Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion
Abstract
:1. Introduction
2. Materials and Methods
2.1. CV Isolation and Fusion Assays
2.2. Proteome Resolution by 2DE
2.3. Mass Spectrometry
3. Results
3.1. Fluorescent Thiol-Reactive Reagents Modulate the Ca2+ Sensitivity and Rate of Membrane fusion
3.2. Identification of Fluorescently Labeled Candidate Proteoforms
3.3. Rab-GTPases Modulate the Efficiency of Exocytosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dabral, D.; Coorssen, J.R. Arachidonic acid and lysophosphatidylcholine inhibit multiple late steps of regulated exocytosis. Biochem. Biophys. Res. Commun. 2019, 515, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Dabral, D.; Coorssen, J.R. Combined targeted Omic and Functional Assays Identify Phospholipases A(2) that Regulate Docking/Priming in Calcium-Triggered Exocytosis. Cells 2019, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Rogasevskaia, T.P.; Coorssen, J.R. The Role of Phospholipase D in Regulated Exocytosis. J. Biol. Chem. 2015, 290, 28683–28696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, D.J.; Khodthong, C.; Kowalchyk, J.A.; Martin, T.F. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J. Cell Biol. 2008, 182, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, T.; Bruns, D.; Wenzel, D.; Riedel, D.; Holroyd, P.; Thiele, C.; Jahn, R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 2001, 20, 2202–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogasevskaia, T.P.; Churchward, M.A.; Coorssen, J.R. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012, 52, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Rogasevskaia, T.P.; Coorssen, J.R. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J. Chem. Biol. 2011, 4, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Abbineni, P.S.; Coorssen, J.R. Sphingolipids modulate docking, Ca(2+) sensitivity and membrane fusion of native cortical vesicles. Int. J. Biochem. Cell Biol. 2018, 104, 43–54. [Google Scholar] [CrossRef]
- Churchward, M.A.; Rogasevskaia, T.; Hofgen, J.; Bau, J.; Coorssen, J.R. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J. Cell. Sci. 2005, 118, 4833–4848. [Google Scholar] [CrossRef] [Green Version]
- Mahadeo, M.; Furber, K.L.; Lam, S.; Coorssen, J.R.; Prenner, E.J. Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. Biochim. Biophys. Acta 2015, 1848, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Rogasevskaia, T.; Coorssen, J.R. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J. Cell Sci. 2006, 119, 2688–2694. [Google Scholar] [CrossRef]
- Churchward, M.A.; Rogasevskaia, T.; Brandman, D.M.; Khosravani, H.; Nava, P.; Atkinson, J.K.; Coorssen, J.R. Specific lipids supply critical negative spontaneous curvature—An essential component of native Ca2+-triggered membrane fusion. Biophys. J. 2008, 94, 3976–3986. [Google Scholar] [CrossRef]
- Chernomordik, L.V.; Vogel, S.S.; Sokoloff, A.; Onaran, H.O.; Leikina, E.A.; Zimmerberg, J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993, 318, 71–76. [Google Scholar] [CrossRef]
- Kreutzberger, A.J.B.; Kiessling, V.; Liang, B.; Yang, S.T.; Castle, J.D.; Tamm, L.K. Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability. Biophys. J. 2017, 113, 1912–1915. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, R.D.; Morgan, A. Secretory granule exocytosis. Physiol. Rev. 2003, 83, 581–632. [Google Scholar] [CrossRef]
