Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Participants
The Demographic Characteristics of the Sample
2.2. Research Methods and Instruments
2.3. Data Analysis
2.3.1. Questionnaire Data Analysis
2.3.2. Interview Data Analysis
3. Results
3.1. The Impact of ABATAC on the Participants’ Content Knowledge (CK)
3.2. The Impact of ABATAC Educational Program on the Participants’ Pedagogical Content Knowledge I (PCK1)
3.3. The Impact of ABATAC Educational Program on the Participants’ Pedagogical Content Knowledge II (PCK2)
3.4. Interview Analysis Results
4. Discussion
4.1. Improvement in Content Knowledge (CK)
4.2. The Impact of the ABATAC Materials and Methods
4.3. The Improvement in Pedagogical Content Knowledge 1 (PCK1)
4.4. Improvement in PCK2
4.5. Improvements to the ABATAC Training Program
- Improvements in the delivery of astronomy CK
- Improvements focusing on PCK
- Improvements on the ABATAC’s components
4.6. Limitations of the Study and Implications for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ampartzaki, M.; Kalogiannakis, M. Astronomy in Early Childhood Education: A Concept-Based Approach. Early Child. Educ. J. 2016, 44, 169–179. [Google Scholar] [CrossRef]
- Kampeza, M. Preschool Children’s Ideas about the Earth as a Cosmic Body and the Day/Night Cycle/Ideas de Niños Sobre La Tierra Como Cuerpo Cósmico y El Ciclo Del Día y La Noche. J. Sci. Educ. 2006, 7, 119–122. [Google Scholar]
- Pompea, S.M.; Russo, P. Astronomers Engaging with the Education Ecosystem: A Best-Evidence Synthesis. Annu. Rev. Astron. Astrophys. 2020, 58, 313–361. [Google Scholar] [CrossRef]
- Raviv, A.; Dadon, M. Teaching Astronomy in Kindergarten: Children’s Perceptions and Projects. Athens J. Educ. 2021, 8, 305–328. [Google Scholar]
- Department for Education. Science Programmes of Study: Key Stages 1 and 2—National Curriculum in England. 2013. Available online: https://assets.publishing.service.gov.uk/media/5a806ebd40f0b62305b8b1fa/PRIMARY_national_curriculum_-_Science.pdf (accessed on 24 May 2024).
- National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-21742-2. [Google Scholar]
- Mininsterial Decree 160476/D1, Gov. Gaz. 5961/Issue Β’/17.12.2021. Program of Study for Preschool Education. 2021. Available online: https://www.et.gr/api/DownloadFeksApi/?fek_pdf=20210205961 (accessed on 24 May 2024).
- Kallery, M. Early-Years Educators’ Attitudes to Science and Pseudo-Science: The Case of Astronomy and Astrology. Eur. J. Teach. Educ. 2001, 24, 329–342. [Google Scholar] [CrossRef]
- Eom, H.; Shim, H. Using a Knowledge Structure Perspective to Improve In-Service Teachers’ Content Knowledge about Active Galaxies. Phys. Rev. Phys. Educ. Res. 2023, 19, 020108. [Google Scholar] [CrossRef]
- Trumper, R. Teaching Future Teachers Basic Astronomy Concepts—Seasonal Changes—At a Time of Reform in Science Education. J. Res. Sci. Teach. 2006, 43, 879–906. [Google Scholar] [CrossRef]
- Shulman, L. Knowledge and Teaching: Foundations of the New Reform. Harv. Educ. Rev. 1987, 57, 1–23. [Google Scholar] [CrossRef]
- Barenthien, J.; Oppermann, E.; Anders, Y.; Steffensky, M. Preschool Teachers’ Learning Opportunities in Their Initial Teacher Education and in-Service Professional Development—Do They Have an Influence on Preschool Teachers’ Science-Specific Professional Knowledge and Motivation? Int. J. Sci. Educ. 2020, 42, 744–763. [Google Scholar] [CrossRef]
- Nikolopoulou, A.; Fili, S.; Founta, M.; Starakis, I. Kindergarten Students’ and Pre-Service Teachers’ Perceptions Regarding the Frequency of the Moon’s Appearance at Night. Int. J. Early Years Educ. 2024, 32, 137–157. [Google Scholar] [CrossRef]
- Kanli, U. A Study on Identifying the Misconceptions of Pre-Service and In-Service Teachers about Basic Astronomy Concepts. EURASIA J. Math Sci. Tech. Ed. 2014, 10, 471–479. [Google Scholar] [CrossRef]
- Kanli, U. Using a Two-Tier Test to Analyse Students’ and Teachers’ Alternative Concepts in Astronomy. Sci. Educ. Int. 2015, 26, 148–165. [Google Scholar]
- Gurbuz, F. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers’ Misconceptions on Basic Astronomy Subjects. J. Educ. Train. Stud. 2016, 4, 27–41. [Google Scholar] [CrossRef]
- Arslan, A.S.; Durikan, U. Pre-Service Teachers’ Mental Models of Basic Astronomy Concepts. Sci. Educ. Int. 2016, 27, 88–116. [Google Scholar]
- Halder, S.; Fies, C. Fostering Self-Efficacy: Astronomy Education Professional Development. In Proceedings of the Fostering Scientific Citizenship in an Uncertain World, Part 14/Strand 14; Carvalho, G.S., Afonso, A.S., Anastácio, Z., Eds.; co-ed. C. Fazio & P. Reis; CIEC and the University of Minho: Braga, Portugal, 2022; pp. 1095–1101. [Google Scholar]
- Susman, K.; Pavlin, J. Improvements in Teachers’ Knowledge and Understanding of Basic Astronomy Concepts through Didactic Games. J. Balt. Sci. Educ. 2020, 19, 1020–1033. [Google Scholar] [CrossRef]
- Early, D.M.; Iruka, I.U.; Ritchie, S.; Barbarin, O.A.; Winn, D.-M.C.; Crawford, G.M.; Frome, P.M.; Clifford, R.M.; Burchinal, M.; Howes, C.; et al. How Do Pre-Kindergarteners Spend Their Time? Gender, Ethnicity, and Income as Predictors of Experiences in Pre-Kindergarten Classrooms. Early Child. Res. Q. 2010, 25, 177–193. [Google Scholar] [CrossRef]
- Greenfield, D.B.; Jirout, J.; Dominguez, X.; Greenberg, A.; Maier, M.; Fuccillo, J. Science in the Preschool Classroom: A Programmatic Research Agenda to Improve Science Readiness. Early Educ. Dev. 2009, 20, 238–264. [Google Scholar] [CrossRef]
- Chastenay, P. To Teach Or Not To Teach Astronomy, That Is The Question: Results Of A Survey Of Québec’s Elementary Teachers. JAESE 2018, 5, 115–136. [Google Scholar] [CrossRef]
- Appleton, K. How Do Beginning Primary School Teachers Cope with Science? Toward an Understanding of Science Teaching Practice. Res. Sci. Educ. 2003, 33, 1–25. [Google Scholar] [CrossRef]
- Nurhafizah, N. Development of Naturalist Intelligence of Children in Kindergarten; Atlantis Press: Amsterdam, The Netherlands, 2017; pp. 17–20. [Google Scholar]
- Slater, S.J.; Slater, T.F.; Shaner, A. Impact of Backwards Faded Scaffolding in an Astronomy Course for Pre-Service Elementary Teachers Based on Inquiry. J. Geosci. Educ. 2008, 56, 408–416. [Google Scholar] [CrossRef]
- Ho, D.; Chen, S.-C.S. Behind the Starting Line: School Capacity Building in Early Childhood Education. Sch. Leadersh. Manag. 2013, 33, 501–514. [Google Scholar] [CrossRef]
