Interaction of Recombinant Gallus gallus SEPT5 and Brain Proteins of H5N1-Avian Influenza Virus-Infected Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. H5N1-Infected and Non-Infected Brain Tissues and Paraffin Blocks
2.2. Immunohistochemistry Staining for the Detection of H5N1 Virus and SEPT5 in Brain of Infected Chickens
2.3. Recombinant SEPT5 Protein Production in an E. coli Expression System
2.3.1. Design of SEPT5 Gallus gallus Gene Primers and Restriction Enzyme Sites
2.3.2. RNA Extractions from Brain Tissues
2.3.3. First Strand cDNA Synthesis
2.3.4. Cloning of SEPT5 Gallus gallus into the pTZ57R/T Vector
2.3.5. SEPT5 Protein Expression in E. coli
2.3.6. SEPT5 Protein Purification with His-Tag Column
2.4. Co-Immunoprecipitation Assay of rSEPT5 with Polyclonal Anti-SEPT5 Antibodies
2.5. Pull-Down of Interacting Proteins of SEPT5 in Brain Lysates by Co-Immunoprecipitation
2.5.1. Preparation of Chicken Brain Tissue Homogenates
2.5.2. Pull-Down of Interacting Proteins by co-IP
3. Results
3.1. Virus Pathogenicity of H5N1 Virus in Chicken Brains
3.2. Localization of SEPT5 Proteins in Chicken Brains
3.3. SEPT5 Protein Expression in E. coli
3.4. The rSEPT5 Protein Was in Its Conformational State
3.5. Septin Proteins Interact with Various Host’s Proteins in Infected Brain Lysates
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Russell, S.E.; Hall, P.A. Septin genomics: A road less travelled. Biol. Chem. 2011, 392, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kong, C.; Xie, H.; McPherson, P.S.; Grinstein, S.; Trimble, W.S. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 1999, 9, 1458–1467. [Google Scholar] [CrossRef]
- Nakahira, M.; Macedo, J.N.A.; Seraphim, T.V.; Cavalcante, N.; Souza, T.A.C.B.; Damalio, J.C.P.; Reyes, L.F.; Assmann, E.M.; Alborghetti, M.R.; Garratt, R.C.; et al. A Draft of the Human Septin Interactome. PLoS ONE 2010, 5, e13799. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Noda, M. Roles of septins in the mammalian cytokinesis machinery. Cell Struct. Funct. 2001, 26, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Longtine, M.S.; DeMarini, D.J.; Valencik, M.L.; Al-Awar, O.S.; Fares, H.; De Virgilio, C.; Pringle, J.R. The septins: Roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 1996, 8, 106–119. [Google Scholar] [CrossRef]
- Longtine, M.S.; Bi, E. Regulation of septin organization and function in yeast. Trends Cell Biol. 2003, 13, 403–409. [Google Scholar] [CrossRef]
- Sirajuddin, M.; Farkasovsky, M.; Hauer, F.; Kuhlmann, D.; Macara, I.G.; Weyand, M.; Stark, H.; Wittinghofer, A. Structural insight into filament formation by mammalian septins. Nature 2007, 449, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Capurso, G.; Crnogorac-Jurcevic, T.; Milione, M.; Panzuto, F.; Campanini, N.; Dowen, S.E.; Di Florio, A.; Sette, C.; Bordi, C.; Lemoine, N.R.; et al. Peanut-like 1 (septin 5) gene expression in normal and neoplastic human endocrine pancreas. Neuroendocrinology 2005, 81, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.; Abdesselam, I.; Verdier-Pinard, P.; Montagna, C. Septin roles in tumorigenesis. Biol. Chem. 2011, 392, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Kalikin, L.; Steels, J.; Estey, M.; Trimble, W.; Petty, E. Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin. Mamm. Genome 2007, 18, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Spiliotis, E.T.; Nelson, W.J. Here come the septins: Novel polymers that coordinate intracellular functions and organization. J. Cell Sci. 2006, 119, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M. Diversity of septin scaffolds. Curr. Opin. Cell Biol. 2006, 18, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Hubbard, S.L.; Peraud, A.; Salhia, B.; Sakai, K.; Rutka, J.T. Analysis of mammalian septin expression in human malignant brain tumors. Neoplasia 2004, 6, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Buser, A.M.; Erne, B.; Werner, H.B.; Nave, K.A.; Schaeren-Wiemers, N. The septin cytoskeleton in myelinating glia. Mol. Cell. Neurosci. 2009, 40, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Kinoshita, M.; Akiyama, H.; Tomimoto, H.; Akiguchi, I.; Kumar, S.; Noda, M.; Kimura, J. Identification of septins in neurofibrillary tangles in Alzheimer’s disease. Am. J. Pathol. 1998, 153, 1551–1560. [Google Scholar] [CrossRef]