- Takamori, S.; Holt, M.; Stenius, K.; Lemke, E.A.; Gronborg, M.; Riedel, D.; Urlaub, H.; Schenck, S.; Brugger, B.; Ringler, P.; et al. Molecular anatomy of a trafficking organelle. Cell 2006, 127, 831–846. [Google Scholar] [CrossRef]
- Churchward, M.A.; Brandman, D.M.; Rogasevskaia, T.; Coorssen, J.R. Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: Quantitative analyses of the composition of functional secretory vesicles. J. Chem. Biol. 2008, 1, 79–87. [Google Scholar] [CrossRef]
- Coorssen, J.R.; Blank, P.S.; Albertorio, F.; Bezrukov, L.; Kolosova, I.; Backlund, P.S., Jr.; Zimmerberg, J. Quantitative femto- to attomole immunodetection of regulated secretory vesicle proteins critical to exocytosis. Anal. Biochem. 2002, 307, 54–62. [Google Scholar] [CrossRef]
- Burré, J.; Beckhaus, T.; Schägger, H.; Corvey, C.; Hofmann, S.; Karas, M.; Zimmermann, H.; Volknandt, W. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 2006, 6, 6250–6262. [Google Scholar] [CrossRef]
- Bennett, M.K.; Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 1993, 90, 2559–2563. [Google Scholar] [CrossRef]
- Fasshauer, D.; Sutton, R.B.; Brunger, A.T.; Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 1998, 95, 15781–15786. [Google Scholar] [CrossRef] [Green Version]
- Abbineni, P.S.; Hibbert, J.E.; Coorssen, J.R. Critical role of cortical vesicles in dissecting regulated exocytosis: Overview of insights into fundamental molecular mechanisms. Biol. Bull. 2013, 224, 200–217. [Google Scholar] [CrossRef]
- Block, M.R.; Glick, B.S.; Wilcox, C.A.; Wieland, F.T.; Rothman, J.E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA 1988, 85, 7852–7856. [Google Scholar] [CrossRef]
- Weidman, P.J.; Melancon, P.; Block, M.R.; Rothman, J.E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell Biol. 1989, 108, 1589–1596. [Google Scholar] [CrossRef]
- Söllner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324. [Google Scholar] [CrossRef]
- Sudhof, T.C. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef]
- He, E.; Wierda, K.; van Westen, R.; Broeke, J.H.; Toonen, R.F.; Cornelisse, L.N.; Verhage, M. Munc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles. Nat. Commun. 2017, 8, 15915. [Google Scholar] [CrossRef]
- Szule, J.A.; Coorssen, J.R. Revisiting the role of SNAREs in exocytosis and membrane fusion. Biochim. Biophys. Acta 2003, 1641, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Rizo, J.; Sudhof, T.C. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—Guilty as charged? Annu. Rev. Cell Dev. Biol. 2012, 28, 279–308. [Google Scholar] [CrossRef]
- Coorssen, J.R.; Blank, P.S.; Tahara, M.; Zimmerberg, J. Biochemical and functional studies of cortical vesicle fusion: The SNARE complex and Ca2+ sensitivity. J. Cell Biol. 1998, 143, 1845–1857. [Google Scholar] [CrossRef]
- Coorssen, J.R.; Blank, P.S.; Albertorio, F.; Bezrukov, L.; Kolosova, I.; Chen, X.; Backlund, P.S., Jr.; Zimmerberg, J. Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J. Cell Sci. 2003, 116, 2087–2097. [Google Scholar] [CrossRef] [Green Version]
- Szule, J.A.; Jarvis, S.E.; Hibbert, J.E.; Spafford, J.D.; Braun, J.E.; Zamponi, G.W.; Wessel, G.M.; Coorssen, J.R. Calcium-triggered membrane fusion proceeds independently of specific presynaptic proteins. J. Biol. Chem. 2003, 278, 24251–24254. [Google Scholar] [CrossRef]