- Jamil, F.M.; Linder, S.M.; Stegelin, D.A. Early Childhood Teacher Beliefs about STEAM Education after a Professional Development Conference. Early Child. Educ. J. 2018, 46, 409–417. [Google Scholar] [CrossRef]
- Saçkes, M. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten. Eur. Early Child. Educ. Res. J. 2014, 22, 169–184. [Google Scholar] [CrossRef]
- Brígido, M.; Borrachero, A.B.; Bermejo, M.L.; Mellado, V. Prospective Primary Teachers’ Self-Efficacy and Emotions in Science Teaching. Eur. J. Teach. Educ. 2013, 36, 200–217. [Google Scholar] [CrossRef]
- Brenneman, K.; Lange, A.; Nayfeld, I. Integrating STEM into Preschool Education; Designing a Professional Development Model in Diverse Settings. Early Child. Educ. J. 2019, 47, 15–28. [Google Scholar] [CrossRef]
- Okulu, H.Z.; Oguz-Unver, A. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy. Int. J. Environ. Sci. Educ. 2015, 10, 145–167. [Google Scholar] [CrossRef]
- Bell, R.L.; Trundle, K.C. The Use of a Computer Simulation to Promote Scientific Conceptions of Moon Phases. J. Res. Sci. Teach. 2008, 45, 346–372. [Google Scholar] [CrossRef]
- Saçkes, M. Kindergartners’ Mental Models of the Day and Night Cycle: Implications for Instructional Practices in Early Childhood Classrooms. Kuram Ve Uygulamada Egit. Bilim. 2015, 15, 997–1006. [Google Scholar]
- Plummer, J.D.; Tanis Ozcelik, A. Preservice Teachers Developing Coherent Inquiry Investigations in Elementary Astronomy. Sci. Educ. 2015, 99, 932–957. [Google Scholar] [CrossRef]
- Erickson, H.L.; Lanning, L.A. Concept-Based Curriculum and Instruction: How to Bring Content and Process Together; Corwin: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Erickson, H.L.; Lanning, L.A.; French, R. Concept-Based Curriculum and Instruction for the Thinking Classroom; Corwin: Thousand Oaks, CA, USA, 2017; ISBN 1-5063-9043-9. [Google Scholar]
- Gess-Newsome, J. Pedagogical Content Knowledge: An Introduction and Orientation. In Examining Pedagogical Content Knowledge: The Construct and Its Implications for Science Education; Gess-Newsome, J., Lederman, N.G., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2002; pp. 3–17. ISBN 978-0-306-47217-6. [Google Scholar]
- Wilgenbus, D.; Léna, P. Early Science Education and Astronomy. Proc. Int. Astron. Union 2009, 5, 629–641. [Google Scholar] [CrossRef]
- Shneiderman, B. Creativity Support Tools: Accelerating Discovery and Innovation. Commun. ACM 2007, 50, 20–32. [Google Scholar] [CrossRef]
- Jeffrey, B.; Craft, A. The Universalization of Creativity. In Creativity in Education; Continuum: London, UK, 2001; pp. 1–13. ISBN 0-8264-4863-1. [Google Scholar]
- National Research Council. Inquiry and the National Science Education Standards: A Guide for Teaching and Learning; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Steinberg, R.N. An Inquiry into Science Education, Where the Rubber Meets the Road; Sense Publishers: Rotterdam, The Netherlands, 2011; ISBN 978-94-6091-690-8. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s; National Academies Press: Washington, DC, USA, 2021; ISBN 978-0-309-46734-6. [Google Scholar]
- Eriksson, U. Disciplinary Discernment: Reading the Sky in Astronomy Education. Phys. Rev. Phys. Educ. Res. 2019, 15, 010133. [Google Scholar] [CrossRef]
- Kersting, M.; Bondell, J.; Steier, R.; Myers, M. Virtual Reality in Astronomy Education: Reflecting on Design Principles through a Dialogue between Researchers and Practitioners. Int. J. Sci. Educ. Part B 2023, 14, 157–176. [Google Scholar] [CrossRef]
- Salimpour, S.; Tytler, R.; Eriksson, U.; Fitzgerald, M. Cosmos Visualized: Development of a Qualitative Framework for Analyzing Representations in Cosmology Education. Phys. Rev. Phys. Educ. Res. 2021, 17, 013104. [Google Scholar] [CrossRef]
- Boldea, A.L. Blended Learning Methods Used in Studying Computational Astrophysics. Conf. Proc. Elearning Softw. Educ. (eLSE) 2017, 13, 315–321. [Google Scholar] [CrossRef]
- Taufiq, M.; Wijayanti, A.; Yanitama, A. Implementation of Blended Project-Based Learning Model on Astronomy Learning to Increase Critical Thinking Skills. J. Phys. Conf. Ser. 2020, 1567, 042049. [Google Scholar] [CrossRef]
- Ho, V.-T.; Nakamori, Y.; Ho, T.-B.; Lim, C.P. Blended Learning Model on Hands-on Approach for in-Service Secondary School Teachers: Combination of E-Learning and Face-to-Face Discussion. Educ. Inf. Technol. 2016, 21, 185–208. [Google Scholar] [CrossRef]
- Huhtala, A.; Vesalainen, M. Challenges in Developing In-Service Teacher Training. Apples 2017, 11, 55–79. [Google Scholar] [CrossRef]
- Huilcapi-Collantes, C.; Hernández, A.; Hernández-Ramos, J.P. The Effect of a Blended Learning Course of Visual Literacy for In-Service Teachers. J. Inf. Technol. Educ. Res. 2020, 19, 131–166. [Google Scholar] [CrossRef] [PubMed]
- Saboowala, R.; Manghirmalani Mishra, P. Readiness of In-Service Teachers Toward a Blended Learning Approach as a Learning Pedagogy in the Post-COVID-19 Era. J. Educ. Technol. Syst. 2021, 50, 9–23. [Google Scholar] [CrossRef]
- Theodosiadou, D.; Konstantinidis, A.; Pappos, C.; Papadopoulos, N. Community of Inquiry Development in a Blended Learning Course for In-Service Teachers. J. Educ. Pract. 2017, 8, 62–66. [Google Scholar]
- Zagouras, C.; Egarchou, D.; Skiniotis, P.; Fountana, M. Face to Face or Blended Learning? A Case Study: Teacher Training in the Pedagogical Use of ICT. Educ. Inf. Technol. 2022, 27, 12939–12967. [Google Scholar] [CrossRef] [PubMed]
- Graveneijer, K.; Cobb, P. Design Research from a Learning Design Perspective. In Educational Design Research; Routledge: London, UK, 2006; pp. 17–51. ISBN 978-0-203-08836-4. [Google Scholar]
- Creswell, J.W. Educational Research, 4th ed.; Pearson: London, UK, 2015; ISBN 0-13-136739-0. [Google Scholar]
- Stratton, S.J. Population Research: Convenience Sampling Strategies. Prehosp. Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Turkoglu, O.; Ornek, F.; Gokdere, M.; Suleymanoglu, N.; Orbay, M. On Pre-Service Science Teachers’ Preexisting Knowledge Levels about Basic Astronomy Concepts. Int. J. Phys. Sci. 2009, 4, 734–739. [Google Scholar]
- Brunsell, E.; Marcks, J. Identifying a Baseline for Teachers’ Astronomy Content Knowledge. Astron. Educ. Rev. 2005, 2, 38–46. [Google Scholar] [CrossRef]
- The Collaboration for Astronomy Education Research (CAER) PhysPort Assessments: Astronomy Diagnostic Test 2.0. 1999. Available online: https://www.physport.org/assessments/assessment.cfm?A=ADT (accessed on 24 May 2024).