- Son, J.H.; Kawamata, H.; Yoo, M.S.; Kim, D.J.; Lee, Y.K.; Kim, S.; Dawson, T.M.; Zhang, H.; Sulzer, D.; Yang, L.; et al. Neurotoxicity and behavioral deficits associated with Septin 5 accumulation in dopaminergic neurons. J. Neurochem. 2005, 94, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Lee, H.; Dutta, S.; Song, J.; Walikonis, R.; Moon, I.S. Septin 6 regulates the cytoarchitecture of neurons through localization at dendritic branch points and bases of protrusions. Mol. Cell. 2011, 32, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Tsang, C.W.; Gai, W.-P.; Malladi, C.S.; Trimble, W.S.; Rostas, J.A.P.; Robinson, P.J. Septin 3 (G-septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals. J. Neurochem. 2004, 91, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Beites, C.L.; Campbell, K.A.; Trimble, W.S. The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem. J. 2005, 385, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Caltagarone, J. Localization of a novel septin protein, hCDCrel-1, in neurons of human brain. Neuroreport 1998, 9, 2907. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.C.; Hazuka, C.D.; Roth, R.; Foletti, D.L.; Heuser, J.; Scheller, R.H. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 1998, 20, 1111–1122. [Google Scholar] [CrossRef]
- Kim, C.S.; Seol, S.K.; Song, O.-K.; Park, J.H.; Jang, S.K. An RNA-Binding Protein, hnRNP A1, and a Scaffold Protein, Septin 6, Facilitate Hepatitis C Virus Replication. J. Virol. 2007, 81, 3852–3865. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Tu, P.F.; Hsiao, N.W.; Chang, C.Y.; Wan, L.; Lin, Y.T.; Chang, H.W. Identification of a novel septin 4 protein binding to human herpesvirus 8 kaposin A protein using a phage display cDNA library. J. Virol. Methods 2007, 143, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.C.; Olander, H.J.; Senne, D.A. A pathogenesis study of highly pathogenic avian influenza virus H5N2 in chickens, using immunohistochemistry. J. Comp. Pathol. 1992, 107, 341–348. [Google Scholar] [CrossRef]
- Finn, R.D.; Tate, J.; Mistry, J.; Coggill, P.C.; Sammut, S.J.; Hotz, H.R.; Ceric, G.; Forslund, K.; Eddy, S.R.; Sonnhammer, E.L.; et al. The Pfam protein families database. Nucleic Acids Res. 2008, 36, D281–D288. [Google Scholar] [CrossRef] [PubMed]
- Steve, R.; Helen, J.S. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2000; pp. 365–386. [Google Scholar]
- Sakai, K.; Kurimoto, M.; Tsugu, A.; Hubbard, S.L.; Trimble, W.S.; Rutka, J.T. Expression of Nedd5, a mammalian septin, in human brain tumors. J. Neurooncol. 2002, 57, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Corti, O.; Hampe, C.; Koutnikova, H.; Darios, F.; Jacquier, S.; Prigent, A.; Robinson, J.-C.; Pradier, L.; Ruberg, M.; Mirande, M.; et al. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: Linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet. 2003, 12, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.B.; Kierzek, A.M.; Arakawa, H.; Bezzubov, Y.; Zaim, J.; Fiedler, P.; Kutter, S.; Blagodatski, A.; Kostovska, D.; Koter, M.; et al. Full-length cDNAs from chicken bursal lymphocytes to facilitate gene function analysis. Genome Biol. 2005, 6, R6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolowski, B.; Orchard, S.; Harvey, M.; Sridhar, S.; Sakai, Y. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS ONE 2011, 6, e28532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, T.; Kawano, Y.; Arimura, N.; Kawabata, S.; Kikuchi, A.; Kaibuchi, K. GSK-3β Regulates Phosphorylation of CRMP-2 and Neuronal Polarity. Cell 2005, 120, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Fukata, Y.; Itoh, T.J.; Kimura, T.; Menager, C.; Nishimura, T.; Shiromizu, T.; Watanabe, H.; Inagaki, N.; Iwamatsu, A.; Hotani, H.; et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 2002, 4, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Ke, J.; Zhang, A.; Zhou, M.; Liao, Y.; Zhu, J.; Zhou, H.; Tu, J.; Chen, H.; Jin, M. Proteomics Analysis of Differential Expression of Chicken Brain Tissue Proteins in Response to the Neurovirulent H5N1 Avian Influenza Virus Infection. J. Proteome Res. 2010, 9, 3789–3798. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.R.; Wai, T.H.; Omar, A.R.; Othman, I.; Hassan, S.S. Cellular transcripts of chicken brain tissues in response to H5N1 and Newcastle disease virus infection. Virol. J. 2012, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, E.J. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway. J. Biol. Chem. 2002, 277, 3334–3341. [Google Scholar] [CrossRef] [PubMed]
- Durrieu, C.; Bernier-Valentin, F.; Rousset, B. Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules. Mol. Cell. Biochem. 1987, 74, 55–65. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, E.J.; Vega-Nunez, E.; Morales, A.V.; Serna, J.; Rubio, E.; de Pablo, F. Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis. Proc. Natl. Acad. Sci. USA 1998, 95, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Sainis, L.; Angelidis, C.; Pagoulatos, G.N.; Lazaridis, L. HSC70 interactions with SV40 viral proteins differ between permissive and nonpermissive mammalian cells. Cell Stress Chaperones 2000, 5, 132–138. [Google Scholar] [CrossRef]
- Spiliotis, E.T.; Kinoshita, M.; Nelson, W.J. A Mitotic Septin Scaffold Required for Mammalian Chromosome Congression and Segregation. Science 2005, 307, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Mostowy, S.; Tham, T.; Danckaert, A.; Guadagnini, S.; Boisson-Dupuis, S.; Pizarro-Cerdá, J.; Cossart, P. Septins Regulate Bacterial Entry into Host Cells. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Beard, P.M.; Griffiths, S.J.; Gonzalez, O.; Haga, I.R.; Jowers, T.P.; Reynolds, D.K.; Wildenhain, J.; Tekotte, H.; Auer, M.; Tyers, M.; et al. A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference. PLoS ONE 2014, 9, e98431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beites, C.L.; Xie, H.; Bowser, R.; Trimble, W.S. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat. Neurosci. 1999, 2, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.; Snyder, H.; Petrucelli, L.; Theisler, C.; Chong, M.; Zhang, Y.; Lim, K.; Chung, K.K.K.; Kehoe, K.; D’Adamio, L.; et al. SEPT5_v2 is a parkin-binding protein. Mol. Brain Res. 2003, 117, 179–189. [Google Scholar] [CrossRef]
- Beites, C.L.; Peng, X.R.; Trimble, W.S. Expression and analysis of properties of septin CDCrel-1 in exocytosis. Methods Enzymol. 2001, 329, 499–510. [Google Scholar] [PubMed]
- Hillier, L.W.; Miller, W.; Birney, E.; Warrne, W.; Hardison, R.; Ponting, C.P.; Bork, P.; Burt, D.W.; Groene, M.A.M.; Delaney, M.E.; et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yu, W.; Liu, M.; Shen, S.; Chen, F.; Wan, B.; Yu, L. SEPT12 interacts with SEPT6 and this interaction alters the filament structure of SEPT6 in Hela cells. J. Biochem. Mol. Biol. 2007, 40, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuru, S.; Sudo, K.; Nakamura, Y. Molecular cloning of a novel human cDNA homologous to CDC10 in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1994, 202, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Asano, T.; Nozawa, Y.; Inagaki, M. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J. Biol. Chem. 2004, 279, 55895–55904. [Google Scholar] [CrossRef] [PubMed]
- Vetter, I.; Wittinghofer, A.; Zent, E. Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol. Chem. 2011, 392, 791–797. [Google Scholar]
- Xie, Y.; Vessey, J.P.; Konecna, A.; Dahm, R.; Macchi, P.; Kiebler, M.A. The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr. Biol. 2007, 17, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Sivan, G.; Martin, S.E.; Myers, T.G.; Buehler, E.; Szymczyk, K.H.; Ormanoglu, P.; Moss, B. Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 3519–3524. [Google Scholar] [CrossRef] [PubMed]
