Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel
Abstract
:1. Introduction
2. Mathematical Formulation
Method of Solution
3. Results and Discussion
3.1. Velocity Profile
3.2. Temperature Profile
3.3. Concentration Profile
3.4. Nanoparticle Volume Fraction Profile
3.5. Pressure Gradient
3.6. Trapping Phenomenon
4. Conclusions
- The velocity in all the regions of the peristaltic pumping diminishes with increasing values of Darcy number ; in fluid flow, provides less resistance.
- The temperature in all regions of peristaltic transport diminishes with increasing values of thermal radiation .
- Nanoparticle concentration in all regions of the peristaltic movement decreases with enhancing the values of . The is inversely related to the solute concentration, which decreases as the dimensionless transverse coordinate y.
- As increases, the thermal conductivity of the liquid increases; hence, the concentration of nanoparticle increases.
- The volume fraction of the nanoparticle in all regions of peristaltic pumping diminishes with increasing values of .
- In a pressure gradient, the Jeffrey fluid parameter , magnetic field M, Darcy number , and solutal Grashof number have the same behaviour.
- Enhancing the Jeffrey fluid parameter diminishes the size of the trapped bolus. The increase in the magnetic field M parameter decreases the size of the trapped bolus. In addition, the increase in Darcy number decreases the magnitude of the bolus.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Thermophoresis diffusion coefficient () | |
Fluid mean temperature () | |
Stress tensor () | |
electrical conductivity | |
Brownian diffusion coefficient () | |
Temperature of the fluid () | |
Channel half-width () | |
Wave amplitude () | |
Wavelength () | |
Velocity propagation () | |
Time () | |
Soret parameter | |
Electric charge | |
Applied magnetic field () | |
Magnetic parameter | |
Identity tensor | |
Pressure | |
The ratio between relaxation and retardation times | |
Retardation time | |
Shear rate | |
Fluid viscosity coefficient | |
Extra stress tensor | |
Cauchy stress tensor | |
Mass density of nanoparticles | |
Fluid effective density () | |
Fluid heat capacity | |
Nanoparticle material’s effective heat capacity | |
Fluid thermal conductivity () | |
Acceleration due to gravity () | |
Solutal diffusivity | |
Permeability constant () | |
Specific heat at constant pressure () | |
Susceptibility of concentration | |
Thermal Grashof number | |
Reynolds number | |
Thermal radiation | |
Nanoparticle Grashof number | |
Brownian motion parameter | |
Prandtl number | |
Solutal Grashof number | |
Dufour parameter | |
Thermophoresis diffusion parameter | |
Concentration of fluid | |
Nanoparticle volume fraction | |
Cartesian coordinates |
References
- Latham, T.W. Fluid Motion in a Peristaltic Pump. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1966. [Google Scholar]
- Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L. Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 1969, 37, 799–825. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Shapiro, A.H. Peristaltic pumping. Annu. Rev. Fluid Mech. 1971, 3, 13–37. [Google Scholar] [CrossRef]
- Khan, M.; Iftikhar, F.; Anjum, A. Some unsteady flows of a Jeffrey fluid between two side walls over a plane wall. Z. Nat. A 2011, 66, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Baranovskii, E.S. An inhomogeneous boundary value problem for the stationary motion equations of Jeffreys viscoelastic medium. J. Appl. Ind. Math. 2013, 7, 22–28. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Optimal control for steady flows of the Jeffreys fluids with slip boundary condition. J. Appl. Ind. Math. 2014, 8, 168–176. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Global solutions for a model of polymeric flows with wall slip. Math. Methods Appl. Sci. 2017, 40, 5035–5043. [Google Scholar] [CrossRef]
- Hayat, T.; Ahmad, N.; Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1581–1591. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: Argonne, IL, USA, 1995.