- Slater, S.J. PhysPort Assessments: Test of Astronomy Standards 2009. Available online: https://www.physport.org/assessments/assessment.cfm?A=TOAST (accessed on 24 May 2024).
- Braun, V.; Clarke, V. One Size Fits All? What Counts as Quality Practice in (Reflexive) Thematic Analysis? Qual. Res. Psychol. 2021, 18, 328–352. [Google Scholar] [CrossRef]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 6th ed.; Routledge: London, UK, 2007; ISBN 978-0-203-22434-2. [Google Scholar]
- Patton, M.Q. Qualitative Research & Evaluation Methods: Integrating Theory and Practice; Sage Publications: Los Angeles, CA, USA, 2014; ISBN 1-4833-0145-1. [Google Scholar]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage Publications: Los Angeles, CA, USA, 2018; ISBN 1-5063-8671-7. [Google Scholar]
- Cohen, H. Statistical Power Analysis for Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Catalano, A.; Asselta, L.; Durkin, A. Exploring the Relationship between Science Content Knowledge and Science Teaching Self-Efficacy among Elementary Teachers. IAFOR J. Educ. 2019, 7, 57–70. [Google Scholar] [CrossRef]
- Plummer, J.D.; Zahm, V.M. Covering the Standards: Astronomy Teachers’ Preparation and Beliefs. Astron. Educ. Rev. 2010, 9, 010110. [Google Scholar] [CrossRef]
- Yoo, J.H. The Effect of Professional Development on Teacher Efficacy and Teachers’ Self-Analysis of Their Efficacy Change. J. Teach. Educ. Sustain. 2016, 18, 84–94. [Google Scholar] [CrossRef]
- Frede, V. Pre-Service Elementary Teacher’s Conceptions about Astronomy. Adv. Space Res. 2006, 38, 2237–2246. [Google Scholar] [CrossRef]
- Rebull, L.M.; French, D.A.; Laurence, W.; Roberts, T.; Fitzgerald, M.T.; Gorjian, V.; Squires, G.K. Major Outcomes of an Authentic Astronomy Research Experience Professional Development Program: An Analysis of 8 Years of Data from a Teacher Research Program. Phys. Rev. Phys. Educ. Res. 2018, 14, 020102. [Google Scholar] [CrossRef]
- Frède, V. Teaching Astronomy for Pre-Service Elementary Teachers: A Comparison of Methods. Adv. Space Res. 2008, 42, 1819–1830. [Google Scholar] [CrossRef]
- Nielsen, W.; Hoban, G. Designing a Digital Teaching Resource to Explain Phases of the Moon: A Case Study of Preservice Elementary Teachers Making a Slowmation. J. Res. Sci. Teach. 2015, 52, 1207–1233. [Google Scholar] [CrossRef]
- Kalkan, H.; Kiroglu, K. Science and Nonscience Students’ Ideas about Basic Astronomy Concepts in Preservice Training for Elementary School Teachers. Astron. Educ. Rev. 2007, 6, 15–24. [Google Scholar] [CrossRef]
- Bidarra, J.; Rusman, E. Towards a Pedagogical Model for Science Education: Bridging Educational Contexts through a Blended Learning Approach. Open Learn. J. Open Distance E-Learn. 2017, 32, 6–20. [Google Scholar] [CrossRef]
- Cervato, C.; Kerton, C. Improving the Science Teaching Self-Efficacy of Preservice Elementary Teachers: A Multiyear Study of A Hybrid Geoscience Course. J. Coll. Sci. Teach. 2017, 47, 83–91. [Google Scholar] [CrossRef]
- Langendorf, R.; Schneider, S.; Hessman, F.V. Learning and Teaching Astronomy with Digital Tools Promotes Physics Student Teachers’ Digital Competencies. Astron. Educ. J. 2022, 2, 021bp-1–12. [Google Scholar] [CrossRef]
- Schmid, R.F.; Borokhovski, E.; Bernard, R.M.; Pickup, D.I.; Abrami, P.C. A Meta-Analysis of Online Learning, Blended Learning, the Flipped Classroom and Classroom Instruction for Pre-Service and in-Service Teachers. Comput. Educ. Open 2023, 5, 100142. [Google Scholar] [CrossRef]
- Saiti, A.; Saitis, C. In-service Training for Teachers Who Work in Full-day Schools. Evidence from Greece. Eur. J. Teach. Educ. 2006, 29, 455–470. [Google Scholar] [CrossRef]
- Eroglu, M.; Donmus Kaya, V. Professional Development Barriers of Teachers: A Qualitative Research. Int. J. Curric. Instr. 2021, 13, 1896–1922. [Google Scholar]
- Schmidt, M.; Fulton, L. Transforming a Traditional Inquiry-Based Science Unit into a STEM Unit for Elementary Pre-Service Teachers: A View from the Trenches. J. Sci. Educ. Technol. 2016, 25, 302–315. [Google Scholar] [CrossRef]
- Rice, D.C.; Roychoudhury, A. Preparing More Confident Preservice Elementary Science Teachers: One Elementary Science Methods Teacher’s Self-Study. J. Sci. Teach. Educ. 2003, 14, 97–126. [Google Scholar] [CrossRef]
- Bazelais, P.; Doleck, T. Investigating the Impact of Blended Learning on Academic Performance in a First Semester College Physics Course. J. Comput. Educ. 2018, 5, 67–94. [Google Scholar] [CrossRef]
- Nilsson, P.; Elm, A. Capturing and Developing Early Childhood Teachers’ Science Pedagogical Content Knowledge through CoRes. J. Sci. Teach. Educ. 2017, 28, 406–424. [Google Scholar] [CrossRef]