- Hanai, N.; Nagata, K.; Kawajiri, A.; Shiromizu, T.; Saitoh, N.; Hasegawa, Y.; Murakami, S.; Inagaki, M. Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett. 2004, 568, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.W.; Yan, M.; Collins, R.F.; Diciccio, J.E.; Grinstein, S.; Trimble, W.S. Mammalian septins are required for phagosome formation. Mol. Biol. Cell 2008, 19, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.F.; Machlin, P.S.; Ratrie, H., 3rd; Cleveland, D.W. Sequence and expression of the chicken beta 3 tubulin gene. A vertebrate testis beta-tubulin isotype. J. Biol. Chem. 1986, 261, 13317–13322. [Google Scholar] [PubMed]
- Monteiro, M.J.; Cleveland, D.W. Sequence of chicken c beta 7 tubulin. Analysis of a complete set of vertebrate beta-tubulin isotypes. J. Mol. Biol. 1988, 199, 439–446. [Google Scholar] [CrossRef]
- Valenzuela, P.; Quiroga, M.; Zaldivar, J.; Rutter, W.J.; Kirschner, M.W.; Cleveland, D.W. Nucleotide and corresponding amino acid sequences encoded by alpha and beta tubulin mRNAs. Nature 1981, 289, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Lemischka, I.R.; Farmer, S.; Racaniello, V.R.; Sharp, P.A. Nucleotide sequence and evolution of a mammalian alpha-tubulin messenger RNA. J. Mol. Biol. 1981, 151, 101–120. [Google Scholar] [CrossRef]
- Pratt, L.F.; Cleveland, D.W. A survey of the alpha-tubulin gene family in chicken: Unexpected sequence heterogeneity in the polypeptides encoded by five expressed genes. EMBO J. 1988, 7, 931–940. [Google Scholar] [PubMed]
- Silvano, F.D.; Yoshikawa, M.; Shimada, A.; Otsuki, K.; Umemura, T. Enhanced neuropathogenicity of avian influenza A virus by passages through air sac and brain of chicks. J. Vet. Med. Sci. 1997, 59, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Zielecki, F.; Semmler, I.; Kalthoff, D.; Voss, D.; Mauel, S.; Gruber, A.D.; Beer, M.; Wolff, T. Virulence Determinants of Avian H5N1 Influenza A Virus in Mammalian and Avian Hosts: Role of the C-Terminal ESEV Motif in the Viral NS1 Protein. J. Virol. 2010, 84, 10708–10718. [Google Scholar] [CrossRef] [PubMed]
- Shinya, K.; Makino, A.; Hatta, M.; Watanabe, S.; Kim, J.H.; Hatta, Y.; Gao, P.; Ozawa, M.; Le, Q.M.; Kawaoka, Y. Subclinical Brain Injury Caused by H5N1 Influenza Virus Infection. J. Virol. 2011, 85, 5202–5207. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Boltz, D.A.; Webster, R.G.; Smeyne, R.J. Viral parkinsonism. Biochim. Biophys. Acta Mol. Basis Dis. 2009, 1792, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.R.; Jia, Z.; Zhang, Y.; Ware, J.; Trimble, W.S. The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol. Cell. Biol. 2002, 22, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Vasina, J.A.; Baneyx, F. Expression of aggregation-prone recombinant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr. Purif. 1997, 9, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Maimaitiyiming, M.; Kumanogoh, H.; Nakamura, S.; Morita, M.; Maekawa, S. Structures of septin filaments prepared from rat brain and expressed in bacteria. Protein Expr. Purif. 2013, 87, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Hyman, A.A.; Glotzer, M. GTP binding induces filament assembly of a recombinant septin. Curr. Biol. 2002, 12, 1858–1863. [Google Scholar] [CrossRef]
- Sheffield, P.J.; Oliver, C.J.; Kremer, B.E.; Sheng, S.; Shao, Z.; Macara, I.G. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J. Biol. Chem. 2003, 278, 3483–3488. [Google Scholar] [CrossRef] [PubMed]
- John, C.M.; Hite, R.K.; Weirich, C.S.; Fitzgerald, D.J.; Jawhari, H.; Faty, M.; Schlapfer, D.; Kroschewski, R.; Winkler, F.K.; Walz, T.; et al. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 2007, 26, 3296–3307. [Google Scholar] [CrossRef] [PubMed]
