Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Clinical Background and Patient Specimens
2.3. Catheter Sample Processing for Microbial Cultures, 16S rRNA Sequencing, and Proteomics
2.4. In Vitro Liquid Culture of Actinotignum massiliense in Rich Growth Media
2.5. Catheter Biofilm Extraction
2.6. Cell Lysis and Preparation of CCP and CB Lysates for Proteomics
2.7. Shotgun Proteomics Using LC-MS/MS
2.8. Computational Methods to Profile and Quantify the Metaproteomes
2.9. 16S rRNA Analysis
2.10. Protein Function and Biological Pathway Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Greub, G.; Raoult, D. "Actinobaculum massiliae," a new species causing chronic urinary tract infection. J. Clin. Microbiol. 2002, 40, 3938–3941. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.; Gustafson, D.R.; Rosenblatt, J.E.; Patel, R. Actinobaculum bacteremia: A report of 12 cases. J. Clin. Microbiol. 2011, 49, 4311–4313. [Google Scholar] [CrossRef]
- Lawson, P.A.; Falsen, E.; Akervall, E.; Vandamme, P.; Collins, M.D. Characterization of some actinomyces-like isolates from human clinical specimens: Reclassification of Actinomyces suis (soltys and spratling) as Actinobaculum suis comb. Nov. And description of Actinobaculum schaalii sp. Nov. Int. J. Syst. Bacteriol. 1997, 47, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V. Actinobaculum schaalii: Review of an emerging uropathogen. J. Infect. 2012, 64, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Prag, J.; Kemp, M.; Andresen, K.; Klemmensen, B.; Hojlyng, N.; Sorensen, S.H.; Christensen, J.J. Ten cases of Actinobaculum schaalii infection: Clinical relevance, bacterial identification, and antibiotic susceptibility. J. Clin. Microbiol. 2005, 43, 5305–5308. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.F.; Sproer, C.; Pukall, R.; Sylvester, M.; Siering, C.; Schumann, P. Dissection of the genus Actinobaculum: Reclassification of Actinobaculum schaalii lawson et al. 1997 and Actinobaculum urinale Hall et al. 2003 as Actinotignum schaalii gen. nov., comb. nov. and Actinotignum urinale comb. nov., description of Actinotignum sanguinis sp. nov. and emended descriptions of the genus Actinobaculum and Actinobaculum suis; and re-examination of the culture deposited as Actinobaculum massiliense CCUG 47753T (= DSM 19118T), revealing that it does not represent a strain of this species. Int. J. Syst. Evol. Microbiol. 2015, 65, 615–624. [Google Scholar] [PubMed]
- Tuuminen, T.; Suomala, P.; Harju, I. Actinobaculum schaalii: Identification with maldi-tof. New Microbes New Infect. 2014, 2, 38–41. [Google Scholar] [CrossRef]
- Kristiansen, R.; Dueholm, M.S.; Bank, S.; Nielsen, P.H.; Karst, S.M.; Cattoir, V.; Lienhard, R.; Grisold, A.J.; Olsen, A.B.; Reinhard, M.; et al. Complete genome sequence of Actinobaculum schaalii strain ccug 27420. Genome Announc. 2014, 2. [Google Scholar] [CrossRef]
- Beye, M.; Bakour, S.; Labas, N.; Raoult, D.; Fournier, P.E. Draft genome sequence of Actinobaculum massiliense strain fc3. Genome Announc. 2016, 4. [Google Scholar] [CrossRef]
- The genome sequence of Actinobaculum massiliae ACS-171-V-COL2.1. Available online: https://olive.broadinstitute.org/strains/acti_mass_acs-171-v-col2.1 (accessed on 8 December 2018).