- Zimmerberg, J.; Blank, P.S.; Kolosova, I.; Cho, M.S.; Tahara, M.; Coorssen, J.R. A stage-specific preparation to study the Ca(2+)-triggered fusion steps of exocytosis: Rationale and perspectives. Biochimie 2000, 82, 303–314. [Google Scholar] [CrossRef]
- Abbineni, P.S.; Wright, E.P.; Rogasevskaia, T.P.; Killingsworth, M.C.; Malladi, C.S.; Coorssen, J.R. The Sea Urchin Egg and Cortical Vesicles as Model Systems to Dissect the Fast, Ca2+-Triggered Steps of Regulated Exocytosis. Neuromethods 2014, 83. [Google Scholar] [CrossRef]
- Vogel, S.S.; Chernomordik, L.V.; Zimmerberg, J. Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane. J. Biol. Chem. 1992, 267, 25640–25643. [Google Scholar]
- Whalley, T.; Timmers, K.; Coorssen, J.; Bezrukov, L.; Kingsley, D.H.; Zimmerberg, J. Membrane fusion of secretory vesicles of the sea urchin egg in the absence of NSF. J. Cell Sci. 2004, 117, 2345–2356. [Google Scholar] [CrossRef] [Green Version]
- Haggerty, J.G.; Jackson, R.C. Release of granule contents from sea urchin egg cortices. New assay procedures and inhibition by sulfhydryl-modifying reagents. J. Biol. Chem. 1983, 258, 1819–1825. [Google Scholar]
- Vogel, S.S.; Blank, P.S.; Zimmerberg, J. Poisson-distributed active fusion complexes underlie the control of the rate and extent of exocytosis by calcium. J. Cell Biol. 1996, 134, 329–338. [Google Scholar] [CrossRef]
- Furber, K.L.; Brandman, D.M.; Coorssen, J.R. Enhancement of the Ca(2+)-triggering steps of native membrane fusion via thiol-reactivity. J. Chem. Biol. 2009, 2, 27–37. [Google Scholar] [CrossRef]
- Furber, K.L.; Dean, K.T.; Coorssen, J.R. Dissecting the mechanism of Ca2+-triggered membrane fusion: Probing protein function using thiol reactivity. Clin. Exp. Pharmacol. Physiol. 2010, 37, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Coorssen, J.R.; Yergey, A.L. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes 2015, 3, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Padula, M.P.; Berry, I.J.; MB, O.R.; Raymond, B.B.; Santos, J.; Djordjevic, S.P. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis. Proteomes 2017, 5, 11. [Google Scholar] [CrossRef]
- Zhan, X.; Yang, H.; Peng, F.; Li, J.; Mu, Y.; Long, Y.; Cheng, T.; Huang, Y.; Li, Z.; Lu, M.; et al. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome? Electrophoresis 2018, 39, 965–980. [Google Scholar] [CrossRef] [Green Version]
- Thiede, B.; Koehler, C.J.; Strozynski, M.; Treumann, A.; Stein, R.; Zimny-Arndt, U.; Schmid, M.; Jungblut, P.R. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture (SILAC), two-dimensional gel electrophoresis (2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol. Cell Proteomics 2013, 12, 529–538. [Google Scholar] [CrossRef]
- Furber, K.L.; Churchward, M.A.; Rogasevskaia, T.P.; Coorssen, J.R. Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann. N. Y. Acad. Sci. 2009, 1152, 121–134. [Google Scholar] [CrossRef]
- Churchward, M.A.; Coorssen, J.R. Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem. J. 2009, 423, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Conner, S.; Wessel, G.M. rab3 mediates cortical granule exocytosis in the sea urchin egg. Dev. Biol. 1998, 203, 334–344. [Google Scholar] [CrossRef]
- Blank, P.S.; Cho, M.S.; Vogel, S.S.; Kaplan, D.; Kang, A.; Malley, J.; Zimmerberg, J. Submaximal responses in calcium-triggered exocytosis are explained by differences in the calcium sensitivity of individual secretory vesicles. J. Gen. Physiol. 1998, 112, 559–567. [Google Scholar] [CrossRef]