- Cian, H.; Dsouza, N.; Lyons, R.; Cook, M. Influences on the Development of Inquiry-Based Practices among Preservice Teachers. J. Sci. Teach. Educ. 2017, 28, 186–204. [Google Scholar] [CrossRef]
- Kennedy, A.S.; Heineke, A. Re-Envisioning the Role of Universities in Early Childhood Teacher Education: Community Partnerships for 21st-Century Learning. J. Early Child. Teach. Educ. 2014, 35, 226–243. [Google Scholar] [CrossRef]
- Tuttle, N.; Kaderavek, J.N.; Molitor, S.; Czerniak, C.M.; Johnson-Whitt, E.; Bloomquist, D.; Namatovu, W.; Wilson, G. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers’ Science Content Knowledge and Pedagogy. J. Sci. Teach. Educ. 2016, 27, 717–745. [Google Scholar] [CrossRef]
- Clements, D.H.; Sarama, J. Early Childhood Teacher Education: The Case of Geometry. J. Math. Teach. Educ. 2011, 14, 133–148. [Google Scholar] [CrossRef]
- Alyamani, A.H.; Khaled, M.b.; Jabali, S.M. The Effectiveness of an Educational Program Based on Pictures and Graphics in Developing Some Spatial and Temporal Concepts among Kindergarten Children. Int. J. High. Educ. 2021, 10, 319–328. [Google Scholar] [CrossRef]
- Brunton, P.; Thornton, L. Science in the Early Years: Building Firm Foundations from Birth to Five; Sage: Los Angeles, CA, USA, 2010. [Google Scholar]
- Eriksson Lindstrand, A.; Hansson, L.; Olsson, R.; Ljung-Djärf, A. Playful Learning about Light and Shadow: A Learning Study Project in Early Childhood Education. Creat. Educ. 2016, 7, 333–348. [Google Scholar] [CrossRef]
- Timur, S. Examining Cognitive Structures of Prospective Preschool Teachers Concerning the Subject “Force and Motion”. Educ. Sci. Theory Pract. 2012, 12, 3039–3049. [Google Scholar]
- Moore-Russo, D.; Viglietti, J.M.; Chiu, M.M.; Bateman, S.M. Teachers’ Spatial Literacy as Visualization, Reasoning, and Communication. Teach. Teach. Educ. 2013, 29, 97–109. [Google Scholar] [CrossRef]
- Métioui, A. Primary School Preservice Teachers’ Alternative Conceptions about Light Interaction with Matter (Reflection, Refraction, and Absorption) and Shadow Size Changes on Earth and Sun. Educ. Sci. 2023, 13, 462. [Google Scholar] [CrossRef]
- Cohrssen, C.; De Quadros-Wander, B.; Page, J.; Klarin, S. Between the Big Trees: A Project-Based Approach to Investigating Shape and Spatial Thinking in a Kindergarten Program. Australas. J. Early Child. 2017, 42, 94–104. [Google Scholar] [CrossRef]
- Schroeter, E. Putting the Shape of Kindergarten and Geometric & Spatial Learning in Ontario into Perspective. Gaz.-Ont. Assoc. Math. 2017, 55, 26–32. [Google Scholar]
- Tu, T. Preschool Science Environment: What Is Available in a Preschool Classroom? Early Child. Educ. J. 2006, 33, 245–251. [Google Scholar] [CrossRef]
- Sackes, M.; Trundle, K.C.; Krissek, L.A. The Impact of a Summer Institute on Inservice Early Childhood Teachers’ Knowledge of Earth and Space Science Concepts. Sci. Educ. 2011, 20, 23–33. [Google Scholar]
- Trundle, K.C.; Atwood, R.K.; Christopher, J.E. Preservice Elementary Teachers’ Conceptions of Moon Phases before and after Instruction. J. Res. Sci. Teach. 2002, 39, 633–658. [Google Scholar] [CrossRef]
- Grammatikopoulos, V.; Gregoriadis, A.; Linardakis, M. Discrete Choice Modeling in Education: An Innovative Method to Assess Teaching Practices. Educ. Manag. Issues Pract. 2019, 38, 46–54. [Google Scholar] [CrossRef]
- Jo, I.; Bednarz, S.W. Developing Pre-Service Teachers’ Pedagogical Content Knowledge for Teaching Spatial Thinking through Geography. J. Geogr. High. Educ. 2014, 38, 301–313. [Google Scholar] [CrossRef]
- Jo, I.; Bednarz, S.W. Dispositions toward Teaching Spatial Thinking Through Geography: Conceptualization and an Exemplar Assessment. J. Geogr. 2014, 113, 198–207. [Google Scholar] [CrossRef]
- Ampartzaki, M. Utilizing Creative and Critical Thinking to Build Knowledge and Comprehension Through Inquiry-Based and Art-Based Learning: A Practical Tool for Teaching Local History in Pre-Primary and Primary Education. In Pedagogy, Learning, and Creativity; IntechOpen: London, UK, 2023; pp. 3–29. ISBN 1-80356-666-3. [Google Scholar]
- Kidman, G.; Casinader, N. Inquiry-Based Teaching and Learning across Disciplines; Palgrave Macmillan UK: London, UK, 2017; ISBN 978-1-137-53462-0. [Google Scholar]
- Helm, J.H. Becoming Young Thinkers: Deep Project Work in the Classroom; Teachers College Press: New York, NY, USA, 2015; ISBN 0-8077-7335-2. [Google Scholar]
- Seefeldt, C.; Castle, S.; Falconer, R.C. Social Studies for the Preschool/Primary Child, 8th ed.; Pearson Education: London, UK, 2010. [Google Scholar]