- Alteri, C.J.; Mobley, H.L.T. Metabolism and fitness of urinary tract pathogens. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Alteri, C.J.; Himpsl, S.D.; Mobley, H.L. Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection. PLoS Pathog. 2015, 11, e1004601. [Google Scholar] [CrossRef] [PubMed]
- Arntzen, M.O.; Karlskas, I.L.; Skaugen, M.; Eijsink, V.G.; Mathiesen, G. Proteomic investigation of the response of enterococcus faecalis v583 when cultivated in urine. PLoS ONE 2015, 10, e0126694. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zielinski, M.; Rolfe, M.; Kuntz, M.; Nelson, H.; Nelson, K.E.; Pieper, R. Similar neutrophil-driven inflammatory and antibacterial activities for symptomatic and asymptomatic bacteriuria in elderly patients. Infect. Immun. 2015, 4142–4153. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, J.R.; Zougman, A.; Mann, M. Combination of fasp and stagetip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 2009, 8, 5674–5678. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.J.; Tovchigrechko, A.; Thovarai, V.; Rolfe, M.A.; Torralba, M.G.; Wang, J.; Adkins, J.N.; Webb-Robertson, B.J.; Osborne, W.; Cogen, F.R.; et al. Quantitative differences in the urinary proteome of siblings discordant for type 1 diabetes include lysosomal enzymes. J. Proteome Res. 2015, 14, 3123–3135. [Google Scholar] [CrossRef]
- Yu, Y.; Sikorski, P.; Bowman-Gholston, C.; Cacciabeve, N.; Nelson, K.E.; Pieper, R. Diagnosing inflammation and infection in the urinary system via proteomics. J. Transl. Med. 2015, 13, 111. [Google Scholar] [CrossRef]
- Yu, Y.; Suh, M.J.; Sikorski, P.; Kwon, K.; Nelson, K.E.; Pieper, R. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal. Chem. 2014, 86, 5470–5477. [Google Scholar] [CrossRef]
- Singh, H.; Yu, Y.; Suh, M.J.; Torralba, M.G.; Stenzel, R.D.; Tovchigrechko, A.; Thovarai, V.; Harkins, D.M.; Rajagopala, S.V.; Osborne, W.; et al. Type 1 diabetes: Urinary proteomics and protein network analysis support perturbation of lysosomal function. Theranostics 2017, 7, 2704–2717. [Google Scholar] [CrossRef]
- Edgar, R.C. Uparse: Highly accurate otu sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The silva ribosomal rna gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 2008, 5, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed]
- von Schillde, M.A.; Hormannsperger, G.; Weiher, M.; Alpert, C.A.; Hahne, H.; Bauerl, C.; van Huynegem, K.; Steidler, L.; Hrncir, T.; Perez-Martinez, G.; et al. Lactocepin secreted by lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell. Host Microbe 2012, 11, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Weichhart, T.; Haidinger, M.; Hörl, W.H.; Säemann, M.D. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur. J. Clin. Invest. 2008, 38, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lominadze, G.; Powell, D.W.; Luerman, G.C.; Link, A.J.; Ward, R.A.; McLeish, K.R. Proteomic analysis of human neutrophil granules. Mol. Cell Proteomics 2005, 4, 1503–1521. [Google Scholar] [CrossRef] [PubMed]
- Moll, R.; Divo, M.; Langbein, L. The human keratins: Biology and pathology. Histochem. Cell. Biol. 2008, 129, 705–733. [Google Scholar] [CrossRef]
- Pieper, R.; Gatlin, C.L.; McGrath, A.M.; Makusky, A.J.; Mondal, M.; Seonarain, M.; Field, E.; Schatz, C.R.; Estock, M.A.; Ahmed, N.; et al. Characterization of the human urinary proteome: A method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 2004, 4, 1159–1174. [Google Scholar] [CrossRef]
- Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penades, J.R.; Lasa, I. The enterococcal surface protein, esp, is involved in enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545. [Google Scholar] [CrossRef]
- Muenchhoff, J.; Siddiqui, K.S.; Poljak, A.; Raftery, M.J.; Barrow, K.D.; Neilan, B.A. A novel prokaryotic l-arginine:Glycine amidinotransferase is involved in cylindrospermopsin biosynthesis. FEBS J. 2010, 277, 3844–3860. [Google Scholar] [CrossRef]
- Tschudin-Sutter, S.; Frei, R.; Weisser, M.; Goldenberger, D.; Widmer, A.F. Actinobaculum schaalii—Invasive pathogen or innocent bystander? A retrospective observational study. BMC Infect. Dis. 2011, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Brun, C.L.; Robert, S.; Tanchoux, C.; Bruyere, F. Philippe Lanotte1. Urinary tract infection caused by Actinobaculum schaalii: A urosepsis pathogen that should not be underestimated. JMM Case Reports 2015. [Google Scholar] [CrossRef]
- Sturm, P.D.; Van Eijk, J.; Veltman, S.; Meuleman, E.; Schulin, T. Urosepsis with Actinobaculum schaalii and aerococcus urinae. J. Clin. Microbiol. 2006, 44, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Jensen, A.; Hansen, T.M.; Soby, K.M.; Prag, J. Actinobaculum schaalii, a common uropathogen in elderly patients, denmark. Emerg Infect. Dis. 2010, 16, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Prigent, G.; Perillaud, C.; Amara, M.; Coutard, A.; Blanc, C.; Pangon, B. Actinobaculum schaalii: A truly emerging pathogen?: Actinobaculum schaalii: Un pathogene reellement emergent? New Microbes New Infect. 2016, 11, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Haraoka, M.; Hang, L.; Frendeus, B.; Godaly, G.; Burdick, M.; Strieter, R.; Svanborg, C. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 1999, 180, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Springall, T.; Sheerin, N.S.; Abe, K.; Holers, V.M.; Wan, H.; Sacks, S.H. Epithelial secretion of c3 promotes colonization of the upper urinary tract by escherichia coli. Nat. Med. 2001, 7, 801–806. [Google Scholar] [CrossRef]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P.; et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the infectious diseases society of america. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Hook, M. Adhesion, invasion and evasion: The many functions of the surface proteins of staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [Google Scholar] [CrossRef]
- Hendrickx, A.P.; Willems, R.J.; Bonten, M.J.; van Schaik, W. Lpxtg surface proteins of enterococci. Trends Microbiol. 2009, 17, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Cabanes, D.; Dehoux, P.; Dussurget, O.; Frangeul, L.; Cossart, P. Surface proteins and the pathogenic potential of listeria monocytogenes. Trends Microbiol. 2002, 10, 238–245. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. Cxcl10/ip-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 2001, 18, 380–416. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Sanchez, C.; Shen, B. Hybrid peptide-polyketide natural products: Biosynthesis and prospects toward engineering novel molecules. Metab. Eng. 2001, 3, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.S.; Schuch, V.; de Macedo Lemos, E.G. Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz. J. Microbiol. 2013, 44, 1007–1034. [Google Scholar] [CrossRef] [PubMed]