- Hibbert, J.E.; Butt, R.H.; Coorssen, J.R. Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. Int. J. Biochem. Cell Biol. 2006, 38, 461–471. [Google Scholar] [CrossRef]
- Butt, R.H.; Coorssen, J.R. Postfractionation for enhanced proteomic analyses: Routine electrophoretic methods increase the resolution of standard 2D-PAGE. J. Proteome Res. 2005, 4, 982–991. [Google Scholar] [CrossRef]
- Jiang, X.S.; Backlund, P.S.; Wassif, C.A.; Yergey, A.L.; Porter, F.D. Quantitative proteomics analysis of inborn errors of cholesterol synthesis: Identification of altered metabolic pathways in DHCR7 and SC5D deficiency. Mol. Cell Proteomics 2010, 9, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Hellman, U.; Wernstedt, C.; Gonez, J.; Heldin, C.H. Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 1995, 224, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Vacquier, V.D. The isolation of intact cortical granules from sea urchin eggs: Calcium ions trigger granule discharge. Dev. Biol. 1975, 43, 62–74. [Google Scholar] [CrossRef]
- Decker, S.J.; Kinsey, W.H. Characterization of cortical secretory vesicles from the sea urchin egg. Dev. Biol. 1983, 96, 37–45. [Google Scholar] [CrossRef]
- Roux, M.M.; Radeke, M.J.; Goel, M.; Mushegian, A.; Foltz, K.R. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev. Biol. 2008, 313, 630–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Coffman, J.A. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [CrossRef]
- Thul, P.J.; Åkesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A subcellular map of the human proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Coorssen, J.R.; Martins-de-Souza, D. 2DE: The phoenix of proteomics. J. Proteomics 2014, 104, 140–150. [Google Scholar] [CrossRef]
- Naryzhny, S. Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J. Proteomics 2019, 191, 22–28. [Google Scholar] [CrossRef]
- Pfeffer, S.R. Rab GTPases: Master regulators that establish the secretory and endocytic pathways. Mol. Biol. Cell 2017, 28, 712–715. [Google Scholar] [CrossRef]
- Trifaró, J.M.; Gasman, S.; Gutiérrez, L.M. Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol. 2008, 192, 165–172. [Google Scholar] [CrossRef]
- Li, P.; Bademosi, A.T.; Luo, J.; Meunier, F.A. Actin Remodeling in Regulated Exocytosis: Toward a Mesoscopic View. Trends Cell Biol. 2018, 28, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Papadopulos, A. Membrane shaping by actin and myosin during regulated exocytosis. Mol. Cell Neurosci. 2017, 84, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Noordstra, I.; Akhmanova, A. Linking cortical microtubule attachment and exocytosis. F1000 Res. 2017, 6, 469. [Google Scholar] [CrossRef]
- Ñeco, P.; Giner, D.; del Mar Francés, M.; Viniegra, S.; Gutiérrez, L.M. Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur. J. Neurosci. 2003, 18, 733–742. [Google Scholar] [CrossRef]
- Trifaró, J.M.; Rodríguez del Castillo, A.; Vitale, M.L. Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis. Mol. Neurobiol. 1992, 6, 339–358. [Google Scholar] [CrossRef]
- Tran, D.T.; Ten Hagen, K.G. Real-time insights into regulated exocytosis. J. Cell Sci. 2017, 130, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Wollman, R.; Meyer, T. Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat. Cell Biol. 2012, 14, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [Google Scholar] [CrossRef]