- Kim, M. Developing Pre-Service Teachers’ Fieldwork Pedagogical and Content Knowledge through Designing Enquiry-Based Fieldwork. J. Geogr. High. Educ. 2020, 46, 61–79. [Google Scholar] [CrossRef]
- Ebby, C.B. Learning to Teach Mathematics Differently: The Interaction between Coursework and Fieldwork for Preservice Teachers. J. Math. Teach. Educ. 2000, 3, 69–97. [Google Scholar] [CrossRef]
- Charalambous, C.Y.; Philippou, G.N.; Kyriakides, L. Tracing the Development of Preservice Teachers’ Efficacy Beliefs in Teaching Mathematics during Fieldwork. Educ. Stud. Math 2008, 67, 125–142. [Google Scholar] [CrossRef]
- Chastenay, P.; Cormier, É.; Lachance, C.; Perez, I.; Richard, J.; Richer, J. Days Under the Moon: Teaching Lunar Phases to In-Service Teachers by Doing Astronomy Like Astronomers Do and Its Impact on Their Students’ Learning. Astron. Educ. J. 2023, 3, 037ra-1–14. [Google Scholar] [CrossRef]
- Maaß, K.; Doorman, M. A Model for a Widespread Implementation of Inquiry-Based Learning. ZDM Math. Educ. 2013, 45, 887–899. [Google Scholar] [CrossRef]
- Cartwright, T.J. Science Talk: Preservice Teachers Facilitating Science Learning in Diverse Afterschool Environments. Sch. Sci. Math. 2012, 112, 384–391. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Danaia, L.; McKinnon, D.H. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters. Res. Sci. Educ. 2019, 49, 543–566. [Google Scholar] [CrossRef]
- Garet, M.S.; Porter, A.C.; Desimone, L.; Birman, B.F.; Yoon, K.S. What Makes Professional Development Effective? Results From a National Sample of Teachers. Am. Educ. Res. J. 2001, 38, 915–945. [Google Scholar] [CrossRef]
- Kallery, M. Early Years Teachers’ Late Concerns and Perceived Needs in Science: An Exploratory Study. Eur. J. Teach. Educ. 2004, 27, 147–165. [Google Scholar] [CrossRef]
- Kallery, M.; Psillos, D. Pre-School Teachers’ Content Knowledge in Science: Their Understanding of Elementary Science Concepts and of Issues Raised by Children’s Questions Le Contenue Des Connaissances Des Enseignants de Maternelle En Matière de Sciences Exactes: Leur Perception Des Concepts Scientifiques de Base Ainsi Que Des Interrogations Soulevées Par Les Questions Des Enfants El Conocimiento de Contenido de Los Educadores de Preescolar En Ciencia: Su Entendimiento En Conceptos Elementales En Ciencia y En Cuestiones Que Surgen de Las Preguntas de Los Niños. Int. J. Early Years Educ. 2001, 9, 165–179. [Google Scholar] [CrossRef]
- Shaw, P.A.; Traunter, J.E.; Nguyen, N.; Huong, T.T.; Thao-Do, T.P. Immersive-Learning Experiences in Real-Life Contexts: Deconstructing and Reconstructing Vietnamese Kindergarten Teachers’ Understanding of STEAM Education. Int. J. Early Years Educ. 2021, 29, 329–348. [Google Scholar] [CrossRef]
- Kelly, A.E. Quality Criteria for Design Research: Evidence and Commitments. In Educational Design Research; Routledge: London, UK; New York, NY, USA, 2006; pp. 107–118. ISBN 978-0-203-08836-4. [Google Scholar]
- Head, M.L.; Holman, L.; Lanfear, R.; Kahn, A.T.; Jennions, M.D. The Extent and Consequences of P-Hacking in Science. PLoS Biol. 2015, 13, e1002106. [Google Scholar] [CrossRef] [PubMed]
- Scheel, A.M.; Tiokhin, L.; Isager, P.M.; Lakens, D. Why Hypothesis Testers Should Spend Less Time Testing Hypotheses. Perspect. Psychol. Sci. 2021, 16, 744–755. [Google Scholar] [CrossRef]
- Akker, J.V.D.; Gravemeijer, K.; McKenney, S. Introducing Educational Design Research. In Educational Design Research; Routledge: London, UK; New York, NY, USA, 2006; pp. 3–7. ISBN 978-0-203-08836-4. [Google Scholar]
Qualifications | Frequency | Percent |
---|---|---|
“Kindergarten Teacher Degree Equivalency” only | 2 | 2.6 |
A first degree in education (equivalent to BEd) only | 8 | 10.5 |
“Kindergarten Teacher School Graduate” | 6 | 7.9 |
Postgraduate degree | 12 | 15.8 |
Doctoral degree | 2 | 2.6 |
Undergraduate student | 46 | 60.6 |
Total | 76 | 100 |
Years of Professional Experience | Frequency | Percent |
---|---|---|
0 | 46 | 60.6 |
0–5 | 4 | 5.4 |
5–10 | 4 | 5.4 |
10–15 | 8 | 10.6 |
15–20 | 1 | 1.4 |
20–25 | 11 | 14.6 |
25–30 | 1 | 1.4 |
Total | 76 |
Stage | Component | Component Content | Supplementary Component Content Running throughout the Duration of the ABATAC Program’s Implementation |
---|---|---|---|
Before training | Administration 1 of Questionnaire 1 (Qr1Admin1) | Initial assessment of participants’ CK and PCK | |