- Holden, V.I.; Bachman, M.A. Diverging roles of bacterial siderophores during infection. Metallomics 2015, 7, 986–995. [Google Scholar] [CrossRef]
- Moriarity, J.L.; Hurt, K.J.; Resnick, A.C.; Storm, P.B.; Laroy, W.; Schnaar, R.L.; Snyder, S.H. Udp-glucuronate decarboxylase, a key enzyme in proteoglycan synthesis: Cloning, characterization, and localization. J. Biol. Chem. 2002, 277, 16968–16975. [Google Scholar] [CrossRef]
- Alteri, C.J.; Smith, S.N.; Mobley, H.L. Fitness of escherichia coli during urinary tract infection requires gluconeogenesis and the tca cycle. PLoS Pathog. 2009, 5, e1000448. [Google Scholar] [CrossRef]
Gene Locus 1 | Protein Description 2 | Functional Group or Domain 3 | Put. Role in Inter-Action with Host 4 | Predict. Location 5 | Q (ivv vs ivt) 6 | Q Avg (ivv) 7 |
---|---|---|---|---|---|---|
01095 | Putative subtilisin-like protease | fibronectin type III, S8pro | invasion, inflammation | CW; SP motif | >8 | 0.0617 |
00826 | Rib/alpha/Esp surface antigen repeat-containing protein | Ca2+/cadherin bndg type III repeat and Ig-like fold | adhesion, biofilm formation | CW; SP motif | >8 | 0.0434 |
00810 | Putative subtilisin-like protease | fibronectin type III, S8pro | invasion and inflammation | CW; SP motif | 2–8 | 0.0406 |
01185 | Oligopeptide/nickel binding protein | ABC transporter su., MppA–type | metal/heme/peptide uptake | CW; SP motif | 2–8 | 0.0230 |
01650 | l–arginine:glycine amidinotransferase | creatine synthesis from arginine | part of PKS pathway | CY | >8 | 0.0196 |
00827 | Rib/alpha/Esp surface antigen repeat-containing protein | Ca2+/cadherin bndg type III repeat | adhesion, biofilm formation | CW; SP motif | 2–8 | 0.0092 |
01410 | Bacterial Ig-like domain protein | Ig-like domain | adhesion | not predicted | 2–8 | 0.0047 |
01413 | Listeria-Bacteroides repeat domain | Cadherin E-binding domain | adhesion, invasion | CW; SP motif | 2–8 | 0.0045 |
01648 | Ornithine carbamoyltransferase (ArcB) | arginine metabolism | part of PKS pathway | CY | >8 | 0.0042 |
00680 | Oligopeptide/nickel binding protein | ABC transporter su., MppA-type | metal/heme/peptide uptake | CW; SP motif | <2 | 0.0038 |
01649 | Carbamate kinase (ArcC) | arginine metabolism | part of PKS pathway | CY | >8 | 0.0034 |
01184 | Oligopeptide ABC transporter, ATP-binding domain | ABC transporter su. | metal/heme/peptide uptake | CM | <2 | 0.0031 |
00954 | Papain-like cysteine protease | cysteine protease | extracellular proteolysis | not predicted | 2–8 | 0.0023 |
00866 | LPXTG-domain-containing cell wall anchor protein | pilin subunit D1 domain | adhesion | LPLTG CW anchor | 2–8 | 0.0022 |
01647 | Arginine deiminase (ArcA) | arginine metabolism | part of PKS pathway | CY | >8 | 0.0021 |
01182 | Oligopeptide ABC transporter, permease | ABC transporter su. | metal/heme/peptide uptake | CM | 2–8 | 0.0017 |
00677 | Oligopeptide ABC transporter, ATP-binding domain | ABC transporter su. | metal/heme/peptide uptake | CM | <2 | 0.0017 |
01364 | Putative polyketide synthase | multifunctional enzyme | polyketide biosynthesis | CY | <2 | 0.0015 |
00649 | Fe/B12 periplasmic binding protein | ABC transporter su., FecB-like | metal/cofactor uptake | CW; SP motif | >8 | 0.0015 |
00581 | LPXTG-domain-containing cell wall anchor protein | G5 repeat domains | cell surface modulation | LPHTG CW anchor | >8 | 0.0014 |
