# Evaluation of Epidemic-Based Information Dissemination in a Wireless Network Testbed

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Past Related Work

## 3. Models’ Definition

#### 3.1. Probabilistic Flooding

#### 3.2. SIR Epidemic Model

#### 3.3. Epidemic Thresholds

## 4. Implementation Description

#### 4.1. Hardware

#### 4.2. Software

#### 4.2.1. Probabilistic Flooding Implementation

#### 4.2.2. Epidemic Implementation

## 5. Experimental Evaluation

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

WSN | Wireless Sensor Network |

SIR | Susceptible-Infected-Recovered |

IoT | Internet of Things |

CaBIUs | CAmpus TestBed of the Ionian University |

API | Application Programming Interface |

SIS | Susceptible-Infected-Recovered |

## References

- Oikonomou, K.; Aissa, S. Dynamic sink assignment for efficient energy consumption in wireless sensor networks. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012; pp. 1876–1881. [Google Scholar]
- Angelopoulos, C.M.; Nikoletseas, S.; Raptis, T.P. Wireless energy transfer in sensor networks with adaptive, limited knowledge protocols. Comput. Netw.
**2014**, 70, 113–141. [Google Scholar] [CrossRef] - Han, G.; Qian, A.; Jiang, J.; Sun, N.; Liu, L. A grid-based joint routing and charging algorithm for industrial wireless rechargeable sensor networks. Comput. Netw.
**2016**, 101, 19–28. [Google Scholar] [CrossRef] - Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of things. Int. J. Commun. Syst.
**2012**, 25, 1101. [Google Scholar] [CrossRef] - Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
**2002**, 38, 393–422. [Google Scholar] [CrossRef][Green Version] - Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. A literature survey on smart cities. Sci. China Inf. Sci.
**2015**, 58, 1–18. [Google Scholar] [CrossRef] - Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Betoule, C.; Bonald, T.; Clavier, R.; Rossi, D.; Rossini, G.; Thouenon, G. Adaptive Probabilistic Flooding for Multipath Routing. In Proceedings of the 2012 5th International Conference on New Technologies, Mobility and Security (NTMS), Istanbul, Turkey, 7–10 May 2012; pp. 1–6. [Google Scholar]
- Segall, A. Distributed network protocols. IEEE Trans. Inf. Theory
**1983**, 29, 23–35. [Google Scholar] [CrossRef] - Ni, S.Y.; Tseng, Y.C.; Chen, Y.S.; Sheu, J.P. The broadcast storm problem in a mobile ad hoc network. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, WA, USA, 15–19 August 1999; pp. 151–162. [Google Scholar]
- Birman, K.P.; Hayden, M.; Ozkasap, O.; Xiao, Z.; Budiu, M.; Minsky, Y. Bimodal multicast. ACM Trans. Comput. Syst. (TOCS)
**1999**, 17, 41–88. [Google Scholar] [CrossRef] - Eugster, P.T.; Guerraoui, R.; Kermarrec, A.M.; Massoulié, L. Epidemic information dissemination in distributed systems. Computer
**2004**, 37, 60–67. [Google Scholar] [CrossRef][Green Version] - Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character
**1927**, 115, 700–721. [Google Scholar] - Koufoudakis, G.; Oikonomou, K.; Giannakis, K.; Aïssa, S. Probabilistic flooding coverage analysis for efficient information dissemination in wireless networks. Comput. Netw.
**2018**, 140, 51–61. [Google Scholar] [CrossRef] - Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys.
**2015**, 87, 925. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Chakrabarti, D.; Wang, C.; Faloutsos, C. Epidemic spreading in real networks: An eigenvalue viewpoint. In Proceedings of the 22nd International Symposium on Reliable Distributed Systems, Florence, Italy, 6–8 October 2003; pp. 25–34. [Google Scholar]
- Oikonomou, K.; Koufoudakis, G.; Aissa, S. Probabilistic flooding coverage analysis in large scale wireless networks. In Proceedings of the 2012 19th International Conference on Telecommunications (ICT), Jounieh, Lebanon, 23–25 April 2012; pp. 1–6. [Google Scholar]
- Alvanou, A.G.; Zervopoulos, A.; Papamichail, A.; Bezas, K.; Vergis, S.; Stylidou, A.; Tsipis, A.; Komianos, V.; Tsoumanis, G.; Koufoudakis, G.; et al. CaBIUs: Description of the Enhanced Wireless Campus Testbed of the Ionian University. Electronics
**2020**, 9, 454. [Google Scholar] [CrossRef][Green Version] - Williams, B.; Camp, T. Comparison of broadcasting techniques for mobile ad hoc networks. In Proceedings of the 3rd ACM International Symposium on Mobile ad hoc Networking & Computing, Lausanne, Switzerland, 9–11 June 2002; pp. 194–205. [Google Scholar]
- Sasson, Y.; Cavin, D.; Schiper, A. Probabilistic broadcast for flooding in wireless mobile ad hoc networks. In Proceedings of the 2003 IEEE Wireless Communications and Networking (WCNC), New Orleans, LA, USA, 16–20 March 2003; Volume 2, pp. 1124–1130. [Google Scholar]
- Haas, Z.J.; Halpern, J.Y.; Li, L. Gossip-based ad hoc routing. IEEE/ACM Trans. Netw.
