Adaptive High-Order Sliding Mode Control for By-Wire Ground Vehicle Systems
Abstract
1. Introduction
- A HOSM observer with adaptive gains is designed to ensure accurate estimation of lateral velocity for ground vehicles.
- A Dynamic HOSM controller with adaptive gains equipped with AFS and RTV systems. The controller incorporates an HOSM-based observer.
- An evaluation of the proposed control strategy was conducted using the CarSim simulation platform.
2. Mathematical Model of the Vehicle Dynamics
3. Design of an HOSM Observer with Adaptive Gain
4. Design of an Active Dynamic Control Based on an HOSM Observer with Adaptive Gain
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014. [Google Scholar]
- Acosta-Lúa, C.; Castillo-Toledo, B.; Cespi, R.; Di Gennaro, S. An integrated active nonlinear controller for wheeled vehicles. J. Frankl. Inst. 2015, 352, 4890–4910. [Google Scholar] [CrossRef]
- Acosta-Lúa, C.; Di Gennaro, S. Nonlinear adaptive tracking for ground vehicles in the presence of lateral wind disturbance and parameter variations. J. Frankl. Inst. 2017, 354, 2742–2768. [Google Scholar] [CrossRef]
- Acosta-Lúa, C.; Bianchi, D.; Di Gennaro, S. Nonlinear observer-based adaptive control of ground vehicles with uncertainty estimation. J. Frankl. Inst. 2023, 360, 14175–14189. [Google Scholar] [CrossRef]
- Borri, A.; Bianchi, D.; Di Benedetto, M.D.; Di Gennaro, S. Optimal workload actuator balancing and dynamic reference generation in active vehicle control. J. Frankl. Inst. 2017, 354, 1722–1740. [Google Scholar] [CrossRef]
- Mirzaei, M.; Mirzaeinejad, H. Fuzzy scheduled optimal control of integrated vehicle braking and steering systems. IEEE/ASME Trans. Mechatronics 2017, 22, 2369–2379. [Google Scholar] [CrossRef]
- Navarrete-Guzmán, A.; Di Gennaro, S.; Rivera Domínguez, J.; Acosta Lua, C.; Loukianov, A.G.; Castillo-Toledo, B. Enhanced discrete–time modeling via variational integrators and digital controller design for ground vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6375–6385. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, J.; Man, Z.; Wang, H.; Lu, R. Sliding mode–based active disturbance rejection control for vehicle steer–by–wire systems. IET Cyber-Phys. Syst. Theory Appl. 2018, 3, 1–10. [Google Scholar] [CrossRef]
- Guo, H.; Liu, F.; Xu, F.; Chen, H.; Cao, D.; Ji, Y. Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2–13. [Google Scholar] [CrossRef]
- Acosta-Lúa, C.; Di Gennaro, S.; Navarrete-Guzman, A.; Ortega Cisneros, S.; Rivera Domínguez, J. Digital implementation via FPGA of controllers for active control of ground vehicles. IEEE Trans. Ind. Inform. 2019, 5, 2253–2264. [Google Scholar]
- Etienne, L.; Acosta-Lúa, C.; Di Gennaro, S.; Barbot, J.P. A super-twisting controller for active control of ground vehicles with lateral tire-road friction estimation and CarSim validation. Int. J. Control. Autom. Syst. 2020, 18, 1177–1189. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Z.; Shi, P. Robust State-Estimator-Based Control of Uncertain Semi-Markovian Jump Systems Subject to Actuator Failures and Time-Varying Delay. IEEE Trans. Autom. Control 2024, 69, 487–494. [Google Scholar] [CrossRef]
- Bianchi, D.; Borri, A.; Benedetto, M.D.; Di Gennaro, S. Active attitude control of ground vehicles with partially unknown model. IFAC-PapersOnLine 2020, 53, 14621–14626. [Google Scholar] [CrossRef]
- Liu, W.; He, C.; Ji, Y.; Hou, X.; Zhang, J. Active disturbance rejection control of path following control for autonomous ground vehicles. In Proceedings of the 2020 Chinese Automation Congress, Shanghai, China, 6–8 November 2020; pp. 6839–6844. [Google Scholar]