- Fukuda, M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol. Life Sci. 2008, 65, 2801–2813. [Google Scholar] [CrossRef]
- Grosshans, B.L.; Ortiz, D.; Novick, P. Rabs and their effectors: Achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 2006, 103, 11821–11827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.Y.; Lamer, S.; Schümann, M.; Schmidt, M.R.; Krause, E.; Haucke, V. Quantitative proteomics analysis of detergent-resistant membranes from chemical synapses: Evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol. Cell. Proteomics 2006, 5, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Brunner, Y.; Couté, Y.; Iezzi, M.; Foti, M.; Fukuda, M.; Hochstrasser, D.F.; Wollheim, C.B.; Sanchez, J.C. Proteomics analysis of insulin secretory granules. Mol. Cell. Proteomics 2007, 6, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Pavlos, N.J.; Grønborg, M.; Riedel, D.; Chua, J.J.; Boyken, J.; Kloepper, T.H.; Urlaub, H.; Rizzoli, S.O.; Jahn, R. Quantitative analysis of synaptic vesicle Rabs uncovers distinct yet overlapping roles for Rab3a and Rab27b in Ca2+-triggered exocytosis. J. Neurosci. 2010, 30, 13441–13453. [Google Scholar] [CrossRef]
- Geppert, M.; Goda, Y.; Stevens, C.F.; Südhof, T.C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 1997, 387, 810–814. [Google Scholar] [CrossRef]
- Holz, R.W.; Brondyk, W.H.; Senter, R.A.; Kuizon, L.; Macara, I.G. Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells. J. Biol. Chem. 1994, 269, 10229–10234. [Google Scholar] [PubMed]
- Johannes, L.; Lledo, P.M.; Roa, M.; Vincent, J.D.; Henry, J.P.; Darchen, F. The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J. 1994, 13, 2029–2037. [Google Scholar] [CrossRef]
- Khvotchev, M.V.; Ren, M.; Takamori, S.; Jahn, R.; Südhof, T.C. Divergent functions of neuronal Rab11b in Ca2+-regulated versus constitutive exocytosis. J. Neurosci. 2003, 23, 10531–10539. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, K.; Shibasaki, T.; Mizoguchi, A.; Saito, T.; Seino, S. Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis. Genes Cells 2009, 14, 445–456. [Google Scholar] [CrossRef]
- Shirakawa, R.; Yoshioka, A.; Horiuchi, H.; Nishioka, H.; Tabuchi, A.; Kita, T. Small GTPase Rab4 regulates Ca2+-induced alpha-granule secretion in platelets. J. Biol. Chem. 2000, 275, 33844–33849. [Google Scholar] [CrossRef]
- Graham, M.E.; Handley, M.T.; Barclay, J.W.; Ciufo, L.F.; Barrow, S.L.; Morgan, A.; Burgoyne, R.D. A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3. Biochem. J. 2008, 409, 407–416. [Google Scholar] [CrossRef]
- Johnson, J.L.; He, J.; Ramadass, M.; Pestonjamasp, K.; Kiosses, W.B.; Zhang, J.; Catz, S.D. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane. J. Biol. Chem. 2016, 291, 3423–3438. [Google Scholar] [CrossRef] [Green Version]
- Neeft, M.; Wieffer, M.; de Jong, A.S.; Negroiu, G.; Metz, C.H.; van Loon, A.; Griffith, J.; Krijgsveld, J.; Wulffraat, N.; Koch, H.; et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 2005, 16, 731–741. [Google Scholar] [CrossRef]
- Tsuboi, T.; Fukuda, M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J. Biol. Chem. 2005, 280, 39253–39259. [Google Scholar] [CrossRef]
- Ferrer-Orta, C.; Perez-Sanchez, M.D.; Coronado-Parra, T.; Silva, C.; Lopez-Martinez, D.; Baltanas-Copado, J.; Gomez-Fernandez, J.C.; Corbalan-Garcia, S.; Verdaguer, N. Structural characterization of the Rabphilin-3A-SNAP25 interaction. Proc. Natl. Acad. Sci. USA 2017, 114, E5343–E5351. [Google Scholar] [CrossRef]