The first stage of training (Duration: approx. 4 weeks) | ABATAC workshops | Workshops that introduce the ABATAC program and focus on the rationale for the program, the pedagogical framework, the pedagogical principles, competencies/standards underlying the proposed activities, and the construction of the learning environment | Regular contact with the program team (once a week), discussions, questions and answers, methodological advice |
After the first stage of training | Administration of Questionnaire 2 (Qr2) | Assessment of participants’ PCK and the general difficulty of ABATAC’s methodological principles | |
Open-ended interview (Int1) | Discussion of their overall impression of the training process | ||
The second stage of training (Duration: approx. 4 weeks) | The ABATAC course | Online course including CK and PCK on the teaching of astronomy | |
After the second stage of training | Administration 2 of Questionnaire 1 (Qr1Admin2) | Assessment of participants’ CK and PCK | |
The third stage of the program: classroom implementation (Duration: approx. 10 weeks) | The ABATAC program’s implementation | Lesson planning and implementation by PTs and PSTs | |
After classroom implementation | Administration 3 of Questionnaire 1 (Qr1Admin3) | Overall assessment of participants’ CK and PCK | |
Repetition of open-ended interview (Int2) | Discussion of their overall impression of the program’s implementation |
Status | Variables | N | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|
PSTs | Score Qr1Admin1 | 46 | 3 | 17 | 9.93 | 2.84 |
Score Qr1Admin2 | 46 | 6 | 19 | 13.04 | 3.06 | |
Score Qr1Admin3 | 46 | 7 | 19 | 13.50 | 2.83 | |
PTs | Score Qr1Admin1 | 30 | 6 | 19 | 13.93 | 2.94 |
Score Qr1Admin2 | 30 | 11 | 20 | 16.57 | 2.10 | |
Score Qr1Admin3 | 29 | 11 | 20 | 16.31 | 2.16 |
Variables | Status | Shapiro–Wilk | ||
---|---|---|---|---|
Statistic | df | Sig. | ||
Difference Qr1Admin1-Qr1Admin2 | PSTs | 0.98 | 46 | 0.65 |
PTs | 0.96 | 29 | 0.26 | |
Difference Qr1Admin2-Qr1Admin3 | PSTs | 0.95 | 46 | 0.05 |
PTs | 0.96 | 29 | 0.33 | |
Difference Qr1Admin1-Qr1Admin3 | PSTs | 0.98 | 46 | 0.41 |
PTs | 0.94 | 29 | 0.09 |
Paired Sample | Status | Paired Differences | t | df | Sig. (2-Tailed) | Cohen’s d | |
---|---|---|---|---|---|---|---|
Mean | Std. Deviation | ||||||
Qr1Admin1-Qr1Admin2 | PSTs | −3.11 | 3.18 | −6.63 | 45 | 0.000 | 1.05 |
PTs | −2.63 | 2.88 | −5.00 | 29 | 0.000 | 1.01 | |
Qr1Admin2-Qr1Admin3 | PSTs | −0.46 | 2.10 | −1.48 | 45 | 0.146 | 0.15 |
PTs | 0.24 | 2.12 | 0.61 | 28 | 0.544 | 0.11 | |
Qr1Admin1-Qr1Admin3 | PSTs | −3.56 | 2.66 | −9.08 | 45 | 0.000 | 1.26 |
PTs | −2.34 | 3.36 | −3.75 | 28 | 0.001 | 0.90 |
Question Item (QIt) | Component | Factor | |
---|---|---|---|
1 | 2 | ||
QIt1 | 0.548 | 0.210 | Factor 1—Basic concepts |
QIt2 | 0.622 | 0.177 | |
QIt3 | 0.733 | 0.072 | |
QIt4 | 0.578 | 0.099 | |
QIt5 | 0.642 | 0.250 | |
QIt6 | 0.662 | 0.241 | |
QIt7 | 0.611 | −0.252 | |
QIt8 | 0.657 | 0.227 | |
QIt9 | 0.680 | 0.293 | |
QIt10 | 0.657 | 0.118 | |
QIt11 | 0.824 | 0.104 | |
QIt12 | 0.770 | 0.005 | |
QIt13 | 0.628 | −0.218 | |
QIt14 | 0.660 | −0.140 | |
QIt15 | 0.747 | −0.211 | |
QIt16 | 0.780 | 0.075 | |
QI17 | 0.779 | 0.128 | |
QIt18 | 0.748 | 0.112 | |
QIt19 | 0.206 | 0.767 | Factor 2—External support |
QIt20 | −0.015 | 0.605 | |
QIt21 | 0.090 | 0.749 | |
QIt22 | −0.040 | 0.698 |
Factor | Cronbach’s Alpha | N of Items |
---|---|---|
1 | 0.931 | 18 |
2 | 0.755 | 4 |
Factor | Status | Variables | N | Mean | Std. Deviation |
---|---|---|---|---|---|
Factor 1—Basic Concepts | PSTs | Qr1Admin1 | 46 | 3.78 | 0.68 |
Qr1Admin2 | 46 | 4.23 | 0.45 | ||
Qr1Admin3 | 46 | 4.15 | 0.53 | ||
PTs | Qr1Admin1 | 30 | 4.27 | 0.54 | |
Qr1Admin2 | 30 | 4.20 | 0.77 | ||
Qr1Admin3 | 29 | 4.22 | 0.59 | ||
Factor 2—External Support | PSTs | Qr1Admin1 | 45 | 4.52 | 0.53 |
Qr1Admin2 | 46 | 4.21 | 0.63 | ||
Qr1Admin3 | 46 | 4.37 | 0.55 | ||
PTs | Qr1Admin1 | 30 | 4.05 | 0.52 | |
Qr1Admin2 | 30 | 4.14 | 0.65 | ||
Qr1Admin3 | 29 | 4.14 | 0.55 |
Factor | Questionnaire/Administration | PSTs/PTs | Shapiro–Wilk | ||
---|---|---|---|---|---|
Statistic | df | Sig. | |||
Factor 1—Basic Concepts | Improvement Qr1Admin1-Qr1Admin2 | PSTs | 0.93 | 46 | 0.010 |
PTs | 0.85 | 29 | 0.001 | ||
Improvement Qr1Admin1-Qr1Admin3 | PSTs | 0.95 | 46 | 0.063 | |
PTs | 0.97 | 29 | 0.545 | ||
Improvement Qr1Admin2-Qr1Admin3 | PSTs | 0.95 | 46 | 0.045 | |
PTs | 0.74 | 29 | 0.000 | ||
Factor 2—External Support | Improvement Qr1Admin1-Qr1Admin2 | PSTs | 0.88 | 45 | 0.000 |
PTs | 0.96 | 29 | 0.393 | ||
Improvement Qr1Admin1-Qr1Admin3 | PSTs | 0.94 | 45 | 0.026 | |
PTs | 0.93 | 29 | 0.073 | ||
Improvement Qr1Admin2-Qr1Admin3 | PSTs | 0.93 | 45 | 0.009 | |
PTs | 0.95 | 29 | 0.177 |
PSTs/PTs | Related Samples | N | Z-Value | p | Cohen’s d |
---|---|---|---|---|---|