- Swain, S.K.; Rath, J.J.; Veluvolu, K.C. Neural Network Based Robust Lateral Control for an Autonomous Vehicle. Electronics 2021, 10, 510. [Google Scholar] [CrossRef]
- Emelyanov, S.V.; Korovin, S.K.; Levantovsky, L.V. Higher Order Sliding Regimes in the Binary Control Systems. Dokl. Akad. Nauk. Russian Acad. Sci. 1986, 287, 1338–1342. [Google Scholar]
- Utkin, V. Discussion aspects of high–order sliding mode control. IEEE Trans. Autom. Control 2015, 61, 829–833. [Google Scholar] [CrossRef]
- Utkin, V.; Pozniak, A.; Orlov, Y.; Polyakov, A. Conventional and High Order Sliding Mode Control. J. Frankl. Inst. 2020, 35, 10244–10261. [Google Scholar] [CrossRef]
- Mercado-Uribe, J.A.; Moreno, J.A. Discontinuous integral action for arbitrary relative degree in sliding–mode control. Automatica 2020, 118, 109018. [Google Scholar] [CrossRef]
- Fridman, L.; Moreno, J.; Iriarte, R. Sliding Modes After the First Decade of the 21st Century: State of the Art; Lecture Notes in Control and Information Sciences; Springer Verlag: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kreerenko, O.D. Nonlinear Adaptive Control of UAV Flight Under the Influence of Wind Disturbance. In Proceedings of the 2024 IEEE International Russian Smart Industry Conference (SmartIndustryCon), Sochi, Russia, 25–29 March 2024; pp. 813–818. [Google Scholar]
- Imran, I.H.; Wood, K.; Montazeri, A. Adaptive Control of Unmanned Aerial Vehicles with Varying Payload and Full Parametric Uncertainties. Electronics 2024, 13, 347–358. [Google Scholar] [CrossRef]
- Yoon, D.S.; Choi, S.B. Adaptive Control for Suspension System of In-Wheel Motor Vehicle with Magnetorheological Damper. Machines 2024, 12, 433–443. [Google Scholar] [CrossRef]
- He, S.; Xu, X.; Xie, J.; Wang, F.; Liu, Z. Adaptive control of dual-motor autonomous steering system for intelligent vehicles via Bi-LSTM and fuzzy methods. Control Eng. Pract. 2023, 130, 105362. [Google Scholar] [CrossRef]
- Setlur, P.; Wagner, J.R.; Dawson, D.M.; Braganza, D. A trajectory tracking steer-by-wire control system for ground vehicles. IEEE Trans. Veh. Technol. 2006, 55, 76–85. [Google Scholar] [CrossRef]
- Burgio, G.; Zeglaar, P. Integrated Vehicle Control using Steering and Brakes. Int. J. Control 2006, 79, 162–169. [Google Scholar] [CrossRef]
- Pacejka, H. Tyre and Vehicle Dynamics; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
m = 1800 kg | = 16 | = 1.41 |
= 2386 kg | = 16 | = 1.51 |
= 1.38 m | = 8854 N | |
= 1.53 m | = 8394 N |
= 0.1 | = 30 | = 0.1 |
= 0.1 | = 10 | |
= 1 | = 5 | = 4 |
= 1 | = 5 | |
= 0.12 | = 5.2 | = 5 |
= 0.12 | = 5.2 | |
= 90 | = 150 | |
= 10 | = 150 |
= 10,000 | = 10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores Jiménez, A.B.; Di Gennaro, S.; Jiménez Rodríguez, M.; Acosta Lúa, C. Adaptive High-Order Sliding Mode Control for By-Wire Ground Vehicle Systems. Technologies 2025, 13, 443. https://doi.org/10.3390/technologies13100443
Flores Jiménez AB, Di Gennaro S, Jiménez Rodríguez M, Acosta Lúa C. Adaptive High-Order Sliding Mode Control for By-Wire Ground Vehicle Systems. Technologies. 2025; 13(10):443. https://doi.org/10.3390/technologies13100443
Chicago/Turabian StyleFlores Jiménez, Ariadna Berenice, Stefano Di Gennaro, Maricela Jiménez Rodríguez, and Cuauhtémoc Acosta Lúa. 2025. "Adaptive High-Order Sliding Mode Control for By-Wire Ground Vehicle Systems" Technologies 13, no. 10: 443. https://doi.org/10.3390/technologies13100443
APA StyleFlores Jiménez, A. B., Di Gennaro, S., Jiménez Rodríguez, M., & Acosta Lúa, C. (2025). Adaptive High-Order Sliding Mode Control for By-Wire Ground Vehicle Systems. Technologies, 13(10), 443. https://doi.org/10.3390/technologies13100443