Brief Prompt-Engineering Clinic Substantially Improves AI Literacy and Reduces Technology Anxiety in First-Year Teacher-Education Students: A Pre–Post Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Context
2.2. Participants
2.3. Intervention
2.4. Instruments
2.5. Procedure
2.6. Statistical Analysis
3. Results
3.1. Descriptives and Reliability
3.2. Visualization of Changes
3.3. Correlation Between Variations
3.4. Qualitative Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Session | Duration | Learning Objectives (LO) | Key Activities & Resources | Evidence/Assessment |
---|---|---|---|---|
1. Foundations and Ethics of Generative AI | 120 min | LO 1 Describes the basic architecture of an LLM and its limitations. LO 2 State three ethical principles for teaching use (bias, attribution, privacy). |
| Written reflection (150 words) on an ethical risk + mitigating action. |
2. Prompt Templates and Iterative Refinement | 120 min | LO 3 Write structured prompts using the role–task–context outline. LO 4 Apply refinement loop (Goal → Prompt → Evaluate → Iterate). |
| Ten-item checklist on prompt quality (peers + instructor). |
3. Critical Evaluation and Micro-Lesson Design | 120 min | LO5 Evaluate AI outputs with a rubric of relevance, accuracy, and bias. LO6 Integrate AI-generated material into a micro-lesson plan aligned with standards. |
|
|
References
- Abdulayeva, A., Zhanatbekova, N., Andasbayev, Y., & Boribekova, F. (2025). Fostering AI literacy in pre-service physics teachers: Inputs from training and co-variables. Frontiers in Education, 10, 1505420. [Google Scholar] [CrossRef]
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. [Google Scholar] [CrossRef] [PubMed]
- Bernilla Rodriguez, E. B. (2024). Docentes ante la inteligencia artificial en una universidad pública del norte del Perú. Educación, 33(64), 8–28. [Google Scholar] [CrossRef]
- Carifio, J., & Perla, R. (2008). Resolving the 50-year debate around using and misusing Likert scales. Medical Education, 42(12), 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. [Google Scholar] [CrossRef]
- Diliberti, M. K., Lake, R. J., & Weiner, S. R. (2025). More districts are training teachers on artificial intelligence: Findings from the american school district panel. Available online: https://www.rand.org/pubs/research_reports/RRA956-31.html (accessed on 28 June 2025).
- Díaz Vera, J. P. (2025). Más allá de los algoritmos: Desafíos y percepciones docentes sobre la inteligencia artificial generativa en la enseñanza virtual. Revista de Investigación en Tecnologías de la Información, 13(29), 141–153. [Google Scholar] [CrossRef]
- DLA Piper. (2023). Data protection laws in Peru—Data protection laws of the world. Available online: https://www.dlapiperdataprotection.com/index.html?c=PE&t=law (accessed on 26 June 2025).
- Federiakin, D., Molerov, D., Zlatkin-Troitschanskaia, O., & Maur, A. (2024). Prompt engineering as a new 21st century skill. Frontiers in Education, 9, 1366434. [Google Scholar] [CrossRef]
- Hornberger, M., Bewersdorff, A., Schiff, D. S., & Nerdel, C. (2025). Development and validation of a short AI literacy test (AILIT-S) for university students. Computers in Human Behavior: Artificial Humans, 5, 100176. [Google Scholar] [CrossRef]
- IBM. (2024). IA Generativa: Conceptos básicos de ingeniería de instrucciones. Coursera. Available online: https://www.coursera.org/learn/generative-ai-prompt-engineering-for-everyone (accessed on 28 June 2025).
- INEI. (2023). Instituto nacional de estadistica e informatica. Available online: https://m.inei.gob.pe/prensa/noticias/mas-de-medio-millon-de-maestros-en-el-peru-celebran-su-dia-9833/ (accessed on 25 June 2025).