- Gomi, H.; Mizutani, S.; Kasai, K.; Itohara, S.; Izumi, T. Granuphilin molecularly docks insulin granules to the fusion machinery. J. Cell Biol. 2005, 171, 99–109. [Google Scholar] [CrossRef]
- Torii, S.; Takeuchi, T.; Nagamatsu, S.; Izumi, T. Rab27 effector granuphilin promotes the plasma membrane targeting of insulin granules via interaction with syntaxin 1a. J. Biol. Chem. 2004, 279, 22532–22538. [Google Scholar] [CrossRef]
- Deak, F.; Shin, O.H.; Tang, J.; Hanson, P.; Ubach, J.; Jahn, R.; Rizo, J.; Kavalali, E.T.; Sudhof, T.C. Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J. 2006, 25, 2856–2866. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.W.; Hayashi, M.; Christoforidis, S.; Lacas-Gervais, S.; Hoepfner, S.; Wenk, M.R.; Modregger, J.; Uttenweiler-Joseph, S.; Wilm, M.; Nystuen, A.; et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 2005, 170, 607–618. [Google Scholar] [CrossRef]
- Christoforidis, S.; Miaczynska, M.; Ashman, K.; Wilm, M.; Zhao, L.; Yip, S.; Waterfield, M.D.; Backer, J.M.; Zerial, M. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1999, 1, 249–252. [Google Scholar] [CrossRef]
- Martin, T.F. PI(4,5)P2-binding effector proteins for vesicle exocytosis. Biochim. Biophys. Acta 2015, 1851, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Deeney, J.T.; Gromada, J.; Høy, M.; Olsen, H.L.; Rhodes, C.J.; Prentki, M.; Berggren, P.O.; Corkey, B.E. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J. Biol. Chem. 2000, 275, 9363–9368. [Google Scholar] [CrossRef] [PubMed]
- Zinsmaier, K.E.; Bronk, P. Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem. Pharmacol. 2001, 62, 1–11. [Google Scholar] [CrossRef]
- Gorenberg, E.L.; Chandra, S.S. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Front. Neurosci. 2017, 11, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Spot # | Accession # | Protein Description | Organism | Total CVmem | Chol- CVmem | Theoretical | Experimental c | Biological Function d,e | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mascot b | Peptides | Mascot b | Peptides | pI | MW | pI | MW | |||||
1 | unidentified | n/s | - | 5.3 | 85.4 | |||||||
2 | XP_011662952.1 | succinate dehydrogenase, flavoprotein subunit a | S. purpuratus | 299 | 5 | 5.15 | 61.5 | 5.3 | 84.9 | metabolic process | ||
3 | XP_011662952.1 | succinate dehydrogenase, flavoprotein subunit a | S. purpuratus | 137 | 3 | 5.15 | 61.5 | 5.4 | 84.9 | metabolic process | ||
4 | unidentified | n/s | - | 5.7 | 84.2 | |||||||
5 | unidentified | n/s | - | 5.8 | 83.0 | |||||||
6 | XP_779941.1 | long-chain-fatty-acid--CoA ligase 1 a | S. purpuratus | 201 | 3 | 195 | 6 | 5.58 | 73.5 | 5.9 | 82.4 | metabolic process |
7 | NP_999643.1 | calreticulin precursor | S. purpuratus | 303 | 7 | 116 | 2 | 4.57 | 95.5 | 3.9 | 65.0 | protein folding |
XP_782447.2 | dihydrolipoyl dehydrogenase a | S. purpuratus | 111 | 2 | 7.10 | 101.3 | metabolic process | |||||
8 | NP_999697.1 | S. purpuratus | 257 | 3 | 4.38 | 54.9 | 4.1 | 68.1 | redox/protein folding | |||
8a | NP_999697.1 | ER calcistorin precursor | S. purpuratus | 126 | 3 | 4.38 | 54.9 | 4.7 | 71.1 | redox/protein folding | ||
XP_795205.2 | 60 kDa heat shock protein a | S. purpuratus | 119 | 3 | 5.24 | 62.2 | protein folding | |||||
XP_011677933.1 | disulfide-isomerase 2-like a | S. purpuratus | 114 | 3 | 5.14 | 45.8 | redox/protein folding | |||||