- Akbar, N.S. Peristaltic flow of a nanofluid with slip effect. Meccanica 2012, 47, 1283–1294. [Google Scholar] [CrossRef]
- Ayub, S. Thermal radiation impact in the mixed convective peristaltic flow of third-grade nanofluid. Results Phys. 2017, 7, 3687–3695. [Google Scholar] [CrossRef]
- Asha, S.K.; Beleri, J. Peristaltic flow of Carreau nanofluid in presence of Joule heat effect in an inclined asymmetric channel by multi-step differential transformation method. World Sci. News 2022, 164, 44–63. [Google Scholar]
- Aifanties, E.C. Continuum basis for diffusion in regions with multiple diffusivities. J. Appl. Phys. 1976, 50, 1334–1338. [Google Scholar] [CrossRef]
- Ganesan, S.; Vasanthakumari, R. Influence of magnetic field and thermal radiation on peristaltic motion with double-diffusive convection in Jeffery nanofluids. Heat Transf. 2020, 49, 2025–2043. [Google Scholar] [CrossRef]
- Raju, A.; Ojjela, O.; Kambhatla, P.K. The combined effects of induced magnetic field, thermophoresis and Brownian motion on double stratified nonlinear convective-radiative Jeffrey nanofluid flow with heat source/sink. J. Anal. 2020, 28, 503–532. [Google Scholar] [CrossRef]
- Shivappa Kotnurkar, A.; Giddaiah, S. Double diffusion on peristaltic flow of nanofluid under the influences of magnetic field, porous medium, and thermal radiation. Eng. Rep. 2020, 2, e12111. [Google Scholar] [CrossRef]
- Ali, A.; Ali, Y.; Khan Marwat, D.N.; Awais, M.; Shah, Z. Peristaltic flow of nanofluid in a deformable channel with double diffusion. SN Appl. Sci. 2020, 2, 100. [Google Scholar] [CrossRef] [Green Version]
- Sucharitha, G.; Vajravelu, K.; Lakshminarayana, P. Effect of heat and mass transfer on the peristaltic flow of a Jeffrey nanofluid in a tapered flexible channel in the presence of aligned magnetic field. Eur. Phys. J. Spec. Top. 2019, 228, 2713–2728. [Google Scholar] [CrossRef]
- Asha, S.K.; Sunita, G. Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double diffusion in the presence of gold nanoparticles. Inform. Med. Unlocked 2019, 17, 100272. [Google Scholar]
- Hussain, Q. Nonlinear radiative peristaltic flow of hydromagnetic fluid through a porous medium. Results Phys. 2018, 9, 121–134. [Google Scholar] [CrossRef]
- Ramesh, K.; Devakar, M. Peristaltic transport of MHD Walters B fluid through porous medium with heat transfer. Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 489–504. [Google Scholar] [CrossRef]
- Vajravelu, K.; Sreenadh, S.; Lakshminarayana, P.; Sucharitha, G.; Rashidi, M.M. Peristaltic flow of phan- thein-Tanner fluid in an Asymmetric Channel with porous medium. J. Appl. Fluid Mech. 2015, 9, 1615–1625. [Google Scholar]
- Maiti, S.; Misra, J.C. Peristaltic flow of a fluid in a porous channel: A study having relevance to flow of bile within ducts in a pathological state. Int. J. Eng. Sci. 2011, 49, 950–966. [Google Scholar] [CrossRef] [Green Version]
- Noreen, S.; Qurat, U. Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J. Therm. Anal. Calorim. 2019, 137, 1991–2006. [Google Scholar] [CrossRef]
- Hasona, W.M.; El-Shekhipy, A.A.; Ibrahim, M.G. Combined effects of magnetohydrodynamic and temperature dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: Applications to oil refinement. Int. J. Heat Mass Transf. 2018, 126, 700–714. [Google Scholar] [CrossRef]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986; pp. 1279–1289. [Google Scholar]