- Kang, L., Shi, X., & Zhu, K. (2025). Uncovering the mediation of disciplinary literacy in the effect of GAI prompt engineering on pre—Service teachers’ instructional design. Education and Information Technologies. [Google Scholar] [CrossRef]
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, D., & Palmer, E. (2025). Prompt engineering in higher education: A systematic review to help inform curricula. International Journal of Educational Technology in Higher Education, 22(1), 7. [Google Scholar] [CrossRef]
- Lintner, T. (2024). A systematic review of AI literacy scales. Npj Science of Learning, 9(1), 50. [Google Scholar] [CrossRef] [PubMed]
- Marzano, D. (2025). Generative artificial intelligence (GAI) in teaching and learning processes at the K-12 Level: A systematic review. Technology, Knowledge and Learning. [Google Scholar] [CrossRef]
- Monash University Library. (2024). How to write a prompt [Teaching resource]. Monash University Library. Available online: https://www.monash.edu/__data/assets/pdf_file/0005/3727085/How-to-write-a-prompt.pdf (accessed on 1 August 2025).
- Montalvo, T. (2025, June 5). AI prompt engineering: A critical new skillset for 21st-century teachers. eCampus News. Available online: https://www.ecampusnews.com/ai-in-education/2025/06/05/ai-prompt-engineering-a-critical-new-skillset-for-21st-century-teachers/ (accessed on 28 June 2025).
- NCSS. (2023). Paired T-tests using effect size. Available online: https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/PASS/Paired_T-Tests_using_Effect_Size.pdf (accessed on 25 June 2025).
- Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632. [Google Scholar] [CrossRef] [PubMed]
- OpenAI. (2023, August 31). Teaching with AI. Available online: https://openai.com/index/teaching-with-ai/ (accessed on 30 July 2025).
- Park, J., & Choo, S. (2025). Generative AI prompt engineering for educators: Practical strategies. Journal of Special Education Technology, 40(3), 411–417. [Google Scholar] [CrossRef]
- Pei, B., Lu, J., & Jing, X. (2025). Empowering preservice teachers’ AI literacy: Current understanding, influential factors, and strategies for improvement. Computers and Education: Artificial Intelligence, 8, 100406. [Google Scholar] [CrossRef]
- Perozzo, H., Sengewald, J., & Ravarini, A. (2025). Mastering the machine: How prompt engineering transforms generative AI learning in education. AMCIS 2025 Proceedings, 30. Available online: https://aisel.aisnet.org/amcis2025/is_education/is_education/30 (accessed on 25 June 2025).
- Ramírez Chávez, M. A., & Litardo Caicedo, L. G. (2025). Ética y responsabilidad en el uso de inteligencia artificial en la educación superior. Estudios y Perspectivas Revista Científica y Académica, 5(2), 66–84. [Google Scholar] [CrossRef]
- Ramírez Martinell, A., & Casillas Alvarado, M. A. (2024). Percepciones docentes sobre la Inteligencia Artificial Generativa: El caso mexicano. Revista Paraguaya De Educación A Distancia (REPED), 5(2), 44–55. [Google Scholar] [CrossRef]
- Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence. Technology in Society, 77, 102537. [Google Scholar] [CrossRef]
- Seung, Y. (2025, February 12). CIDDL Research and practice brief: Generative AI prompt engineering for educators—CIDDL. Available online: https://ciddl.org/ciddl-research-and-practice-brief-generative-ai-prompt-engineering-for-educators/ (accessed on 24 June 2025).
- Soto-Sanfiel, M. T., Angulo-Brunet, A., & Lutz, C. (2024). The scale of artificial intelligence literacy for all (SAIL4ALL): A tool for assessing knowledge on artificial intelligence in all adult populations and settings. Preprint. [Google Scholar] [CrossRef]
- Sperling, K., Stenberg, C.-J., McGrath, C., Åkerfeldt, A., Heintz, F., & Stenliden, L. (2024). In search of artificial intelligence (AI) literacy in teacher education: A scoping review. Computers and Education Open, 6, 100169. [Google Scholar] [CrossRef]
- Strunk, V., & Willis, J. (2025). Generative artificial intelligence and education: A brief ethical reflection on autonomy. EDUCAUSE Review. Available online: https://er.educause.edu/articles/2025/1/generative-artificial-intelligence-and-education-a-brief-ethical-reflection-on-autonomy (accessed on 28 June 2025).