8b | NP_999697.1 | ER calcistorin precursor | S. purpuratus | 220 | 6 | 4.57 | 95.5 | 5.0 | 71.1 | redox/protein folding | ||
XP_779941.1 | long-chain-fatty-acid--CoA ligase 1 a | S. purpuratus | 60 | 2 | 5.58 | 73. 5 | metabolic process | |||||
9 | XP_795205.2 | 60 kDa heat shock protein a | S. purpuratus | 685 | 9 | 5.24 | 62.2 | 4.9 | 70.4 | protein folding | ||
10 | XP_795205.2 | 60 kDa heat shock protein a | S. purpuratus | 612 | 7 | 5.24 | 62.2 | 5.0 | 70.7 | protein folding | ||
11 | XP_003726658.1 | V-type proton ATPase subunit A isoform X4 a | S. purpuratus | 131 | 3 | 561 | 16 | 5.32 | 67.9 | 5.4 | 75.5 | ion transport |
12 | XP_003726658.1 | V-type proton ATPase subunit A isoform X4 a | S. purpuratus | 183 | 3 | 5.32 | 67.9 | 5.5 | 75.3 | ion transport | ||
13 | unidentified | n/s | - | 5.5 | 71.5 | |||||||
14 | XP_791790.1 | tubulin beta chain a | S. purpuratus | 443 | 9 | 4.73 | 50.1 | 4.8 | 62.1 | cellular organization | ||
15 | XP_789821.1 | tubulin beta chain a | S. purpuratus | 172 | 4 | 4.61 | 50.1 | 5.0 | 61.8 | cellular organization | ||
XP_003731782.2 | aldehyde dehydrogenase a | S. purpuratus | 597 | 13 | 5.32 | 41.2 | metabolic process | |||||
15b | XP_011662394.1 | V-type proton ATPase subunit B isoform X1 a | S. purpuratus | 341 | 8 | 5.21 | 55.1 | 5.5 | 64.6 | ion transport | ||
AFG26286.1 | aldolase class-1 protein | A. japonicus | 82 | 2 | 8.30 | 39.4 | metabolic process | |||||
15c | XP_011661972.1 | protein disulfide-isomerase A3 a | S. purpuratus | 184 | 6 | 5.44 | 65.5 | 5.5 | 60.8 | redox/protein folding | ||
16 | n/s | - | 4.6 | 57.3 | ||||||||
17 | NP_001116974.1 | ATP synthase beta subunit | S. purpuratus | 1084 | 13 | 5.14 | 56.0 | 4.6 | 55.1 | metabolic process | ||
Q25117.1 | ATP synthase subunit beta | H. pulcherrimus | 249 | 6 | 5.10 | 56.1 | metabolic process | |||||
XP_786080.3 | arginine kinase a | S. purpuratus | 76 | 2 | 5.26 | 46.5 | signal transduction | |||||
18 | XP_786753.1 | succinyl-CoA ligase subunit beta a | S. purpuratus | 213 | 4 | 5.16 | 49.1 | 4.7 | 49.3 | metabolic process | ||
19 | unidentified | n/s | - | 5.1 | 48.3 | |||||||
20 | XP_782503.3 | long-chain specific acyl-CoA dehydrogenase, isoform X1 a | S. purpuratus | 130 | 5 | 5.67 | 48.9 | 5.2 | 47.7 | metabolic process | ||
21 | XP_003725373.1 | actin, cytoskeletal 3 B a | S. purpuratus | 112 | 3 | 5.22 | 41.8 | 5.3 | 46.9 | cellular organization | ||
22 | XP_786922.3 | NADH dehydrogenase, iron-sulfur protein 2 a | S. purpuratus | 123 | 3 | 6.0 | 52.7 | 5.8 | 51.9 | metabolic process | ||
23 | XP_788937.1 | elongation factor Tu a | S. purpuratus | 333 | 5 | 6.3 | 50.0 | 5.9 | 49.3 | protein biosynthesis | ||
/protein folding | ||||||||||||
24 | XP_011665962.1 | isocitrate dehydrogenase [NADP], isoform X1 a | S. purpuratus | 112 | 4 | 6.2 | 50.2 | 5.9 | 45.7 | metabolic process | ||
25 | XP_011665962.1 | isocitrate dehydrogenase [NADP], isoform X1 a | S. purpuratus | 305 | 5 | 6.2 | 50.2 | 6.0 | 45.2 | metabolic process | ||
26 | XP_011665962.1 | isocitrate dehydrogenase [NADP], isoform X1 a | S. purpuratus | 120 | 4 | 6.2 | 50.2 | 6.1 | 45.2 | metabolic process | ||
27 | XP_789891.3 | cytochrome b-c1 complex subunit 2 a | S. purpuratus | 76 | 3 | 8.7 | 50.8 | 6.8 | 45.5 | metabolic process | ||
28 | AAG15425.1 | 34kDa cortical vesicle protein, partial | S. purpuratus | 158 | 2 | 5.2 | 30.7 | 4.2 | 26.0 | uncharacterized | ||