**2006**, 14, 479–491. [Google Scholar] [CrossRef][Green Version] - Shen, C.C.; Huang, Z.; Jaikaeo, C. Directional broadcast for mobile ad hoc networks with percolation theory. IEEE Trans. Mob. Comput.
**2006**, 5, 317–332. [Google Scholar] [CrossRef] - Crisóstomo, S.; Schilcher, U.; Bettstetter, C.; Barros, J. Probabilistic flooding in stochastic networks: Analysis of global information outreach. Comput. Netw.
**2012**, 56, 142–156. [Google Scholar] [CrossRef] - Oikonomou, K.; Stavrakakis, I. Performance analysis of probabilistic flooding using random graphs. In Proceedings of the 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Espoo, Finland, 18–21 June 2007; pp. 1–6. [Google Scholar]
- Koufoudakis, G.; Oikonomou, K.; Aïssa, S.; Stavrakakis, I. Analysis of Spectral Properties for Efficient Coverage Under Probabilistic Flooding. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018; pp. 1–9. [Google Scholar]
- Reina, D.; Toral, S.; Johnson, P.; Barrero, F. A survey on probabilistic broadcast schemes for wireless ad hoc networks. Ad Hoc Netw.
**2015**, 25, 263–292. [Google Scholar] [CrossRef][Green Version] - Anderson, R.M.; May, R.M. Understanding the AIDS pandemic. Sci. Am.
**1992**, 266, 58–67. [Google Scholar] [CrossRef] - Ross, R. Memoirs: With a Full Account of the Great Malaria Problem and Its Solution; J. Murray: Stevens Point, WI, USA, 1923. [Google Scholar]
- Demers, A.; Greene, D.; Hauser, C.; Irish, W.; Larson, J.; Shenker, S.; Sturgis, H.; Swinehart, D.; Terry, D. Epidemic algorithms for replicated database maintenance. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver, BC, Canada, 10–12 August 1987; pp. 1–12. [Google Scholar]
- Lloyd, A.L.; May, R.M. How viruses spread among computers and people. Science
**2001**, 292, 1316–1317. [Google Scholar] [CrossRef][Green Version] - Ishiyama, S.; Nakano, T.; Okaie, Y.; Hara, T. Epidemic Information Dissemination in Mobile Molecular Communication Systems. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Anagnostopoulos, C.; Sekkas, O.; Hadjiefthymiades, S. An adaptive epidemic information dissemination model for wireless sensor networks. Pervasive Mob. Comput.
**2012**, 8, 751–763. [Google Scholar] [CrossRef] - Kandhway, K.; Kuri, J. Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks. IEEE/ACM Trans. Netw.
**2016**, 24, 3204–3217. [Google Scholar] [CrossRef][Green Version] - Chancay-García, L.; Hernández-Orallo, E.; Manzoni, P.; Calafate, C.T.; Cano, J. Evaluating and Enhancing Information Dissemination in Urban Areas of Interest Using Opportunistic Networks. IEEE Access
**2018**, 6, 32514–32531. [Google Scholar] [CrossRef] - Cohen, F. Computer viruses: Theory and experiments. Comput. Secur.
**1987**, 6, 22–35. [Google Scholar] [CrossRef] - Murray, W.H. The application of epidemiology to computer viruses. Comput. Secur.
**1988**, 7, 139–145. [Google Scholar] [CrossRef] - Kephart, J.O.; White, S.R. Directed-Graph Epidemiological Models of Computer Viruses. In Computation: The Micro and the Macro View; World Scientific: Singapore, 1992; pp. 71–102. [Google Scholar]
- Pastor-Satorras, R.; Vespignani, A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E
**2001**, 63, 066117. [Google Scholar] [CrossRef] [PubMed][Green Version] - Pastor-Satorras, R.; Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett.
**2001**, 86, 3200. [Google Scholar] [CrossRef][Green Version] - Pastor-Satorras, R.; Vázquez, A.; Vespignani, A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett.
**2001**, 87, 258701. [Google Scholar] [CrossRef][Green Version] - Pastor-Satorras, R.; Vespignani, A. Immunization of complex networks. Phys. Rev. E
**2002**, 65, 036104. [Google Scholar] [CrossRef][Green Version] - Eguiluz, V.M.; Klemm, K. Epidemic threshold in structured scale-free networks. Phys. Rev. Lett.
**2002**, 89, 108701. [Google Scholar] [CrossRef][Green Version] - Serrano, M.Á.; Boguná, M. Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett.
**2006**, 97, 088701. [Google Scholar] [CrossRef][Green Version] - Boguna, M.; Pastor-Satorras, R.; Vespignani, A. Epidemic Spreading in Complex Networks with Degree Correlations. Lect. Notes Phys.
**2003**, 625. [Google Scholar] [CrossRef][Green Version] - Moreno, Y.; Pastor-Satorras, R.; Vespignani, A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst.
**2002**, 26, 521–529. [Google Scholar] [CrossRef] - Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2000; Volume 5. [Google Scholar]
- Anderson, R.M.; Anderson, B.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Arduino Mega. Available online: https://store.arduino.cc/arduino-mega-2560-rev3 (accessed on 27 June 2020).
- Xbee Pro S2C—RF Module. Available online: https://www.digi.com/products/embedded-systems/rf-modules/2-4-ghz-modules/xbee-zigbee (accessed on 4 November 2019).
- Arduino Xbee Shield. Available online: https://www.arduino.cc/en/Main/ArduinoXbeeShield (accessed on 4 November 2019).
- Baronti, P.; Pillai, P.; Chook, V.W.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Comput. Commun.
**2007**, 30, 1655–1695. [Google Scholar] [CrossRef] - XBee®/XBee-PRO S2C Zigbee®. Available online: https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf (accessed on 4 November 2019).
- Zervopoulos, A.; Tsipis, A.; Alvanou, A.G.; Bezas, K.; Papamichail, A.; Vergis, S.; Stylidou, A.; Tsoumanis, G.; Komianos, V.; Koufoudakis, G.; et al. Wireless Sensor Network Synchronization for Precision Agriculture Applications. Agriculture
**2020**, 10, 89. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Comparison of total coverage between probabilistic flooding and the SIR epidemic: (