- Tafforeau, L.; Chantier, T.; Pradezynski, F.; Pellet, J.; Mangeot, P.E.; Vidalain, P.-O.; Andre, P.; Rabourdin-Combe, C.; Lotteau, V. Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network. J. Virol. 2011, 85, 13010–13018. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.; Molawi, K.; Martínez-Sobrido, L.; Ghanem, A.; Thomas, S.; Baginsky, S.; Grossmann, J.; García-Sastre, A.; Schwemmle, M. Identification of Cellular Interaction Partners of the Influenza Virus Ribonucleoprotein Complex and Polymerase Complex Using Proteomic-Based Approaches. J. Proteome Res. 2007, 6, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, A.; Guo, J.; Yang, J.; Zhou, H.; Chen, H.; Jin, M. Identification of Human Host Proteins Contributing to H5N1 Influenza Virus Propagation by Membrane Proteomics. J. Proteome Res. 2012, 11, 5396–5405. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Whittaker, G.R. Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells. Cell. Microbiol. 2007, 9, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Holley, M.; Ellis, D.; Fisher, D.; Elton, D.; McCauley, J.; Digard, P. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 2002, 301, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.L.; Stone, K.L.; Colangelo, C.M.; Gulcicek, E.E.; Palese, P. Cellular proteins in influenza virus particles. PLoS Pathog. 2008, 4, e1000085. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, N.; Chihara, K.; Arimura, N.; Menager, C.; Kawano, Y.; Matsuo, N.; Nishimura, T.; Amano, M.; Kaibuchi, K. CRMP-2 induces axons in cultured hippocampal neurons. Nat. Neurosci. 2001, 4, 781–782. [Google Scholar] [CrossRef] [PubMed]
- Charrier, E.; Reibel, S.; Rogemond, V.; Aguera, M.; Thomasset, N.; Honnorat, J. Collapsin response mediator proteins (CRMPs): Involvement in nervous system development and adult neurodegenerative disorders. Mol. Neurobiol. 2003, 28, 51–64. [Google Scholar] [CrossRef]
- Martins-de-Souza, D.; Cassoli, J.S.; Nascimento, J.M.; Hensley, K.; Guest, P.C.; Pinzon-Velasco, A.M.; Turck, C.W. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteom. Clin. Appl. 2015, 9, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Sakai, H. A porcine brain protein (35 K protein) which bundles microtubules and its identification as glyceraldehyde 3-phosphate dehydrogenase. J. Biochem. 1983, 93, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Durrieu, C.; Bernier-Valentin, F.; Rousset, B. Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. Arch. Biochem. Biophys. 1987, 252, 32–40. [Google Scholar] [CrossRef]
- Naito, T.; Momose, F.; Kawaguchi, A.; Nagata, K. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J. Virol. 2007, 81, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Momose, F.; Naito, T.; Yano, K.; Sugimoto, S.; Morikawa, Y.; Nagata, K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 2002, 277, 45306–45314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, Y.; Zhou, X.; Yang, Z.; Liu, X.; Cao, Z.; Song, H.; He, Y.; Huang, P. The NS1 protein of influenza A virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: Implication for virus-induced apoptosis. Virol. J. 2011, 8, 181. [Google Scholar] [CrossRef] [PubMed]
- Bortz, E.; Westera, L.; Maamary, J.; Steel, J.; Albrecht, R.A.; Manicassamy, B.; Chase, G.; Martinez-Sobrido, L.; Schwemmle, M.; Garcia-Sastre, A. Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. MBio 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Fuse, T.; Asano, I.; Tsukahara, F.; Maru, Y.; Nagata, K.; Kitazato, K.; Kobayashi, N. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett. 2006, 580, 5785–5790. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Zieger, B.; Roth, G.J.; Ware, J. Structure and expression of the human septin gene HCDCREL-1. Gene 1998, 212, 229–236. [Google Scholar] [CrossRef]
- Kinoshita, M.; Kumar, S.; Mizoguchi, A.; Ide, C.; Kinoshita, A.; Haraguchi, T.; Hiraoka, Y.; Noda, M. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 1997, 11, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.; Hyland, P.L.; McGregor, G.; Hillan, K.J.; Russell, S.E.; Hall, P.A. Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene 2005, 24, 4688–4700. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.; McCluggage, W.G.; Hillan, K.J.; Hall, P.A.; Russell, S.E. Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 2006, 118, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Shindo, A.; Park, T.J.; Oh, E.C.; Ghosh, S.; Gray, R.S.; Lewis, R.A.; Johnson, C.A.; Attie-Bittach, T.; Katsanis, N.; et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 2010, 329, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
