [Google Scholar]
- Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar] [CrossRef]
- Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2004, 74, 723–742. [Google Scholar] [CrossRef]
- Mortici, C. A sharp inequality involving the psi function. Acta Univ. Apulensis 2010, 22, 41–45. [Google Scholar]
- Kac, V.; Pokman, C. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mahmoud, M.; Almuashi, H. On some inequalities of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 22, 672–683. [Google Scholar]
- Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G−function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
- Nantomah, K. New Inequalities for Nielsen’s beta function. Commun. Math. Appl. 2019, 10, 773–781. [Google Scholar] [CrossRef]
- Berg, C.; Koumandos, S.; Pedersen, H.L. Nielsen’s beta function and some infinitely divisible distributions. Math. Nach. 2021, 294, 426–449. [Google Scholar] [CrossRef]
- Nantomah, K. Certain properties of the Nielsen’s β-function. Bull. Int. Math. Virtual Inst. 2019, 9, 263–269. [Google Scholar]
- Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Nantomah, K. Monotonicity and convexity properties of the Nielsen’s β-function. Probl. Anal. Issues Anal. 2017, 6, 81–93. [Google Scholar] [CrossRef]
- Qi, F. Complete monotonicity for a new ratio of finitely many Gamma functions. Acta Math. Sci. Engl. Ser. 2022, 42B, 511–520. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Elbert, A.; Laforgia, A. On some properties of the gamma function. Proc. Amer. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics 2022, 10, 4729. https://doi.org/10.3390/math10244729
Mahmoud M, Almuashi H. An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics. 2022; 10(24):4729. https://doi.org/10.3390/math10244729
Chicago/Turabian StyleMahmoud, Mansour, and Hanan Almuashi. 2022. "An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function" Mathematics 10, no. 24: 4729. https://doi.org/10.3390/math10244729
APA StyleMahmoud, M., & Almuashi, H. (2022). An Approximation Formula for Nielsen’s Beta Function Involving the Trigamma Function. Mathematics, 10(24), 4729. https://doi.org/10.3390/math10244729