- Tong, A. (2024, November 20). OpenAI launches free AI training course for teachers. Reuters. Available online: https://www.reuters.com/technology/artificial-intelligence/openai-launches-free-ai-training-course-teachers-2024-11-20/ (accessed on 25 June 2025).
- UNESCO. (2024). Global report on teachers: Addressing teacher shortages and transforming the profession. United Nations. [Google Scholar]
- Vanderbilt University. (2023). Prompt engineering for ChatGPT [Online course]. Coursera. Available online: https://www.coursera.org/learn/prompt-engineering/paidmedia?specialization=prompt-engineering (accessed on 28 June 2025).
- Wilson, M. L., Huggins-Manley, A. C., Ritzhaupt, A. D., & Ruggles, K. (2022). Development of the abbreviated technology anxiety scale (ATAS). Behavior Research Methods, 55(1), 185–199. [Google Scholar] [CrossRef] [PubMed]
Variable | α Pre | Media ± DE Pre | α Post | Media ± DE Post | Δ Media ± DE | t (44) | p | d | IC 95%-d |
---|---|---|---|---|---|---|---|---|---|
AI literacy (SAIL4ALL-12) | 0.91 | 2.85 ± 0.54 | 0.93 | 3.55 ± 0.50 | +0.70 ± 0.46 | 6.10 | <0.001 | 0.91 | 0.55–1.26 |
Technology anxiety (ATAS-12) | 0.88 | 3.30 ± 0.65 | 0.9 | 2.72 ± 0.61 | −0.58 ± 0.52 | −3.82 | 0.001 | 0.56 | 0.23–0.88 |
Variable X | Variable Y | n | r | p |
---|---|---|---|---|
Δ AI literacy | Δ Technology anxiety | 45 | −0.46 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davila-Moran, R.C.; Sanchez Soto, J.M.; Lopez Gomez, H.E.; Silva Infantes, M.; Arias Lizares, A.; Huanca Rojas, L.M.; Cama Flores, S.J. Brief Prompt-Engineering Clinic Substantially Improves AI Literacy and Reduces Technology Anxiety in First-Year Teacher-Education Students: A Pre–Post Pilot Study. Educ. Sci. 2025, 15, 1010. https://doi.org/10.3390/educsci15081010
Davila-Moran RC, Sanchez Soto JM, Lopez Gomez HE, Silva Infantes M, Arias Lizares A, Huanca Rojas LM, Cama Flores SJ. Brief Prompt-Engineering Clinic Substantially Improves AI Literacy and Reduces Technology Anxiety in First-Year Teacher-Education Students: A Pre–Post Pilot Study. Education Sciences. 2025; 15(8):1010. https://doi.org/10.3390/educsci15081010
Chicago/Turabian StyleDavila-Moran, Roberto Carlos, Juan Manuel Sanchez Soto, Henri Emmanuel Lopez Gomez, Manuel Silva Infantes, Andres Arias Lizares, Lupe Marilu Huanca Rojas, and Simon Jose Cama Flores. 2025. "Brief Prompt-Engineering Clinic Substantially Improves AI Literacy and Reduces Technology Anxiety in First-Year Teacher-Education Students: A Pre–Post Pilot Study" Education Sciences 15, no. 8: 1010. https://doi.org/10.3390/educsci15081010
APA StyleDavila-Moran, R. C., Sanchez Soto, J. M., Lopez Gomez, H. E., Silva Infantes, M., Arias Lizares, A., Huanca Rojas, L. M., & Cama Flores, S. J. (2025). Brief Prompt-Engineering Clinic Substantially Improves AI Literacy and Reduces Technology Anxiety in First-Year Teacher-Education Students: A Pre–Post Pilot Study. Education Sciences, 15(8), 1010. https://doi.org/10.3390/educsci15081010