Accession No. | NP_001025825.2 |
---|---|
Gene | SEPT5 (Gallus gallus) |
Protein | Septin 5 |
Forward Primer | GCC TCG AGG EcoRI ATG AGC ACC GGC ACG CGC TAC AAG AGC AAG CCG CTC AAC CCA GAG GAG AAG CAG GAC |
Reverse Primer | AGA AGC TTC HindIII TAG TCA CTG ATC CTG CAT CTG CTG CTG CAT CTT |
Amplicon Length | 1110 bp |
Protein Size | 45 kDa |
Proteins | Functions | Accessiona | References |
---|---|---|---|
Actin filaments, cytoplasmic 2 | Major constituent of cytoskeleton, actin filaments are also involved in cytokinesis and cell movement | NP_001295542.1 | [29,30] |
Dihydropyrimidinase-related protein 2 (DPYSL-2/CRMP2) | Involved in neuronal development, axonal and neuronal growth. May also be involved in viral pathogenesis | NP_001184222.1 | [31,32,33,34] |
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | Involves in glycolysis; the enzyme has been found to bind to actin and tropomyosin, and may thus have a role in cytoskeleton assembly | AAA48774.1 | [35,36] |
Heat shock cognate 71 kDa protein (Hsc71) | Regulates stress response and induced inflammatory response, including TNF secretion | NP_990334.1 | [37,38] |
SEPT2 | Required for normal organization of actin microfilament. May also play a role in the internalization of Listeria monocytogenes and Shigella flexneri and anti-viral response to Vaccinia virus | NP_001006182.1 | [39,40,41] |
SEPT5 | Filament forming cytoskeleton GTPase, involved in Parkinson’s pathogenesis and may regulate exocytosis and cell division | NP_001025825.2 | [19,42,43,44] |
SEPT6 | Required for actin assembly | NP_001026296.1 | [17,45,46] |
SEPT7 | Required for normal actin organization | NP_00102577.1 | [47,48,49,50] |
PREDICTED: SEPT11 isoform | May play a role in cytoarchitecture of neurons including dendritic arborization and the formation of phagosome. May also be involved in anti-viral response to Vaccinia virus | XP_004941218 | [51,52,53] |
Tubulin β-3 | Proper axon guidance and maintenance | NP_001074329.2 | [54] |
Tubulin β-7 | GTPase binding major constituent of microtubule | NP_990646.1 | [55] |
Proteins | Functions | Accession a | References |
---|---|---|---|
Actin filaments, cytoplasmic 2 | Major constituent of cytoskeleton, actin filaments are also involved in cytokinesis and cell movement | NP_001295542.1 | [29,30] |
SEPT5 | Filament forming cytoskeleton GTPase, involved in Parkinson’s pathogenesis and may regulate exocytosis and cell division | NP_001025825.2 | [19,42,43] |
SEPT7 | Required for normal actin organization | NP_00102577.1 | [47,48,49,50] |
Tubulin α | Structural constituent of cytoskeleton | CAA30852.1 | [56,57] |
Tubulin α-5 | A major constituent of microtubule | P09644.1 | [58] |
Tubulin β-7 | GTPase binding major constituent of microtubule | NP_990646.1 | [55] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairat, J.E.; Balasubramaniam, V.; Othman, I.; Omar, A.R.; Hassan, S.S. Interaction of Recombinant Gallus gallus SEPT5 and Brain Proteins of H5N1-Avian Influenza Virus-Infected Chickens. Proteomes 2017, 5, 23. https://doi.org/10.3390/proteomes5030023
Khairat JE, Balasubramaniam V, Othman I, Omar AR, Hassan SS. Interaction of Recombinant Gallus gallus SEPT5 and Brain Proteins of H5N1-Avian Influenza Virus-Infected Chickens. Proteomes. 2017; 5(3):23. https://doi.org/10.3390/proteomes5030023
Chicago/Turabian StyleKhairat, Jasmine Elanie, Vinod Balasubramaniam, Iekhsan Othman, Abdul Rahman Omar, and Sharifah Syed Hassan. 2017. "Interaction of Recombinant Gallus gallus SEPT5 and Brain Proteins of H5N1-Avian Influenza Virus-Infected Chickens" Proteomes 5, no. 3: 23. https://doi.org/10.3390/proteomes5030023