**a**) probabilistic flooding coverage ${C}_{PF}\left(T\right)$ by probability q; (

**b**) SIR epidemic model coverage ${C}_{SIR}\left(T\right)$ by reproduction number $\tau $.

**Figure 3.**Comparison of termination time T in hops between probabilistic flooding and the SIR epidemic model: (

**a**) probabilistic flooding termination time T by probability q; (

**b**) SIR epidemic model termination time T by reproduction number $\tau $.

**Figure 4.**Comparison of coverage with respect to time t in hops between probabilistic flooding and the SIR epidemic model: (

**a**) probabilistic flooding coverage ${C}_{PF}\left(T\right)$; (

**b**) SIR epidemic model coverage ${C}_{SIR}\left(T\right)$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Stylidou, A.; Zervopoulos, A.; Alvanou, A.G.; Koufoudakis, G.; Tsoumanis, G.; Oikonomou, K.
Evaluation of Epidemic-Based Information Dissemination in a Wireless Network Testbed. *Technologies* **2020**, *8*, 36.
https://doi.org/10.3390/technologies8030036

**AMA Style**

Stylidou A, Zervopoulos A, Alvanou AG, Koufoudakis G, Tsoumanis G, Oikonomou K.
Evaluation of Epidemic-Based Information Dissemination in a Wireless Network Testbed. *Technologies*. 2020; 8(3):36.
https://doi.org/10.3390/technologies8030036

**Chicago/Turabian Style**

Stylidou, Andreana, Alexandros Zervopoulos, Aikaterini Georgia Alvanou, George Koufoudakis, Georgios Tsoumanis, and Konstantinos Oikonomou.
2020. "Evaluation of Epidemic-Based Information Dissemination in a Wireless Network Testbed" *Technologies* 8, no. 3: 36.
https://doi.org/10.3390/technologies8030036