PSTs | Qr1Admin1-Qr1Admin2 | 46 | 3.83 | 0.000 | 1.37 |
Qr1Admin2-Qr1Admin3 | 46 | −1.20 | 0.231 | 0.36 | |
PTs | Qr1Admin1-Qr1Admin2 | 30 | 0.21 | 0.838 | 0.08 |
Qr1Admin2-Qr1Admin3 | 29 | −0.72 | 0.475 | 0.27 |
Paired Differences | |||||||
---|---|---|---|---|---|---|---|
PSTs/PT | Paired Samples | Mean | Std. Deviation | t | df | Sig. (2-Tailed) | Cohen’s d |
PSTs | Qr1Admin1-Qr1Admin3 | −0.37 | 0.83 | −3.02 | 45 | 0.004 | 0.36 |
PTs | Qr1Admin1-Qr1Admin3 | 0.04 | 0.67 | 0.37 | 28 | 0.714 | 0.08 |
PSTs/PTs | Related Samples | N | Z-Value | p | Cohen’s d |
---|---|---|---|---|---|
PSTs | Qr1Admin1-Qr1Admin2 | 45 | −3.48 | 0.001 | 1.21 |
Qr1Admin2-Qr1Admin3 | 46 | 1.80 | 0.072 | 0.55 | |
Qr1Admin1-Qr1Admin3 | 45 | −1.97 | 0.048 | 0.62 |
Paired Samples | Paired Differences | t | df | Sig. (2-Tailed) | Cohen’s d | |
---|---|---|---|---|---|---|
Mean | Std. Deviation | |||||
Qr1Admin1-Qr1Admin2 | −0.09 | 0.76 | −0.66 | 29 | 0.516 | 0.16 |
Qr1Admin2-Qr1Admin3 | −0.02 | 0.33 | −0.42 | 28 | 0.676 | 0.04 |
Qr1Admin1-Qr1Admin3 | −0.09 | 0.69 | −0.67 | 28 | 0.508 | 0.16 |
Question Item (QIt) | Component | Factor | ||
---|---|---|---|---|
1 | 2 | 3 | ||
QIt5 | 0.834 | 0.252 | 0.029 | Factor 3—Processes of inquiry-based learning (IBL) |
QIt4 | 0.789 | 0.122 | 0.135 | |
QIt11 | 0.637 | 0.288 | −0.095 | |
QIt3 | 0.636 | 0.127 | 0.391 | |
QIt7 | 0.159 | 0.843 | 0.138 | Factor 4—Promoting autonomy in IBL and artmaking |
QIt8 | 0.323 | 0.714 | 0.188 | |
QIt6 | 0.288 | 0.650 | 0.045 | |
QIt9 | −0.244 | 0.542 | 0.452 | |
QIt10 | 0.134 | 0.520 | 0.208 | |
QIt12 | 0.324 | 0.412 | −0.151 | |
QIt1 | −0.035 | 0.119 | 0.808 | Factor 5—Teacher-directed strategies |
QIt2 | 0.372 | 0.169 | 0.768 |
Factor | Cronbach’s Alpha | No. of Items |
---|---|---|
3 | 0.773 | 4 |
4 | 0.729 | 6 |
5 | 0.614 | 2 |
Factor | Status | Variables | N | Mean | Std. Deviation |
---|---|---|---|---|---|
Factor 3—Processes of inquiry-based learning | PSTs | Qr1Admin1 | 45 | 4.45 | 0.53 |
Qr2 | 46 | 4.40 | 0.44 | ||
Qr1Admin2 | 46 | 4.69 | 0.38 | ||
Qr1Admin3 | 46 | 4.77 | 0.34 | ||
PTs | Qr1Admin1 | 30 | 4.43 | 0.60 | |
Qr2 | 30 | 4.52 | 0.50 | ||
Qr1Admin2 | 30 | 4.77 | 0.33 | ||
Qr1Admin3 | 29 | 4.75 | 0.37 | ||
Factor 4—Promoting autonomy in IBL and artmaking | PSTs | Qr1Admin1 | 45 | 3.83 | 0.71 |
Qr2 | 46 | 4.09 | 0.53 | ||
Qr1Admin2 | 46 | 4.33 | 0.51 | ||
Qr1Admin3 | 46 | 4.50 | 0.39 | ||
PTs | Qr1Admin1 | 30 | 4.05 | 0.50 | |
Qr2 | 30 | 4.17 | 0.40 | ||
Qr1Admin2 | 30 | 4.29 | 0.46 | ||
Qr1Admin3 | 29 | 4.32 | 0.40 | ||
Factor 5—Teacher-directed strategies | PSTs | Qr1Admin1 | 45 | 4.00 | 0.89 |
Qr2 | 46 | 3.54 | 1.04 | ||
Qr1Admin2 | 46 | 3.76 | 0.81 | ||
Qr1Admin3 | 46 | 3.67 | 0.84 | ||
PTs | Qr1Admin1 | 30 | 4.13 | 0.54 | |
Qr2 | 29 | 3.36 | 1.00 | ||
Qr1Admin2 | 30 | 3.40 | 0.83 | ||
Qr1Admin3 | 29 | 3.16 | 0.91 |
Factor | Questionnaire/Administration | PSTs/PTs | Shapiro–Wilk | ||
---|---|---|---|---|---|
Statistic | df | Sig. | |||
Factor 3—Processes of inquiry-based learning | Difference Qr1Admin1-Qr2 | PSTs | 0.94 | 45 | 0.025 |
PTs | 0.90 | 29 | 0.011 | ||
Difference Qr2-Qr1Admin2 | PSTs | 0.92 | 45 | 0.004 | |
PTs | 0.96 | 29 | 0.308 | ||
Difference Qr1Admin2-Qr1Admin3 | PSTs | 0.86 | 45 | 0.000 | |
PTs | 0.81 | 29 | 0.000 | ||
Difference Qr1Admin1-Qr1Admin3 | PSTs | 0.92 | 45 | 0.004 | |
PTs | 0.96 | 29 | 0.297 | ||
Factor 4—Promoting autonomy in IBL and artmaking | Difference Qr1Admin1-Qr2 | PSTs | 0.97 | 45 | 0.315 |
PTs | 0.97 | 29 | 0.615 | ||
Difference Qr2-Qr1Admin2 | PSTs | 0.97 | 45 | 0.310 | |
PTs | 0.96 | 29 | 0.347 | ||
Difference Qr1Admin2-Qr1Admin3 | PSTs | 0.98 | 45 | 0.500 | |
PTs | 0.94 | 29 | 0.121 | ||
Difference Qr1Admin1-Qr1Admin3 | PSTs | 0.98 | 45 | 0.579 | |
PTs | 0.96 | 29 | 0.335 | ||
Factor 5—Teacher-directed strategies | Difference Qr1Admin1-Qr2 | PSTs | 0.95 | 45 | 0.039 |
PTs | 0.95 | 28 | 0.242 | ||
Difference Qr2-Qr1Admin2 | PSTs | 0.97 | 45 | 0.243 | |
PTs | 0.95 | 28 | 0.199 | ||
Difference Qr1Admin2-Qr1Admin3 | PSTs | 0.88 | 45 | 0.000 | |
PTs | 0.91 | 28 | 0.023 | ||
Difference Qr1Admin1-Qr1Admin3 | PSTs | 0.96 | 45 | 0.082 | |
PTs | 0.95 | 28 | 0.214 |
PSTs/PTs | Related samples | N | Z-Value | p | Cohen’s d |
---|---|---|---|---|---|
PSTs | Qr1Admin1-Qr2 | 45 | −0.83 | 0.408 | 0.25 |
Qr2-Qr1Admin2 | 46 | 3.77 | 0.000 | 1.34 | |
Qr1Admin2-Qr1Admin3 | 46 | 1.73 | 0.084 | 0.53 | |
Qr1Admin1-Qr1Admin3 | 45 | 3.61 | 0.000 | 1.28 | |
PTs | Qr1Admin1-Qr2 | 30 | 0.52 | 0.599 | 0.19 |
Qr1Admin2-Qr1Admin3 | 29 | −0.39 | −0.695 | 0.14 |
PSTs/PTs | Paired Samples | Paired Differences | t | df | Sig. (2-Tailed) | Cohen’s d | |