- Odibat, Z.M.; Bertelle, C.; Aziz-Alaoui, M.A.; Duchamp, G.H. A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 2010, 59, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Hasona, W.M.; El-Shekhipy, A.; Ibrahim, M.G. Semi-analytical solution to MHD peristaltic flow of a Jeffrey fluid in presence of Joule heat effect by using multi-step differential transform method. New Trends Math. Sci. 2019, 7, 123–137. [Google Scholar] [CrossRef]
- Hasona, W.M. Temperature-dependent electrical conductivity and thermal radiation effects on MHD peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. J. Mech. 2020, 36, 103–118. [Google Scholar] [CrossRef]
- Tripathi, D.; Bég, O.A.; Gupta, P.K.; Radhakrishnamacharya, G.; Mazumdar, J. DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media: A digestive transport model. J. Bionic Eng. 2015, 12, 643–655. [Google Scholar] [CrossRef]
- Hatami, M.; Ghasemi, S.E.; Sahebi, S.A.R.; Mosayebidorcheh, S.; Ganji, D.D.; Hatami, J. Investigation of third-grade non-Newtonian blood flow in arteries under periodic body acceleration using multi-step differential transformation method. Appl. Math. Mech. 2015, 36, 1449–1458. [Google Scholar] [CrossRef]
- Bég, O.A.; Keimanesh, M.; Rashidi, M.M.; Davoodi, M.; Branch, S.T. Multi-step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int. J. Appl. Math. Mech. 2013, 9, 1–19. [Google Scholar]
- Kotnurkar, A.S.; Beleri, J.; Badruddin, I.A.; Kamangar, S.; Ahammad, N.A. Peristaltic Transport of Carreau Nanofluid in Presence of Triple Diffusion in an Asymmetric Channel by Multi-Step Differential Transformation Method. Mathematics 2022, 10, 807. [Google Scholar] [CrossRef]
- Reddy, K.V.; Reddy, M.G.; Makinde, O.D. Heat and Mass Transfer of a Peristaltic Electro-osmotic Flow of a Couple Stress Fluid through an Inclined Asymmetric Channel with Effects of Thermal Radiation and Chemical Reaction. Period. Polytech. Mech. Eng. 2021, 65, 151–162. [Google Scholar] [CrossRef]
- Vaidya, H.; Rajashekhar, C.; Prasad, K.V.; Khan, S.U.; Riaz, A.; Viharika, J.U. MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: An application to chyme movement. Biomech. Model. Mechanobiol. 2021, 20, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
y | NDSolve | FEM | |
---|---|---|---|
0 | −1 | −1 | −1 |
0.2 | −0.987243 | −0.98724 | −0.987232 |
0.4 | −0.894205 | −0.89420 | −0.894201 |
0.6 | −0.621413 | −0.62141 | −0.621411 |
0.8 | −0.0304656 | −0.03046 | −0.030461 |
1 | 1.07577 | 1 | 1.004391 |
y | Present Result (Cf) | Present Result (Nu) | Present Result (Sh) |
---|---|---|---|
0 | 8.056789 | 7.098765 | −8.0186068 |
0.2 | 16.987243 | 16.189148 | −12.073384 |
0.4 | 0.8942051 | 0.384279 | −0.00279364 |
0.6 | 20.621413 | 22.585275 | −11.602726 |
0.8 | 4.0304656 | 6.792017 | −0.00005 |
1 | 9.075771 | 10.00439 | −7.0468609 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotnurkar, A.S.; Beleri, J.; Badruddin, I.A.; H.M.T., K.; Kamangar, S.; Ahammad, N.A. Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel. Mathematics 2022, 10, 1701. https://doi.org/10.3390/math10101701
Kotnurkar AS, Beleri J, Badruddin IA, H.M.T. K, Kamangar S, Ahammad NA. Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel. Mathematics. 2022; 10(10):1701. https://doi.org/10.3390/math10101701
Chicago/Turabian StyleKotnurkar, Asha S., Joonabi Beleri, Irfan Anjum Badruddin, Khaleed H.M.T., Sarfaraz Kamangar, and Nandalur Ameer Ahammad. 2022. "Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel" Mathematics 10, no. 10: 1701. https://doi.org/10.3390/math10101701
APA StyleKotnurkar, A. S., Beleri, J., Badruddin, I. A., H.M.T., K., Kamangar, S., & Ahammad, N. A. (2022). Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel. Mathematics, 10(10), 1701. https://doi.org/10.3390/math10101701