29 | unidentified | n/s | - | 5.3 | 25.8 | |||||||
30 | XP_003725895.1 | electron transfer flavoprotein subunit beta isoform X1 a | S. purpuratus | 174 | 5 | 5.5 | 27.8 | 5.5 | 27.6 | metabolic process | ||
31 | XP_780266.1 | voltage-dependent anion-selective channel protein 2 a | S. purpuratus | 227 | 3 | 6.3 | 30.4 | 6.0 | 27.6 | ion transport | ||
32 | unidentified | n/s | - | 3.2 | 21.8 | |||||||
32a | NP_001116984.1 | rab11 GTPase homolog SUrab11 | S. purpuratus | 107 | 3 | 6.1 | 24.5 | 3.6 | 22.2 | vesicular trafficking | ||
32b | NP_001116983.1 | rab7 GTPase homolog SUrab7 | S. purpuratus | 166 | 4 | 5.5 | 23.1 | 3.5 | 20.3 | vesicular trafficking | ||
XP_783878.1 | ras-related protein Rab-5B a | S. purpuratus | 127 | 4 | 8.3 | 23.6 | vesicular trafficking | |||||
XP_001201172.2 | ADP-ribosylation factor-like protein 8B-A a | S. purpuratus | 120 | 3 | 6.8 | 21.6 | vesicular trafficking | |||||
32c | XP_782537.1 | ras-related protein Rab-2A isoform X1 a | S. purpuratus | 91 | 2 | 6.2 | 23.7 | 4.6 | 23.3 | vesicular trafficking | ||
32d | n/s | - | 4.5 | 22.1 | ||||||||
32e | NP_001116983.1 | rab7 GTPase homolog SUrab7 | S. purpuratus | 234 | 6 | 5.5 | 23.1 | 4.4 | 20.3 | vesicular trafficking | ||
PSN32081.1 | ras-related protein Rab-2A | B.germanica | 116 | 3 | 6.0 | 23.6 | vesicular trafficking | |||||
33 | NP_999641.1 | 18kDa egg cortical vesicle protein precursor | S. purpuratus | 208 | 2 | 4.8 | 20.6 | 4.1 | 12.7 | uncharacterized | ||
34 | NP_999641.1 | 18kDa egg cortical vesicle protein precursor cytochrome c oxidase subunit 5A a | S. purpuratus | 248 | 3 | 4.8 | 20.6 | 4.5 | 12.6 | uncharacterized | ||
XP_784558.1 | S. purpuratus | 167 | 2 | 5.3 | 16.9 | metabolic process | ||||||
35 | ABO26625.1 | Ras-related protein Rab-1A | H. discus discus | 73 | 3 | 5.6 | 22.8 | 4.2 | 10.4 | vesicular trafficking | ||
XP_015905011.1 | ras-related protein Rab-33B | P.tepidariorum | 72 | 2 | 7.6 | 25.6 | vesicular trafficking | |||||
XP_020901910.1 | ras-related protein Rab-13 | E. pallida | 82 | 2 | 7.6 | 24.3 | vesicular trafficking | |||||
36 | XP_786378.1 | cytochrome c oxidase subunit 5B a | S. purpuratus | 231 | 5 | 8.3 | 14.2 | 6.8 | 11.4 | metabolic process | ||
37 | XP_794003.1 | succinate dehydrogenase, iron-sulfur subunit a | S. purpuratus | 145 | 4 | 8.8 | 31.8 | 9.7 | 24.8 | metabolic process |
G2-Box/RabF1 Motif | S. purparatusa | H. sapiensb | ||
---|---|---|---|---|
% Identity | % Similarity | % Identity | ||
Rab3 | TVGIDF | 100 | 100 | 100 |
Rab2 | TIGVEF | 50 | 100 | 100 |
Rab5 | TIGAAF | 50 | 67 | 100 |
Rab7 | TIGADF | 67 | 83 | 100 |
Rab11 | TIGVEF | 50 | 100 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furber, K.L.; Backlund, P.S.; Yergey, A.L.; Coorssen, J.R. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes 2019, 7, 34. https://doi.org/10.3390/proteomes7040034
Furber KL, Backlund PS, Yergey AL, Coorssen JR. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes. 2019; 7(4):34. https://doi.org/10.3390/proteomes7040034
Chicago/Turabian StyleFurber, Kendra L., Peter S. Backlund, Alfred L. Yergey, and Jens R. Coorssen. 2019. "Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion" Proteomes 7, no. 4: 34. https://doi.org/10.3390/proteomes7040034
APA StyleFurber, K. L., Backlund, P. S., Yergey, A. L., & Coorssen, J. R. (2019). Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes, 7(4), 34. https://doi.org/10.3390/proteomes7040034