---|---|---|---|---|---|---|---|
Mean | Std. Deviation | ||||||
PTs | Qr2-Qr1Admin2 | −0.25 | 0.49 | −2.81 | 29 | 0.009 | 0.58 |
PTs | Qr1Admin1-Qr1Admin3 | −0.33 | 0.68 | −2.61 | 28 | 0.0014 | 0.64 |
PSTs/PTs | Paired Samples | Paired Differences | t | df | Sig. (2-Tailed) | Cohen’s d | |
---|---|---|---|---|---|---|---|
Mean | Std. Deviation | ||||||
PSTs | Qr1Admin1-Qr2 | −0.27 | 0.73 | −2.47 | 44 | 0.017 | 0.43 |
Qr2-Qr1Admin2 | −0.23 | 0.62 | −2.58 | 45 | 0.013 | 0.45 | |
Qr1Admin2-Qr1Admin3 | −0.17 | 0.49 | −2.36 | 45 | 0.023 | 0.37 | |
Qr1Admin1-Qr1Admin3 | −0.66 | 0.73 | −6.08 | 44 | 0.000 | 1.14 | |
PTs | Qr1Admin1-Qr2 | −0.12 | 0.59 | −1.10 | 29 | 0.282 | 0.26 |
Qr2-Qr1Admin2 | −0.12 | 0.60 | −1.07 | 29 | 0.293 | 0.27 | |
Qr1Admin2-Qr1Admin3 | −0.03 | 0.41 | −0.38 | 28 | 0.709 | 0.07 | |
Qr1Admin1-Qr1Admin3 | −0.25 | 0.57 | −2.45 | 28 | 0.021 | 0.55 |
PSTs/PTs | Related Samples | N | Z-Value | p | Cohen’s d |
---|---|---|---|---|---|
PSTs | Qr1Admin1-Qr2 | 45 | −2.88 | 0.005 | 0.95 |
Qr1Admin2-Qr1Admin3 | 46 | −1.06 | 0.291 | 0.32 | |
PTs | Qr1Admin2-Qr1Admin3 | 29 | −1.42 | 0.156 | 0.55 |
PSTs/PTs | Paired Samples | Paired Differences | t | df | Sig. (2-Tailed) | Cohen’s d | |
---|---|---|---|---|---|---|---|
Mean | Std. Deviation | ||||||
PSTs | Qr2-Qr1Admin2 | −0.22 | 1.03 | −1.43 | 45 | 0.160 | 0.23 |
Qr1Admin1-Qr1Admin3 | 0.35 | 1.06 | 2.25 | 44 | 0.029 | 0.41 | |
PTs | Qr1Admin1-Qr2 | 0.76 | 1.11 | 3.69 | 28 | 0.001 | 0.58 |
Qr2-Qr1Admin2 | −0.07 | 1.13 | −0.33 | 28 | 0.745 | 0.07 | |
Qr1Admin1-Qr1Admin3 | 0.96 | 0.97 | 5.35 | 28 | 0.000 | 1.27 |
General Code Categories | Sub-Codes | No of Cases PTs Int1 1 | No of Cases PTs Int2 2 | No of Cases PSTs Int1 3 | No of Cases PSTs Int2 4 |
---|---|---|---|---|---|
Difficulties that the participants encountered during the implementation of the ABATAC program | Lack of time to study the ABATAC course | 5 | 7 | 2 | 5 |
Navigation of the ABATAC course platform | 1 | 6 | 2 | 5 | |
The amount of information in the ABATAC course | 1 | 9 | 1 | 3 | |
Lack of prior astronomy CK | 5 | 4 | 12 | 21 | |
Lack of teaching experience | 0 | 0 | 15 | 7 | |
Lack of teaching resources | 6 | 4 | 5 | 4 | |
Unfamiliar teaching subject | 10 | 6 | 16 | 22 | |
It requires good preparation | 4 | 3 | 9 | 8 | |
Lack of teaching time in the school schedule | 4 | 10 | 1 | 2 | |
Grasping the ABATAC’s PCK | 5 | 6 | 4 | 3 | |
Adaptation of astronomical concepts and phenomena to children’s cognitive level and interests | 2 | 5 | 10 | 22 | |
Factors that helped the PTs implement the ABATAC program | The ABATAC course | 8 | 7 | 5 | 13 |
The ABATAC workshops | 5 | 2 | 0 | 0 | |
The combination of online course and workshops | 10 | 26 | 7 | 9 | |
The flexibility of inquiry-based approach | 4 | 9 | 0 | 2 | |
The support of the program team | 8 | 11 | 3 | 12 | |
Personal interest in astronomy | 7 | 6 | 0 | 2 | |
Colleagues’ support | 3 | 0 | 7 | 5 | |
Prerequisites for teaching astronomy | Good PCK | 0 | 10 | 1 | 9 |
Good study and preparation of content | 2 | 3 | 3 | 10 | |
Teaching resources (tools, lesson plans, models, etc.) | 6 | 4 | 5 | 4 | |
Training | 0 | 4 | 0 | 0 | |
Participants’ overall perceptions about teaching macrocosm concepts and phenomena to young children | Teaching concepts and phenomena of the macrocosm to young children is difficult. | 12 | 0 | 11 | 0 |
Teaching concepts and phenomena of the macrocosm to young children is possible if the teacher prepares appropriately. | 0 | 16 | 0 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampartzaki, M.; Tassis, K.; Kalogiannakis, M.; Pavlidou, V.; Christidis, K.; Chatzoglidou, S.; Eleftherakis, G. Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children. Educ. Sci. 2024, 14, 606. https://doi.org/10.3390/educsci14060606
Ampartzaki M, Tassis K, Kalogiannakis M, Pavlidou V, Christidis K, Chatzoglidou S, Eleftherakis G. Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children. Education Sciences. 2024; 14(6):606. https://doi.org/10.3390/educsci14060606
Chicago/Turabian StyleAmpartzaki, Maria, Konstantinos Tassis, Michail Kalogiannakis, Vasiliki Pavlidou, Konstantinos Christidis, Sophia Chatzoglidou, and Georgios Eleftherakis. 2024. "Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children" Education Sciences 14, no. 6: 606. https://doi.org/10.3390/educsci14060606
APA StyleAmpartzaki, M., Tassis, K., Kalogiannakis, M., Pavlidou, V., Christidis, K., Chatzoglidou, S., & Eleftherakis, G. (2024). Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children. Education Sciences, 14(6), 606. https://doi.org/10.3390/educsci14060606