01361 | Biotin-[acetyl-CoA-carboxylase] ligase | part of PKS pathway | part of PKS pathway | CY | <2 | 0.0012 |
00678 | Oligopeptide ABC transporter, ATP-binding domain | ABC transporter su. | metal/heme/peptide uptake | CM | <2 | 0.0010 |
01183 | Oligopeptide ABC transporter, permease | ABC transporter su. | metal/heme/peptide uptake | CM | <2 | 0.0005 |
01418 | Oligopeptide/nickel binding protein | ABC transporter su., MppA-type | metal/heme/peptide uptake | CW; SP motif | >8 | 0.0004 |
00679 | Oligopeptide ABC transporter, permease | ABC transporter su. | metal/heme/peptide uptake | CM | <2 | 0.0004 |
01362 | ATP grasp family protein | part of PKS pathway | part of PKS pathway | CY | <2 | 0.0003 |
Accession 1 | Description 2 | Average CB 3 |
---|---|---|
P02768 | 6 Serum albumin = ALB [ALBU_HUMAN] | 0.0793 |
P02788 | 4,7 Lactotransferrin = LTF [TRFL_HUMAN] | 0.0365 |
P13645 | 5 Keratin, type I cytoskeletal 10 = KRT10 [K1C10_HUMAN] | 0.0333 |
P05164 | 4 Myeloperoxidase = MPO [PERM_HUMAN] | 0.0314 |
P06702 | 4 Protein S100-A9 = S100A9 [S10A9_HUMAN] | 0.0306 |
P04264 | 5 Keratin, type II cytoskeletal 1 = KRT [K2C1_HUMAN] | 0.0293 |
P01834 | 6,8 Immunoglobulin kappa constant chain = IGKC [IGKC_HUMAN] | 0.0200 |
P0DOX5 | 6,8 Immunoglobulin gamma-1 heavy chain [IGG1_HUMAN] | 0.0191 |
P02538 | 5 Keratin, type II cytoskeletal 6A = KRT6A [K2C6A_HUMAN] | 0.0187 |
P04259 | 5 Keratin, type II cytoskeletal 6B = KRT6B [K2C6B_HUMAN] | 0.0173 |
P35908 | 5 Keratin, type II cytoskeletal 2 epidermal = KRT2 [K22E_HUMAN] | 0.0167 |
P59665 | 4,7 Neutrophil defensin = DEFA1 [DEF1_HUMAN] | 0.0165 |
P02787 | 6 Serotransferrin = TF [TRFE_HUMAN] | 0.0151 |
P0DOX7 | 6,8 Immunoglobulin kappa light chain [IGK_HUMAN] | 0.0151 |
P01024 | 8 Complement C3 =C3 [CO3_HUMAN] | 0.0146 |
P13646 | 5 Keratin, type I cytoskeletal 13 = KRT13 [K1C13_HUMAN] | 0.0143 |
P13647 | 5 Keratin, type II cytoskeletal 5 OS = KRT5 [K2C5_HUMAN] | 0.0137 |
P02533 | 5 Keratin, type I cytoskeletal 14 = KRT14 [K1C14_HUMAN] | 0.0121 |
P08779 | 5 Keratin, type I cytoskeletal 16 = KRT16 [K1C16_HUMAN] | 0.0116 |
P01876 | 6,8 Immunoglobulin heavy constant alpha 1 = IGHA1 [IGHA1_HUMAN] | 0.0114 |
P02675 | 8 Fibrinogen beta chain = FGB [FIBB_HUMAN] | 0.0112 |
P02679 | 8 Fibrinogen gamma chain = FGG [FIBG_HUMAN] | 0.0109 |
P01861 | 6,8 Immunoglobulin heavy constant gamma 4 = IGHG4 [IGHG4_HUMAN] | 0.0107 |
P05109 | 4 Protein S100-A8 = S100A8 [S10A8_HUMAN] | 0.0101 |
P08311 | 4 Cathepsin G = CTSG [CATG_HUMAN] | 0.0101 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Tsitrin, T.; Singh, H.; Doerfert, S.N.; Sizova, M.V.; Epstein, S.S.; Pieper, R. Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms. Proteomes 2018, 6, 52. https://doi.org/10.3390/proteomes6040052
Yu Y, Tsitrin T, Singh H, Doerfert SN, Sizova MV, Epstein SS, Pieper R. Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms. Proteomes. 2018; 6(4):52. https://doi.org/10.3390/proteomes6040052
Chicago/Turabian StyleYu, Yanbao, Tamara Tsitrin, Harinder Singh, Sebastian N. Doerfert, Maria V. Sizova, Slava S. Epstein, and Rembert Pieper. 2018. "Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms" Proteomes 6, no. 4: 52. https://doi.org/10.3390/proteomes6040052
APA StyleYu, Y., Tsitrin, T., Singh, H., Doerfert, S. N., Sizova, M. V., Epstein, S. S., & Pieper, R. (2018). Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms. Proteomes, 6(4), 52. https://doi.org/10.3390/proteomes6040052